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S1

Tangent and cotangent bundle geometry

In Supplements 3 and 4 we will make use of certain tangent bundle structures
arising from the presence of an affine connection. To keep the presentation
interesting, certain ideas are presented in a general fiber bundle framework,
although eventually we shall only utilize the tangent or cotangent bundle
cases. The main references for the material in this supplement are [Yano and
Ishihara 1973] and parts of [Kolář, Michor, and Slovák 1993]. All data in this
chapter is of class C∞, so we will not always explicitly state this hypothesis.

S1.1 Some things Hamiltonian

In the text, we avoided Hamiltonian presentations of mechanics, and of con-
trol theory for mechanical systems. Our main reason for doing this was to
emphasize the Lagrangian point of view, while referring the reader to the lit-
erature for Hamiltonian treatments. However, in geometric optimal control,
quite independent of anything “mechanical,” the Hamiltonian point of view
acquires great value, so we shall need to delve somewhat into the geometry
associated with Hamiltonian mechanics. Our presentation will be far too brief
to serve as a useful introduction, so we refer the reader to texts such as [Abra-
ham and Marsden 1978, Arnol’d 1978, Bloch 2003, Guillemin and Sternberg
1990, Libermann and Marle 1987]. The books [Agrachev and Sachkov 2004,
Bloch 2003, Jurdjevic 1997] have a description of the Hamiltonian aspects of
optimal control.

S1.1.1 Differential forms

In the text we were able to omit treatment of an important class of tensors
known as differential forms, since they did not come up in our development,
except in the most elementary manner. However, now we shall need differ-
ential forms, so we give the briefest of introductions, referring to [Abraham,
Marsden, and Ratiu 1988, Flanders 1989, Nelson 1967] for further details.
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First we look at the linear case. A (0, k)-tensor α on a vector space V is
skew-symmetric if, for every σ ∈ Sk and for all v1, . . . , vk ∈ V, we have

α(vσ(1), . . . , vσ(k)) = (−1)sgn(σ)α(v1, . . . , vk).

We now make the following definition.

Definition S1.1 (Exterior form). Let V be a finite-dimensional R-vector
space. An exterior k-form on V is a skew-symmetric (0, k)-tensor on V. We
denote the set of exterior k-forms on V1 by

∧
k(V). •

If α ∈
∧
k(V) and β ∈

∧
l(V), then α⊗β ∈ T 0

k+l(V), but it will not generally
be the case that α⊗ β is an exterior (k + l)-form. However, one can define a
product that preserves skew-symmetry of tensors. To do so, for each k ∈ N,
define a linear map Alt : T 0

k (V) →
∧
k(V) by

Alt(t)(v1, . . . , vk) =
1
k!

∑
σ∈Sk

(−1)sgn(σ)t(vσ(1), . . . , vσ(k)).

Thus Alt “skew-symmetrizes” a tensor that is not skew-symmetric. One can
verify that, if α ∈

∧
k(V), then Alt(α) = α. Now, given α ∈

∧
k(V) and

β ∈
∧
l(V), we define α ∧ β ∈

∧
k+l(V) by

α ∧ β =
(k + l)!
k!l!

Alt(α⊗ β).

This is the wedge product of α and β. We comment that the appearance
of the factorial coefficient is not standard in the literature, so care should
be exercised when working with different conventions. The wedge product
is neither symmetric nor skew-symmetric, but obeys the relation α ∧ β =
(−1)klβ ∧ α.

Now let us see how to represent exterior k-forms in a basis {e1, . . . , en} for
V. Since α ∈

∧
k(V) is a (0, k)-tensor, one can define its components in the

usual manner:

αi1···ik = α(ei1 , . . . , eik), i1, . . . , ik ∈ {1, . . . , n}.

Since α is skew-symmetric, the components obey

ασ(i1)···σ(ik) = (−1)sgn(σ)αi1···ik ,

for σ ∈ Sk. Now let us provide a basis for
∧
k(V).

Proposition S1.2 (Basis for
∧

k(V)). Let {e1, . . . , en} be a basis for the
R-vector space V. Then{

ei1 ∧ · · · ∧ eik
∣∣ i1, . . . , ik ∈ {1, . . . , n}, i1 < i2 < · · · < ik

}
1 Interior k-forms are defined similarly, but are (k, 0)-tensors.
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is a basis for
∧
k(V). In particular,

dim(
∧
k(V)) =

{
n!

(n−k)!k! , k ≤ n,

0, k > n.

With the basis and the components defined as above, one can verify that

α =
∑

i1<···<ik

αi1···ike
ik ∧ · · · ∧ eik .

Let us illustrate this with some special cases.

Examples S1.3. 1. For k = 0, one takes the convention that
∧

0(V) = R.
Thus dim(

∧
0(V)) = 1.

2. Next we consider the case k = 1. One can easily see that
∧

1(V) = V∗.
Thus dim(

∧
1(V)) = dim(V).

3. Next consider the case when k = n = dim(V). In this case one can see that,
if {e1, . . . , en} is a basis for V, then every exterior k-form is a multiple of
e1 ∧ · · · ∧ en. Thus dim(

∧
n(V)) = 1.

4. Now take k = 2, and for concreteness, n = 3. Then a basis for
∧

2(V) is

{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3},

and, given α ∈
∧

2(V), we have

α = α12e
1 ∧ e2 + α13e

1 ∧ e3 + α23e
2 ∧ e3,

where α12 = α(e1, e2), α13 = α(e1, e3), and α23 = α(e2, e3). Therefore,
dim(

∧
1(V)) = dim(

∧
2(V)) = dim(V) in the case that dim(V) = 3. •

Now let us turn to extending the algebraic setting to a differential geo-
metric one on a manifold M. Of course, the basic step of defining

∧
k(TM) =

◦⋃
x∈M

∧
k(TxM)

is done in the usual way, with the push-forward of the overlap maps providing
a vector bundle structure for

∧
k(TM).

Definition S1.4 (Differential form). Let M be a Cr-manifold for r ∈ N ∪
{∞} ∪ {ω}. A Cr-section of the vector bundle

∧
k(TM) is a differential k-

form . •

Note that a differential one-form is what we, in the text, call a covector
field. Since differential k-forms are tensor fields, all constructions concern-
ing tensor fields—push-forward and pull-back, Lie differentiation, covariant
differentiation with respect to an affine connection—are applicable to them.
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However, differential forms come with an operation that is unique to them,
and that is enormously useful in many areas of mathematics and mathemat-
ical physics, namely the exterior derivative. It is not easy to motivate the
definition of this operator, so we sidestep this by simply not giving any mo-
tivation. We merely give the definition. The reader can find motivation in
books such as [Abraham, Marsden, and Ratiu 1988, Bryant, Chern, Gardner,
Goldschmidt, and Griffiths 1991, Flanders 1989, Nelson 1967]. To whet the
appetite of the reader yet to be exposed to the charms of differential forms,
we mention that the exterior derivative can be used to elegantly unify and
generalize Stokes’ Theorem, Gauss’s Theorem, and the Divergence Theorem
from vector calculus.

Definition S1.5 (Exterior derivative). For α ∈ Γ∞(
∧
k(TM)), the exte-

rior derivative of α is the element dα ∈ Γ∞(
∧
k+1(TM)) defined by

dα(X0, X1, . . . , Xk) =
k∑
j=0

(−1)jLXj
α(X0, . . . , X̂j , . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where the ·̂ means that the argument is deleted. •

This definition may be shown to make sense, in that it defines a skew-
symmetric tensor field. The definition belies the fact that the exterior deriva-
tive is simple (and natural) to compute in coordinates:

dα =
∂αi1···ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

The exterior derivative has the following useful properties, plus many others
that we do not list here (see [Abraham, Marsden, and Ratiu 1988]):
1. “df = df”: that is, the exterior derivative of a differential zero-form (i.e., a

function) is the same as the differential defined in the text;
2. ddα = 0 for all α ∈ Γ∞(

∧
k(TM)), k ∈ Z+;

3. d(α∧β) = dα∧β+(−1)kα∧dβ if α ∈ Γ∞(
∧
k(TM)) and β ∈ Γ∞(

∧
l(TM)),

for k, l ∈ Z+;
4. d(f∗α) = f∗(dα) for f ∈ C∞(M;N) and α ∈ Γ∞(

∧
k(TN)), k ∈ Z+;

5. LX(dα) = d(LXα) for X ∈ Γ∞(TM) and α ∈ Γ∞(
∧
k(TM)), k ∈ Z+.

Readers having never seen the notion of differential forms or exterior
derivative should now expect to do some extra reading if the rest of the section
is to have any deep significance.
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S1.1.2 Symplectic manifolds

In our treatment of Lagrangian mechanics, the primary role is played by Rie-
mannian metrics and affine connections. In the typical Hamiltonian treatment
of mechanics, the structure is provided by a symplectic structure (or, more
generally, a Poisson structure). A symplectic structure is defined by a differen-
tial two-form with special properties. Let α ∈ Γ∞(

∧
2(TM)). Since α is a (0, 2)-

tensor field, it has associated with it a vector bundle map α[ : TM → T∗M (see
Section 2.3.4). The differential two-form α is nondegenerate if α[ is a vec-
tor bundle isomorphism. In such a case, we denote the inverse vector bundle
isomorphism by α], of course. A differential k-form α is closed if dα = 0.

We may now state our main definition.

Definition S1.6 (Symplectic manifold). For r ∈ N ∪ {∞} ∪ {ω}, a Cr-
symplectic manifold is a pair (M, ω), where ω is a Cr-closed nondegenerate
differential two-form on the Cr-manifold M. The differential two-form ω is
called a symplectic form on M. •

One can verify (see [Abraham and Marsden 1978]) that nondegeneracy of
ω for a symplectic manifold (M, ω) implies that the connected components of
M are even-dimensional. The condition of closedness of symplectic forms is
one that is not trivial to motivate, so we do not do so. We refer the reader to
[Abraham and Marsden 1978, Arnol’d 1978, Guillemin and Sternberg 1990,
Libermann and Marle 1987] for additional discussion.

It turns out that there is a natural symplectic form on the cotangent bundle
of a manifold M, and it is this symplectic form that we shall exclusively deal
within our treatment of optimal control. We first define a differential one-form
on M. One may readily verify that there exists a unique differential one-form
θ0 ∈ Γ∞(

∧
1(T(T∗M))) that satisfies β∗θ0 = β for any differential one-form

β on M (here one thinks of β as a map from M to T∗M). In verifying this,
one also verifies that, in natural coordinates ((x1, . . . , xn), (p1, . . . , pn)) for
T∗M, we have θ0 = pidqi. The canonical symplectic form on T∗M is then
ω0 = −dθ0. In natural coordinates one has ω0 = dqi ∧ dpi. That ω0 is closed
follows since dω0 = −ddθ0 = 0. The nondegeneracy of ω0 follows from the
fact that the matrix representative of ω0 in natural coordinates is

[ω0] =
[

0 In
−In 0

]
.

This matrix is invertible, and so too, then, is ω[0.
Between symplectic manifolds, maps that preserve the symplectic form are

important.

Definition S1.7 (Symplectic diffeomorphism). Let (M, ω) and (N,Ω) be
Cr-symplectic manifolds, r ∈ N∪{∞}∪{ω}. A Cr-diffeomorphism φ : M → N
is symplectic if φ∗Ω = ω. •
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S1.1.3 Hamiltonian vector fields

Now we give a little insight into what sorts of constructions one can make on
a symplectic manifold. There is much that can be said here, some of it being
quite deep. We shall stick to primarily simple matters, as these are all that
we shall make immediate use of.

Let (M, ω) be a symplectic manifold. We let H be a function on R×M that
is locally integrally of class Cr+1 (see Section A.2.1). So that we are clear, if
Ht(x) = H(t, x), then dH is the locally integrally Cr-section of T∗M defined
by dH(t, x) = dHt(x).

Definition S1.8 (Hamiltonian vector field). Let (M, ω) be a symplectic
manifold and let r ∈ N∪{∞}∪{ω}. The Hamiltonian vector field associ-
ated to a locally integrally class Cr+1-function H on M is the locally integrally
class Cr-vector fieldXH on M defined byXH(t, x) = −ω](dH(t, x)). The func-
tion H is the Hamiltonian for the Hamiltonian vector field XH . •

Our presentation is more general than the standard setup in Hamiltonian
mechanics where one considers only time-independent functions; this is neces-
sitated by our use of the Hamiltonian formulation of the Maximum Principle.
If H is time-independent, then we note that

LXH
H = 〈XH ; dH〉 = −ω(XH , XH) = 0.

Thus, for time-independent Hamiltonians, the Hamiltonian is a constant of
motion for the corresponding Hamiltonian vector field. In many physical prob-
lems, this corresponds to conservation of energy. We shall see that in our op-
timal control setup, constancy of the Hamiltonian along trajectories of the
control system also plays a role, although there is no physical energy associ-
ated with the problem.

Let us write the coordinate expression for a Hamiltonian vector field de-
fined on a cotangent bundle using the canonical symplectic structure and using
natural coordinates ((x1, . . . , xn), (p1, . . . , pn)). In this case, a straightforward
computation shows that

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
, (S1.1)

or, in terms of differential equations in the local coordinates,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i ∈ {1, . . . , n}.

These latter are called Hamilton’s equations, and are widely studied in
the mathematical physics and dynamical systems communities, for example.
We simply refer the reader to [Abraham and Marsden 1978, Arnol’d 1978,
Guillemin and Sternberg 1990, Libermann and Marle 1987] for details and
further references. The field of Hamiltonian mechanics is a very large one.
Readers hoping to have more than a merely functional facility with things
Hamiltonian can look forward to investing some time in this.
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Remark S1.9. There are differing sign conventions in the literature that one
should be aware of. For example, some authors define the cotangent bundle
symplectic form with the opposite sign from what we choose. The thing that all
conventions have in common is that the local representative of a Hamiltonian
vector on a cotangent bundle, with the canonical symplectic form, will take
the form (S1.1). Further confusing matters is the possibility of defining the
associated map ω[ in two different ways, each differing by a sign. •

S1.2 Tangent and cotangent lifts of vector fields

In this section we introduce some of the necessary tangent bundle geometry
that we shall use in subsequent supplements. Most of the constructions we
make here are described by Yano and Ishihara [1973], at least in a time-
independent setting.

The reader will observe in this section an alternation between the use of
the letters M and Q to denote a generic manifold. There is some method
behind this. We shall have occasion to use structure that, in the geometric
constructions of Section S1.3, might appear on either a configuration manifold
Q or its tangent bundle TQ. Such structures we will denote here as occurring
on M. That is, when there appears an M in this section, it might refer to either
Q or TQ in Supplement 4. We shall suppose both M and Q to be n-dimensional
in this section.

We shall make heavy use in this section of the notion of sections of vector
bundles that are locally integrally of class Cr for r ∈ N ∪ {∞} ∪ {ω}. For
convenience, we shall call such sections “LICr-sections.” Similarly, for conve-
nience we use the acronyms LAC and LAD to stand for “locally absolutely
continuous” and “locally absolutely differentiable,” respectively.

S1.2.1 More about the tangent lift

In this section we shall define the tangent lift for time-dependent vector fields,
and give some further discussion that will be useful for interpreting our results
in Supplement 4.

Let X : I × M → TM be an LIC∞-vector field on a manifold M. Define
an LIC∞-vector field XT on TM by XT (t, x) = XT

t (x), where Xt is the C∞-
vector field on M defined by Xt(x) = X(t, x). The vector field XT is the
tangent lift of X. This is clearly a generalization of the tangent lift in the
text to the time-dependent case.

One may verify in coordinates that

XT = Xi ∂

∂xi
+
∂Xi

∂xj
vj

∂

∂vi
. (S1.2)

From this coordinate expression, we may immediately assert a few useful
facts. First we introduce some terminology. For manifolds M and N and for
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f ∈ C∞(M;N), an LIC∞-vector field Y on N is f-related to an LIC∞-
vector field X on M if, for each (t, x) ∈ R × M, Txf(X(t, x)) = Y (t, x). If
π : M → B is a fiber bundle, an LIC∞-vector field X on M is π-projectable if
Tπ(X(t, x1)) = Tπ(X(t, x2)) whenever π(x1) = π(x2). One can easily verify
that X is π-projectable if and only if there exists a vector field Y on B such
that Y is π-related to X.

Remarks S1.10 (Properties of the tangent lift).

1. Note that XT is a linear vector field on TM (see Definition S1.25). That
is, XT is πTM-projectable and XT : I × TM → TTM is a vector bundle
map.

2. Since XT is πTTM-projectable and projects to X, if t 7→ Υ(t) is an integral
curve for XT , then this curve projects to the curve t 7→ πTM ◦Υ(t), and
this latter curve is further an integral curve for X. Thus integral curves
for XT may be thought of as vector fields along integral curves for X.

3. Let x ∈ M and let γ be the integral curve for X with initial condition x
at time t = a. Let v1,x, v2,x ∈ TxM with Υ1 and Υ2 the integral curves for
XT with initial conditions v1,x and v2,x, respectively, at time t = a. Then
t 7→ α1 Υ1(t) +α2 Υ2(t) is the integral curve for XT with initial condition
α1 v1,x+α2 v2,x, for α1, α2 ∈ R. That is to say, the family of integral curves
for XT that project to γ is a dim(M)-dimensional vector space.

4. One may think of XT as the “linearization” of X in the following sense.
Let γ : I → M be the integral curve of X through x ∈ M at time t = a,
and let Υ: I → TM be the integral curve of XT with initial condition
vx ∈ TxM at time t = a. Choose a variation σ : I × J → of γ with the
following properties:

(a) J is an interval for which 0 ∈ int(J);
(b) s 7→ σ(t, s) is differentiable for t ∈ I;
(c) for s ∈ J , t 7→ σ(t, s) is the integral curve of X through σ(a, s) at time

t = a;
(d) σ(t, 0) = γ(t) for t ∈ I;
(e) vx = d

ds

∣∣
s=0

σ(0, s).

We then have Υ(t) = d
ds

∣∣
s=0

σ(t, s). Thus XT (vx) measures the “variation”
of solutions ofX when perturbed by initial conditions lying in the direction
of vx. In cases where M has additional structure, as we shall see, we can
make more precise statements about the meaning of XT . •

S1.2.2 The cotangent lift of a vector field

There is also a cotangent version of XT that we may define in a natural way.
If X is an LIC∞-vector field on M, we define an LIC∞-vector field XT∗ on
T∗M by
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XT∗(t, αx) =
d
ds

∣∣∣
s=0

T ∗xFt,−s(αx).

This is the cotangent lift of X. In natural coordinates
((x1, . . . , xn), (p1, . . . , pn)) for T∗M, we have

XT∗ = Xi ∂

∂xi
− ∂Xj

∂xi
pj

∂

∂pi
. (S1.3)

As was the case with XT , we may make some immediate useful remarks about
the properties of XT∗ .

Remarks S1.11 (Properties of the cotangent lift).
1. XT∗ is the LIC∞-Hamiltonian vector field (with respect to the natural

symplectic structure on T∗M) corresponding to the LIC∞-Hamiltonian
HX : (t, αx) 7→ 〈αx;X(t, x)〉. One can verify this with a direct calculation.

2. Note that XT∗ is a linear vector field. That is, XT∗ is πT∗M-projectable
and XT∗ : I × T∗M → TT∗M is a vector bundle map.

3. If t 7→ α(t) is an integral curve for XT∗ , then this curve covers the curve
t 7→ πT∗M ◦α(t), and this latter curve is further an integral curve for X.
Thus one may regard integral curves of XT∗ as covector fields along inte-
gral curves of X.

4. If γ : I → M is the integral curve for X with initial condition x ∈ M at
time t = a ∈ I, then the integral curves of XT∗ with initial conditions
in T∗xM form a dim(M)-dimensional vector space that is naturally isomor-
phic to T∗xM (in a manner entirely analogous to that described for XT in
Remark S1.10–3).

S1.2.3 Joint properties of the tangent and cotangent lift

By the very virtue of their definitions, together XT and XT∗ should possess
some joint properties. To formulate one of these common properties requires
some small effort. Let TM ⊕ T∗M be the Whitney or direct sum of TM and
T∗M.2 As a manifold, this may be regarded as an embedded submanifold of
TM × T∗M by vx ⊕ αx 7→ (vx, αx). If X is an LIC∞-vector field on M, then
we define an LIC∞-vector field XT ×XT∗ on TM× T∗M by

XT ×XT∗(t, v, α) = (XT (t, v), XT∗(t, α)).

Note that, in this definition, we do not require that πTM(v) = πT∗M(α).
2 We recall that the Whitney sum of two vector bundles π1 : E1 → M and π2 : E2 →

M over the same base space can be thought of as the submanifold of E1×E2 given
by

E1 ⊕ E2 = { (v1, v2) ∈ E1 × E2 | π1(v1) = π2(v2)} .
This may be verified to be a vector bundle over M with the fiber over x ∈ M
being naturally isomorphic to π−1

1 (x)⊕ π−1
2 (x).
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Proposition S1.12 (Relationship between tangent and cotangent
lifts I). XT ×XT∗ is tangent to TM⊕ T∗M.

Proof. We denote natural coordinates for TM× T∗M by ((x,v), (y,p)). If we
define an Rn-valued function f in these coordinates by f((x,v), (y,p)) =
(y − x), then TM ⊕ T∗M is locally defined by f−1(0). Thus the result will
follow if we can show that XT ×XT∗ is in the kernel of T((x,v),(y,p))f for each
((x,v), (y,p)) ∈ f−1(0). We compute

T((x,v),(y,p))f((v1,v2), (v3,α)) = v3 − v1.

From this computation, and the local coordinate expressions for XT and XT∗ ,
the result follows. �

In this way, the restriction of XT ×XT∗ to TM⊕ T∗M makes sense, and
we denote the restricted LIC∞-vector field by XT ⊕XT∗ . The following result
gives the desired joint property of XT and XT∗ .

Proposition S1.13 (Relationship between tangent and cotangent
lifts II). If X is an LIC∞-vector field on M, then XT ⊕ XT∗ leaves in-
variant the function vx ⊕ αx 7→ αx · vx on TM⊕ T∗M.

Proof. We employ a lemma.

Lemma. If τ is a (1, 1)-tensor field on M, then the Lie derivative of the
function fτ : vx ⊕ αx 7→ τ(αx, vx) on TM ⊕ T∗M with respect to the vector
field XT ⊕XT∗ is the function vx ⊕ αx 7→ (LXτ)(αx, vx).

Proof. We work in local coordinates where fτ = τ ijpiv
j . We then compute

LXT⊕XT∗ fτ =
∂τ ij
∂xk

Xkpiv
j +

∂Xk

∂xj
τ ikpiv

j − ∂Xi

∂xk
τkj piv

j ,

which we readily verify agrees with the coordinate expression for
(LXτ)(αx, vx). H

We now observe that the function vx ⊗ αx 7→ αx · vx is exactly fidTM
in

the notation of the lemma. It thus suffices to show that LX idTM = 0 for
any vector field X. But, if we Lie differentiate the equality idTM(Y ) = Y
(Y ∈ Γ∞(TM)) with respect to X, then we obtain

(LX idTM)(Y ) + idTM([X,Y ]) = [X,Y ]

from which the proposition follows. �

Remark S1.14. One may verify, in fact, that XT∗ is the unique linear vector
field on T∗M that projects to X and which satisfies Proposition S1.13. •
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S1.2.4 The cotangent lift of the vertical lift

As mentioned in the introduction, we shall deal with systems whose state
space is a tangent bundle, and whose control vector fields are vertical lifts. As
a consequence of an application of the Maximum Principle to such systems,
we will be interested in the cotangent lift of vertically lifted vector fields.
So let Q be a C∞-manifold, and let X be an LIC∞-vector field on Q with
vlft(X) its vertical lift to TQ. One computes the local coordinate expression
for vlft(X)T

∗
to be

(vlft(X))T
∗

= Xi ∂

∂vi
− ∂Xj

∂qi
βj

∂

∂αi
. (S1.4)

Here we write natural coordinates for T∗TQ as ((q,v), (α,β)).

Remark S1.15. It is interesting to note the relationship between (vlft(X))T
∗

and vlft(XT∗). The latter vector field has the coordinate expression

vlft(XT∗) = Xi ∂

∂ui
− ∂Xj

∂qi
pj

∂

∂γi
,

where are writing natural coordinates for TT∗Q as ((q,p), (u,γ)). Now we
note that there is a canonical diffeomorphism φQ between T∗TQ and TT∗Q
defined in coordinates by

((q,v), (α,β)) 7→ ((q,β), (v,α)).

One easily verifies that vlft(XT∗) = φ∗Q(vlft(X))T
∗
. We also remark that

T∗TQ is a symplectic manifold, since it is a cotangent bundle. Tulczyjew
[1977] demonstrates that the tangent bundle of a symplectic manifold is also a
symplectic manifold. Thus, in particular, TT∗Q is a symplectic manifold. The
symplectic structure on TT∗Q as defined by Tulczyjew is given in coordinates
by

ωTT∗Q = dqi ∧ dγi + dui ∧ dpi.

One then verifies that the diffeomorphism φQ is symplectic with respect to
these symplectic structures. That is to say, φ∗QωTT∗Q is the canonical symplec-
tic form on T∗TQ. Since (vlft(X))T

∗
is a Hamiltonian vector field on T∗TQ

by Remark S1.11–1, the vector field vlft(XT∗) must also be Hamiltonian on
TT∗Q with the symplectic structure just described. The Hamiltonian, one
readily computes, is given by Vαq

7→ 〈αq;X(q)〉, where Vαq
∈ TT∗Q.

An intrinsic definition of φQ is as follows.3 We define a map ρ : T∗TQ →
T∗Q as follows: 〈

ρ(αvq );uq
〉

=
〈
αvq ; vlftvq (uq)

〉
.

We may then readily verify that φQ is the unique map that makes the diagram
3 The authors thank Jerry Marsden for providing this definition.
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T∗Q TT∗Q
πTT∗Qoo TπT∗Q // TQ

T∗TQ

ρ

ccHHHHHHHHH πT∗TQ

;;xxxxxxxx
φQ

OO

commute. •

S1.2.5 The canonical involution of TTQ

Let ρ1 and ρ2 be C2 maps from a neighborhood of (0, 0) ∈ R2 to Q. Let us
denote by (t1, t2) coordinates for R2. We say two such maps are equivalent
if ρ1(0, 0) = ρ2(0, 0) and if

∂ρ1

∂t1
(0, 0) =

∂ρ2

∂t1
(0, 0),

∂ρ1

∂t2
(0, 0) =

∂ρ2

∂t2
(0, 0),

∂2ρ1

∂t1∂t2
(0, 0) =

∂2ρ2

∂t1∂t2
(0, 0).

To an equivalence class [ρ] we associate a point in TTQ as follows. For fixed
t2, consider the curve γt2 at q , ρ(0, 0) given by t1 7→ ρ(t1, t2). Then γ′t2(0) is
a tangent vector in TqQ. Therefore, t2 7→ Υρ(t2) , γ′t2(0) is a curve in TQ at
γ′t2(0). To ρ we then assign the tangent vector Υ′

ρ(0). In natural coordinates
((q,v), (u,w)) for TTQ, the point associated to [ρ] is given by(

ρ(0, 0),
∂ρ

∂t1
(0, 0),

∂ρ

∂t2
(0, 0),

∂2ρ

∂t1∂t2
(0, 0)

)
.

This then shows that the correspondence between equivalence classes and
points in TTQ is bijective. Furthermore, the construction can be readily ex-
tended to give a construction of the higher-order tangent bundles TkM, where
T1M = TM and, inductively, TkM = T(Tk−1M).

Associated with this representation of points in TTQ is an involution4

IQ : TTQ → TTQ. We define IQ by saying how it acts on equivalence classes
as given above. If ρ is a map from a neighborhood of (0, 0) ∈ R2 to Q, then
we define ρ̄(t1, t2) = ρ(t2, t1) which is also then a map from a neighborhood
of (0, 0) ∈ R2 into Q. We then define

IQ([ρ]) = [ρ̄].

In coordinates,
IQ((q,v), (u,w)) = ((q,u), (v,w)).

Definition S1.16 (Canonical involution of TTQ). The map IQ is the
canonical involution of TTQ. •
4 An involution on a set S is a map f : S → S with the property that f ◦f = idS .
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S1.2.6 The canonical endomorphism of the tangent bundle

The final bit of tangent bundle geometry we discuss is that of a natural (1, 1)-
tensor field on the tangent bundle.

Definition S1.17 (Canonical endomorphism of TM). For a manifold M,
the canonical endomorphism of TM is the (1, 1)-tensor field JM on TM
defined by

JM(Xvx) = vlftvx(TvxπTM(Xvx))

where Xvx
∈ Tvx

TM. •

One verifies that, in natural coordinates, we have

JM =
∂

∂vi
⊗ dxi.

The role of the canonical endomorphism in Lagrangian mechanics is discussed
by Crampin [1983]. It is possible to talk about related structures in more
general settings than tangent bundles; see [e.g., Thompson and Schwardmann
1991].

S1.3 Ehresmann connections induced by an affine
connection

This section provides the essential ingredients for the development of lin-
earization of affine connection control systems in Supplement 3, and of the
Maximum Principle for affine connection control systems in Supplement 4. In
actuality, the results of this section, particularly those of Section S1.3.10, rep-
resent the meat of this supplement since the linearization and optimal control
results of Chapters 3 and 4 follow in a fairly straightforward way once one
has at one’s disposal the results that we now provide. The constructions are
quite involved, so some motivation is in order.

S1.3.1 Motivating remarks

As we have stated several times already, we will be looking at control-affine
systems whose drift vector field is the geodesic spray S for an affine connection.
Readers familiar with linearization will recognize that the tangent lift of S will
be important for us, and readers familiar with the geometry of the Maximum
Principle will immediately realize that the cotangent lift of S will be important
for us. One way to frame the objective of this section is to think about how one
might represent ST and ST

∗
in terms of objects defined on Q, even though

ST and ST
∗

are themselves vector fields on TTQ and T∗TQ, respectively.
That this ought to be possible seems reasonable as all the information used to
describe ST and ST

∗
is contained in the affine connection ∇ on Q, along with
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some canonical tangent and cotangent bundle geometry. It turns out that it
is possible to essentially represent ST and ST

∗
on Q, but to do so requires

some effort. What is more, it is perhaps not immediately obvious how one
should proceed. It turns out that a good way to motivate oneself is to think
first about ST , then use this to get to an understanding of ST

∗
.

To understand the meaning of ST , consider the following construction. Let
γ : I → Q be a geodesic for an affine connection ∇. Let σ : I × J → Q be a
variation of γ. Thus
1. J is an interval for which 0 ∈ int(J),
2. s 7→ σ(t, s) is differentiable for t ∈ I,
3. for s ∈ J , t 7→ σ(t, s) is a geodesic of ∇, and
4. σ(t, 0) = γ(t) for t ∈ I.
If one defines ξ(t) = d

ds

∣∣
s=0

σ(t, s), then it can be shown (see Theorem 1.2 in
Chapter VIII of volume 2 of [Kobayashi and Nomizu 1963]) that ξ satisfies
the Jacobi equation :5

∇2
γ′(t)ξ(t) +R(ξ(t), γ′(t))γ′(t) +∇γ′(t)(T (ξ(t), γ′(t))) = 0,

where T is the torsion tensor and R is the curvature tensor for ∇. Thus the
Jacobi equation tells us how geodesics vary along γ as we vary their initial
conditions.

With this as backdrop, a possible way to get moving in the right direction
is as follows:
1. according to Remark S1.10–4 and the very definition of the Jacobi equa-

tion, we expect there to be some relationship between ST and the Jacobi
equation;

2. by Remark S1.14, there is a relationship between ST and ST
∗
;

3. from 1 and 2, we may expect that, by coming to understand the relation-
ship between ST

∗
and the Jacobi equation, one may be able to see how to

essentially represent ST
∗

on Q.
One sees, then, that our approach to understanding ST

∗
entails that we first

understand ST in terms of the Jacobi equation. The Jacobi equation itself
is, evidently, useful in understanding linearization of affine connection con-
trol systems. Moreover, we shall see that once we have done understood the
relationship between the Jacobi equation and ST , it is a simple matter to
“dualize” our constructions to arrive at what we shall call the adjoint Jacobi
equation, a covector field version of the Jacobi equation that appears in the
Maximum Principle for affine connection control systems.
5 We use the following notation. Let γ : I → Q be an LAC curve and let τ : I →
T r

s (TQ) be a section along γ that is sufficiently smooth that the constructions we
are about to make are well-defined. For k ∈ N, we define a section t 7→ ∇k

γ′(t)τ(t)

of T r
s (TQ) along γ by setting ∇1

γ′(t)τ(t) = ∇γ′(t)τ(t), and inductively defining

∇k
γ′(t)τ(t) = ∇γ′(t)(∇k−1

γ′(t)τ(t)).
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In order to simultaneously understand ST and ST
∗
, we use various Ehres-

mann connections to provide splittings of the necessary tangent spaces. Note
that, as maps, the vector fields ST and ST

∗
are T(TTQ)- and T(T∗TQ)-

valued, respectively. Also note that the tangent spaces to TTQ and T∗TQ
are 4 dim(Q)-dimensional. Our goal is to break these tangent spaces up into
four parts, each of dimension dim(Q). Some of the Ehresmann connections
we describe here are well-known, but others might be new, even though they
are straightforward to describe. We refer to [Kolář, Michor, and Slovák 1993,
Chapter III] for a general discussion of Ehresmann connections. Along the
way, we will point out various interesting relationships between the objects
we encounter. Some of these relationships are revealed in the book of Yano
and Ishihara [1973].

The reader wishing to cut to the chase and see the point of producing
all of these Ehresmann connections is referred forward to Theorems S1.34
and S1.38.

S1.3.2 More about vector and fiber bundles

Our ensuing discussion will be aided by some additional terminology concern-
ing fiber bundles in general, and vector bundles in particular. This section,
therefore, supplements the material in Section 3.9.5 in the text.

For a fiber bundle, it is possible to choose a chart in such a way that it is
natural with respect to the projection. For vector bundles, we see this in the
form of vector bundle charts. For fiber bundles we have the following notion.

Definition S1.18 (Fiber bundle chart). Let (π,M,B,F) be a locally trivial
fiber bundle. A chart (V, ψ) for M is a fiber bundle chart if there exists a
chart (U0, φ0) for M and a chart (U1, φ1) for F with the following properties:

(i) V ⊂ π−1(U0);
(ii) there is a diffeomorphism χ from π−1(U0) to U0 × F with the property

that pr1 ◦χ(x) = π(x) for each x ∈ V;
(iii) χ(V) = U0 × U1.

If coordinates for (U0, φ0) are denoted by (x1, . . . , xm) and if coor-
dinates for (U1, φ1) are denoted by (y1, . . . , yn−m), then the coordi-
nates ((x1, . . . , xm), (y1, . . . , yn−m)) in the chart (V, ψ̃), with ψ̃(x) =
(φ0 ◦pr1 ◦χ(x), φ1 ◦pr2 ◦χ(x)), are called fiber bundle coordinates. •

Note that the local representative of π in fiber bundle coordinates is
(x,y) 7→ x.

The next concept we discuss concerns vector bundles. It provides a useful
way of constructing a vector bundle from an existing vector bundle and a
map.

Definition S1.19 (Pull-back vector bundle). Let π : E → M be a vector
bundle and let f : N → M be a smooth map. The pull-back of E to N by f is
the submanifold
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f∗E = { (v, y) ∈ E× N | π(v) = f(y)} .

The map f∗π : f∗E → N is defined by f∗π(v, y) = π(v). •

It is not obvious, but it is true, that f∗π : f∗E → N is a vector bundle.
The fiber over y ∈ N is diffeomorphic to π−1(f(y)). Let us prove that there is
a natural vector bundle structure on the pull-back of E to N by f .

Proposition S1.20 (Vector bundle structure for pull-back bundle).
f∗π : f∗E → N naturally possess the structure of a vector bundle.

Proof. We shall construct vector bundle charts for f∗E. Let (U, φ) be a chart
for N and let (V, ψ) be a vector bundle chart for E so that f(U) ⊂ Z(E) ∩ V.
This defines an open set V × U ⊂ E × N. If M is modeled Rm, N is modeled
on Rn, and if the fibers of E are isomorphic to Rk, then we have

ψ × φ : V× U → (Rm × Rk)× Rn

(v, y) 7→ (ψ(v), φ(y)).

Denote by f̃ : φ(U) → ψ(V ∩ Z(E)) the local representative of f . With this
notation, locally the subset f∗E of E× N is given by

f̃∗E , {((x,v),y) ∈ ψ(V)× φ(U) | x = f̃(y)}.

Now define a map g from f̃∗E to ψ(V)×Rk by g((x,v),y) = (y,v). We claim
that

{((V× U) ∩ f∗E, g ◦ ((ψ × φ)|f∗E)) |
(V, ψ) is a vector bundle chart for E and (U, φ) is a chart for N

for which f(U) ⊂ V ∩ Z(E)}

is a vector bundle atlas for f∗E. We must verify the overlap conditions. We
simplify things by assuming another chart for N of the form (U, φ′) (i.e., the
domain is the same as the chart (U, φ)) and a vector bundle chart for E of the
form (V, ψ′) (again the domain is the same). These simplifications can always
be made by restriction if necessary. Since the charts (U, φ) and (U, φ′) satisfy
the overlap conditions, it holds that

φ′ ◦φ−1 : φ(U) → φ′(U)

is a diffeomorphism. Similarly, since (V, ψ) and (V, ψ′) are vector bundle
charts,

ψ′ ◦ψ−1(x,v) = (σ(x), A(x) · v)

where σ : ψ(V ∩ Z(E)) → ψ′(V ∩ Z(E)) is a diffeomorphism and A : ψ(V ∩
Z(E)) → GL(k; R) is smooth.

Now we consider the two charts
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((V× U) ∩ f∗E, g ◦ ((ψ × φ)|f∗E))
((V× U) ∩ f∗E, g ◦ ((ψ′ × φ′)|f∗E))

for f∗E, and show that they satisfy the overlap conditions. Let (v, y) ∈ (V×
U) ∩ f∗E. We write

ψ × φ(v, y) = ((f̃(y),v),y)

defining y ∈ φ(U) and v ∈ Rk. If f̃ ′ : φ′(U) → ψ′(V ∩ Z(E)) is the local
representative of f in the “primed” chart, then we may write

ψ′ × φ′(v, y) = ((f̃ ′(y′),v′),y′)

defining y′ ∈ φ′(U) and v′ ∈ Rk. Since (U, φ), (U, φ′), (V, ψ), and (V, ψ′)
satisfy the overlap conditions, we must have

y′ = φ′ ◦φ−1(y), v′ = (A ◦σ(y)) · v.

This shows that the overlap condition is indeed satisfied. �

S1.3.3 Ehresmann connections

In this section we introduce an important construction that can be associated
to a fiber bundle π : M → B. We recall that VM , ker(Tπ) is the vertical
subbundle of TM.

Definition S1.21 (Ehresmann connection). An Ehresmann connec-
tion on a locally trivial fiber bundle π : M → B is a complement HM to
VM in TM, i.e., a subbundle of TM for which TM = HM ⊕ VM. We call HM
the horizontal subbundle . •

We also say that elements in VM are vertical and that elements in
HM are horizontal . We denote by hor : TM → TM the horizontal projec-
tion, and by ver : TM → TM the vertical projection. Note that, for each
x ∈ M, Txπ|HxM : HxM → Tπ(x)B is an isomorphism. We denote its in-
verse by hlftx : Tπ(x)B → HxM, which is called the horizontal lift . If
((x1, . . . , xm), (y1, . . . , yn−m)) are fiber bundle coordinates for M, then we
have

hlft(x,y)
( ∂

∂xa

)
=

∂

∂xa
+ Cαa (x, y)

∂

∂yα
, a ∈ {1, . . . ,m}.

This defines the connection coefficients Cαa , α ∈ {1, . . . , n − m}, a ∈
{1, . . . ,m}.

We next associate two important objects to an Ehresmann connection. In
order to define these, it is convenient to first give a general definition. For
k ∈ N, we denote

TM×M · · · ×M TM︸ ︷︷ ︸
k copies

=
{

(v1, . . . , vk) ∈ (TM)k
∣∣ πTM(v1) = · · · = πTM(vk)

}
.

With this notation, we have the following definition.
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Definition S1.22 (Bundle-valued differential form). Let ρ : E → M be
a Cr-vector bundle, r ∈ N ∪ {∞} ∪ {ω}. An E-valued differential k-form
of class Cr on M is a Cr-map

ω : TM×M · · · ×M TM︸ ︷︷ ︸
k copies

→ E

with the property that, for each Cr-section α of E∗, the map that assigns to
X1, . . . , Xk ∈ Γr(TM) the Cr-function

x 7→ 〈α(x);ω(X1(x), . . . , Xk(x))〉

is a Cr-differential k-form (cf. the discussion at the end of Section 3.4.2). •

Now we define two bundle-valued differential forms associated to an Ehres-
mann connection.

Definition S1.23 (Connection and curvature form). Given an Ehres-
mann connection HM on a locally trivial fiber bundle π : M → B,

(i) the connection form is the VM-valued differential one-form ωHM de-
fined by

ωHM(vx) = ver(vx),

and
(ii) the curvature form is the VM-valued differential two-form ΩHM given

by
ΩHM(ux, vx) = −ωHM([U, V ](x))

where U and V are vector fields that extend ux and vx, respectively. •

One verifies that ΩHM does not depend on the extensions. It is a straight-
forward exercise to see that ΩHM = 0 if and only if HM is integrable. In this
case, one says that the Ehresmann connection HM is flat .

S1.3.4 Linear connections and linear vector fields on vector
bundles

In this section we generalize the constructions of Section S1.2.3.
If π : E → B is a vector bundle, then VE is isomorphic to the pull-back

bundle π∗π : π∗E → E whose fiber over eb ∈ E is exactly π−1(b). Thus the
projection ver associated with an Ehresmann connection HE may be thought
of as a map ver : TE → E. Further, we define a vector bundle isomorphism
vlft : π∗E → VE by

vlft(ẽb, eb) =
d
dt

∣∣∣
t=0

(ẽb + teb).

We adopt the standard notation and write vlftẽb
(eb) rather than vlft(ẽb, eb).

We now give an important class of Ehresmann connections on vector bun-
dles.
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Definition S1.24 (Linear Ehresmann connection). An Ehresmann con-
nection HE on a vector bundle π : E → B is linear if the vertical projec-
tion ver : TE → E is a vector bundle map with respect to the vector bundles
Tπ : TE → TB and πTE : TE → E, and if ver ◦vlft = πTE (where we think of
ver as being E-valued). •

One verifies that an Ehresmann connection is linear if and only if the
connection coefficients have the form Cαa (x,u) = Aαaβ(x)uβ , α ∈ {1, . . . , n −
m}, a ∈ {1, . . . ,m}, where (x,u) are vector bundle coordinates. This defines
local functions Aαaβ , α, β ∈ {1, . . . , n−m}, a ∈ {1, . . . ,m}, on the base space.

On vector bundles, one also has a distinguished class of vector fields.

Definition S1.25 (Linear vector field). Let X be a vector field on the
base space B of a vector bundle π : E → B. A linear vector field over X is
a vector field Y : E → TE that is π-related to X and that is a vector bundle
map that makes the following diagram commutative:

E
Y //

π

��

TE

Tπ

��
B

X
// TB

•

In vector bundle coordinates (x,u), a linear vector field Y over X has the
form

Y = Xa(x)
∂

∂xa
+ Y αβ (x)uβ

∂

∂uα
, (S1.5)

where Xa, a ∈ {1, . . . ,m}, are the components of X, and for some functions
Y αβ , α, β ∈ {1, . . . , n−m}.

Next we define a vector field “dual” to a given linear vector field Y over
X. We refer to [Kolář, Michor, and Slovák 1993] for the fairly straightforward
details. The flow of a linear vector field is comprised of local vector bundle
isomorphisms of π : E → M. Thus, if π∗ : E∗ → B is the dual bundle, and if ν
is a linear vector field on E∗ over X, then we may define Y ⊕ ν as the linear
vector field on E⊕ E∗ whose flow is the family of vector bundle isomorphisms
given by the direct sum of those generated by Y and by ν. We may define a
function fE on E⊕ E∗ by fE(eb ⊕ αb) = αb · eb.

Lemma S1.26 (Dual of a linear vector field). If Y is a linear vector
field over X on E, then there exists a unique linear vector field over X on E∗,
denoted by Y ∗ and called the dual of Y , with the property that L Y⊕Y ∗fE = 0.

In vector bundle coordinates (x,ρ) for E∗, if Y is as given by (S1.5), then

Y ∗ = Xa(x)
∂

∂xa
− Y αβ (x)ρα

∂

∂ρβ
.
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Of course, when E = TM and Y = XT , we see that Y ∗ = XT∗ , consistent
with Remark S1.14.

Using the dual of a linear vector field, one can define the dual of a linear
connection [Kolář, Michor, and Slovák 1993, Section 47.15].

Lemma S1.27 (Dual of a linear connection). If HE is a linear connection
on a vector bundle π : E → B, then there exists a unique linear connection HE∗

on the dual bundle π∗ : E∗ → B that satisfies the property

hlft(X)∗ = hlft∗(X), (S1.6)

where X is a vector field on B, hlft is the horizontal lift associated with HE,
and hlft∗ is the horizontal lift associated with HE∗.

If Aαaβ(x)uβ , α ∈ {1, . . . , n−m}, a ∈ {1, . . . ,m}, are the connection coef-
ficients for HE in vector bundle coordinates (x,u), then the connection coef-
ficients for HE∗ in the dual vector bundle coordinates (x,ρ) are −A(x)βaαρβ ,
a ∈ {1, . . . ,m}, α ∈ {1, . . . , n−m}.

S1.3.5 The Ehresmann connection on πTM : TM → M associated
with a second-order vector field on TM

Let us define the notion of a second-order vector field.

Definition S1.28 (Second-order vector field). A vector field S on TM is
second-order if TπTM ◦S = idTM. •

One can readily verify that a vector S is second-order if and only if, in
natural coordinates for TM, the local representative of S is

S = vi
∂

∂xi
+ Si(x,v)

∂

∂vi
, (S1.7)

where Si, i ∈ {1, . . . , n}, are smooth functions of the coordinates. For a
second-order vector field S on TM, we define an Ehresmann connection on
πTM : TM → M as follows [Crampin 1983]. Recall from Section S1.2.6 the
canonical endomorphism JM on TM. One may verify that the kernel of the
vector bundle map L SJM : TTM → TTM is a subbundle complementary to
VTM = ker(TπTM). We denote this complementary distribution, which is thus
an Ehresmann connection, by HTM. One then verifies that a local basis for
HTM is given by the vector fields

hlft
( ∂

∂xi

)
=

∂

∂xi
+

1
2
∂Sj

∂vi
∂

∂vj
, i ∈ {1, . . . , n}, (S1.8)

where the functions Si, i ∈ {1, . . . , n}, are as in (S1.7).
This Ehresmann connection gives a splitting of Tvx

TM into a horizontal
and a vertical part. The horizontal part is isomorphic to TxM via hlftvx

, and
the vertical part is isomorphic to TxM in the natural way (it is the tangent
space to a vector space). Thus we have a natural isomorphism TvxTM '
TxM⊕TxM, and we adopt the convention that the first part of this splitting
will be horizontal, and the second will be vertical.
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S1.3.6 The Ehresmann connection on πTQ : TQ → Q associated
with an affine connection on Q

If S is the geodesic spray defined by an affine connection ∇ on Q, then we
may use the construction of the previous section to provide an Ehresmann
connection on πTQ : TQ → Q. One further verifies that, in local coordinates,
a basis for HTQ is given by

hlft
( ∂

∂qi

)
=

∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj
, i ∈ {1, . . . , n}.

This defines “hlft” as the horizontal lift map for the connection we describe
here. We shall introduce different notation for the horizontal lift associated
with the other Ehresmann connections we define. We also denote by “vlft”
the vertical lift map associated with this connection. Note that we have
S(vq) = hlftvq

(vq). Also note that this splitting Tvq
TQ ' TqQ ⊕ TqQ ex-

tends the splitting of Lemma 6.33 away from Z(TQ). We depict the situation
in Figure S1.1 to give the reader some intuition for what is going on.

vq

Tvq
TQ

TqQ

Q

Vvq
TQ (canonical)

Hvq
TQ (defined by ∇)

0q′

Tq′Q

V0
q′

TQ (canonical)

H0
q′

TQ (canonical)

Figure S1.1. A depiction of the Ehresmann connection on πTQ : TQ → Q associated
with an affine connection on Q

The Ehresmann connection HTQ defines a connection form ωHTQ and a
curvature form ΩHTQ, just as in Section S1.3.3. It will be useful to have a
formula relating ΩHTQ to the curvature tensor R and the torsion tensor T for
∇. As far as we are aware, this result does not appear in the literature.
Proposition S1.29 (Curvature form for Ehresmann connection asso-
ciated to an affine connection). Let ∇ be an affine connection on Q and
let ΩHTQ be the curvature form for the associated Ehresmann connection on
πTQ : TQ → Q. The following formula holds:

ΩHTQ(hlftvq
(uq),hlftvq

(wq)) = vlftvq

(
R(uq, wq)vq − 1

2 (∇uq
T )(wq, vq)

+ 1
2 (∇wq

T )(uq, vq)− 1
2T (T (uq, wq), vq)

+ 1
4 (T (T (uq, vq), wq)− T (T (wq, vq), uq))

)
.
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In particular, if ∇ is torsion-free, then

ΩHTQ(hlftvq (uq),hlftvq (wq)) = vlftvq

(
R(uq, wq)vq

)
.

Proof. The most straightforward, albeit tedious, proof is in coordinates. Let
U and W be vector fields that extend uq and wq, respectively. A computation
yields

ver([hlft(U),hlft(W )]) =
1
2

(∂Γijk
∂q`

+
∂Γikj
∂q`

−
∂Γij`
∂qk

−
∂Γi`j
∂qk

+
1
2

(
Γim`Γ

m
kj + Γim`Γ

m
jk + Γi`mΓmkj + Γi`mΓmjk

− ΓimkΓ
m
`j − ΓimkΓ

m
j` − ΓikmΓm`j − ΓikmΓmj`

))
vjUkW l ∂

∂vi
.

One now employs the coordinate formulae for T and R (see Section 3.9.6),
and the coordinate formula for ∇T (see Section 3.8.3) to directly verify that

ver([hlft(X),hlft(W )])(vq)

= vlftvq

(
R(wq, uq)vq +R(wq, vq)uq +R(vq, uq)wq

+ (∇vq
T )(wq, uq) + 1

2T (T (uq, vq), wq) + 1
2T (T (vq, wq), uq).

The result may now be proved using the first Bianchi identity,∑
σ∈S3

(
R(Xσ(1), Xσ(2))Xσ(3)

)
=

∑
σ∈S3

(
T (T (Xσ(1), Xσ(2)), Xσ(3)) + (∇Xσ(1)T )(Xσ(2), Xσ(3))

)
,

that is proved as Theorem 2.5 in Chapter III of [Kobayashi and Nomizu 1963,
volume 1]. �

Recall that the affine connection ∇ has associated with it an Ehresmann
connection on πTQ : TQ → Q that provides a natural isomorphism of Tvq

TQ
with TqQ ⊕ TqQ as in Section S1.3.5. This in turn provides an isomorphism
of T∗vq

TQ with T∗qQ⊕ T∗qQ. In coordinates the basis

dqi, dvi +
1
2
(Γijk + Γikj)v

kdqj , i ∈ {1, . . . , n}, (S1.9)

is adapted to this splitting in that the first n vectors form a basis for the
horizontal part of T∗vq

TQ, and the second n vectors form a basis for the vertical
part.
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S1.3.7 The Ehresmann connection on πT∗Q : T∗Q → Q associated
with an affine connection on Q

We can equip the cotangent bundle of Q with an Ehresmann connection in-
duced by ∇. We do this by noting that the Ehresmann connection HTQ in-
duced by an affine connection is a linear connection. Thus, we have an induced
linear connection HT∗Q on πT∗Q : T∗Q → Q whose horizontal lift is as defined
by (S1.6). A coordinate basis for the HT∗Q is given by

hlft∗
( ∂

∂qi

)
=

∂

∂qi
+

1
2
(Γjik + Γjki)pj

∂

∂pk
, i ∈ {1, . . . , n}.

Note that hlft∗ denotes the horizontal lift for the Ehresmann connection on
πT∗Q : T∗Q → Q. The vertical subbundle has the basis

vlft∗
(
dqi

)
=

∂

∂pi
, i ∈ {1, . . . , n}

that, we remark, defines the vertical lift map vlft∗ : T∗qQ → VαqT
∗Q.

S1.3.8 The Ehresmann connection on πTTQ : TTQ → TQ associated
with an affine connection on Q

In this section we induce a connection on πTTQ : TTQ → TQ using a second-
order vector field as described in Section S1.3.5. We do not yet have a second-
order vector field on TTQ, so let us set about producing one from the geodesic
spray S. Note that ST is a vector field on TTQ, and we may determine its
coordinate expression in natural coordinates ((x,v), (u,w)) to be

ST = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
+ wi

∂

∂ui

−
(∂Γijk
∂q`

vjvku` + Γijkw
jvk + Γikjw

jvk
) ∂

∂wi
. (S1.10)

This vector field is “almost” second-order. To make it second-order, we use
the canonical involution IQ : TTQ → TTQ described in Section S1.2.5 and the
following lemma.

Lemma S1.30. I∗QS
T is a second-order vector field on TTQ.

Proof. A simple computation, using the coordinate expressions for IQ and ST ,
gives

I∗QS
T = ui

∂

∂qi
+ wi

∂

∂vi
− Γijku

juk
∂

∂ui

−
(∂Γijk
∂q`

v`ujuk + Γijku
kwj + Γikju

kwj
) ∂

∂wi
(S1.11)

which verifies the lemma. �
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Now we may use the procedure of Section S1.3.5 to produce a connection
on πTTQ : TTQ → TQ. Let us denote this connection by H(TTQ). Note that
this connection provides a splitting

TXvq
TTQ ' Tvq

TQ⊕ Tvq
TQ (S1.12)

for Xvq ∈ TvqTQ. Also, the connection HTQ on πTQ : TQ → Q described in
Section S1.3.6 gives a splitting TvqTQ ' TqQ ⊕ TqQ. Therefore, we have a
resulting splitting

TXvq
TTQ ' TqQ⊕ TqQ⊕ TqQ⊕ TqQ. (S1.13)

In this splitting, the first two components are the horizontal subspace and the
second two components are the vertical subspace. Within each pair, the first
part is horizontal and the second is vertical.

Let us now write a basis of vector fields on TTQ that is adapted to the
splitting (S1.13). To obtain a coordinate expression for a basis of this connec-
tion, we use the coordinate expression (S1.11) for I∗QS

T . We write a basis that
is adapted to the splitting of Tvq

TQ. The resulting basis vectors for H(TTQ)
are

hlftT
( ∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj

)
=

∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj

− 1
2
(Γjik + Γjki)u

k ∂

∂uj
− 1

2

(∂Γji`
∂qk

u`vk +
∂Γj`i
∂qk

u`vk + (Γjik + Γjki)w
k

− 1
2
(Γki` + Γk`i)(Γ

j
km + Γjmk)u

mv`
) ∂

∂wj
, i ∈ {1, . . . , n},

hlftT
( ∂

∂vi

)
=

∂

∂vi
− 1

2
(Γjik + Γjki)u

k ∂

∂wj
, i ∈ {1, . . . , n},

with the first n basis vectors forming a basis for the horizontal part of
HXvq

(TTQ), and the second n vectors forming a basis for the vertical part
of HXvq

(TTQ), with respect to the splitting HXvq
(TTQ) ' TqQ⊕ TqQ. Note

that we use the notation hlftT to refer to the horizontal lift for the connection
on πTTQ : TTQ → TQ. We also denote by vlftT the vertical lift on this vector
bundle.

We may easily derive a basis for the vertical subbundle of πTTQ : TTQ →
TQ that adapts to the splitting of TvqTQ ' TqQ⊕ TqQ. We may verify that
the vector fields

vlftT
( ∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj

)
=

∂

∂ui
− 1

2
(Γjik + Γjki)v

k ∂

∂wj
, i ∈ {1, . . . , n},

vlftT
( ∂

∂vi

)
=

∂

∂wi
, i ∈ {1, . . . , n},

have the property that the first n vectors span the horizontal part of VXvq
TTQ,

and the second n span the vertical part of VXvq
TTQ.
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Remarks S1.31. 1. The construction in this section may, in fact, be made
with an arbitrary second-order vector field. That is, if S is a second-order
vector field on TQ, then I∗QS

T is a second-order vector field on TTQ.
This second-order vector field then induces a connection on πTTQ : TTQ →
TQ. Clearly then, this construction can be iterated, and so provides a
connection on the kth tangent bundle πT(Tk−1Q) : TkQ → Tk−1Q for each
k ≥ 0. This then provides an isomorphism of TXTk−1Q with the direct
sum TqQ ⊕ · · · ⊕ TqQ of 2k copies of TqQ where X ∈ Tk−1Q and q =
πTQ ◦ · · · ◦πTTk−1Q(X).

2. The vector field I∗QS
T is the geodesic spray of an affine connection on TQ.

Thus we see how, given an affine connection on a manifold Q, it is possible
to derive an affine connection on the kth tangent bundle TkQ for k ≥ 1.

3. The vector field I∗QS
T is the geodesic spray of the affine connection on

TQ that Yano and Ishihara [1973] call the “complete lift” of the affine
connection∇ on Q. Given that we are callingXT the tangent lift of a vector
field, let us also call ∇T the tangent lift of ∇. This affine connection is
defined as the unique affine connection ∇T on TQ that satisfies ∇T

XT Y
T =(

∇XY
)T for vector fields X and Y on Q. Yano and Ishihara also show that

the geodesics of ∇T are vector fields along geodesics of ∇. They further
claim that these vector fields along geodesics are in fact Jacobi fields. This
is indeed true as our results of Section S1.3.10 show, but the proof in
Yano and Ishihara cannot be generally correct as, for example, the Jacobi
equation they use lacks the torsion term that the actual Jacobi equation
possesses. We shall have more to say about this in Remark S1.35. •

S1.3.9 The Ehresmann connection on πT∗TQ : T∗TQ → TQ
associated with an affine connection on Q

As the tangent bundle of TQ comes equipped with an Ehresmann connection,
so too does its cotangent bundle. To construct this connection, we note that
the connection H(TTQ) on πTTQ : TTQ → TQ is a linear connection, and
thus there is a connection naturally induced on πT∗TQ : T∗TQ → TQ whose
horizontal lift is as defined by (S1.6). We denote this connection by H(T∗TQ),
and note that it provides a splitting

TΛvq
T∗TQ ' Tvq

TQ⊕ T∗vq
TQ

for Λvq
∈ T∗TQ. In turn, the connection of Section S1.3.6 on πTQ : TQ → Q

gives a splitting Tvq
TQ ' TqQ⊕TqQ, and so also a splitting T∗vq

TQ ' T∗qQ⊕
T∗qQ. This then provides the splitting

TΛαq
T∗TQ ' TqQ⊕ TqQ⊕ T∗qQ⊕ T∗qQ.

The first two components of this splitting are the horizontal part of the sub-
space, and the second two are the vertical part. For each pair, the first com-
ponent is horizontal and the second is vertical.
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Let us now write a basis for vector fields on T∗TQ that is adapted
to the splitting we have just demonstrated. We use natural coordinates
((q,v), (α,β)). First we determine that a basis for the horizontal subbun-
dle is

hlftT
∗
( ∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj

)
=

∂

∂qi
− 1

2
(Γjik + Γjki)v

m ∂

∂vj

+
1
2

(∂Γjik
∂q`

v`βj +
∂Γjki
∂q`

v`βj + (Γjik + Γjki)αj

− 1
2
(Γ`im + Γ`mi)(Γ

j
`k + Γjk`)v

mβj

) ∂

∂αk

+
1
2
(Γjik + Γjki)βj

∂

∂βk
, i ∈ {1, . . . , n},

hlftT
∗
( ∂

∂vi

)
=

∂

∂vi
+

1
2
(Γjik + Γjki)βj

∂

∂αk
, i ∈ {1, . . . , n}.

The first n basis vectors span the horizontal part of HΛvq
T∗TQ, and the second

n vectors span the vertical part. We have introduced the notation hlftT
∗

to
refer to the horizontal lift map on the bundle πT∗TQ : T∗TQ → TQ, and we
shall denote the vertical lift map by vlftT

∗
.

One may also write a basis for V(T∗TQ) = ker(TπT∗TQ) that is adapted
to the splitting of T∗vq

TQ. We use (S1.9) to provide a basis

vlftT
∗
(dqi) =

∂

∂αi
, i ∈ {1, . . . , n},

vlftT
∗
(
dvi +

1
2
(Γijk + Γikj)v

kdqj
)

=
∂

∂βi
+

1
2
(Γijk + Γikj)v

k ∂

∂αj
, i ∈ {1, . . . , n},

in which the first n vectors are a basis for the horizontal part of VΛvq
T∗TQ,

and the second n are a basis for the vertical part.

S1.3.10 Representations of ST and ST ∗

In the previous sections we have provided local bases for the various con-
nections we have constructed. With these local bases in hand, and with the
coordinate expressions (S1.10) and (S1.17) (see below) for ST and ST

∗
, it is a

simple matter to determine the form of ST (Xvq ) and ST
∗
(Λvq ) in these split-

tings, where Xvq ∈ TTQ and Λvq ∈ T∗TQ. Let us merely record the results of
these somewhat tedious computations.

First we look at ST . In this case, recall that the connection H(TTQ) on
πTTQ : TTQ → TQ and the connection HTQ on πTQ : TQ → Q combine to give
a splitting
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TXvq
TTQ ' TqQ⊕ TqQ⊕ TqQ⊕ TqQ,

where Xvq ∈ TvqTQ. Here we maintain our convention that the first two
components refer to the horizontal component for a connection H(TTQ) on
πTTQ : TTQ → TQ, and the second two components refer to the vertical com-
ponent. Using the splitting (S1.12) let us write Xvq

∈ Tvq
TQ as uvq

⊕wvq
for

some uvq
, wvq

∈ TqQ. Note that we depart from our usual notation of writing
tangent vectors in TqQ with a subscript of q, instead using the subscript vq.
This abuse of notation is necessary (and convenient) to reflect the fact that
these vectors depend on where we are in TQ, and not just in Q. A compu-
tation verifies the following result, where ΩHTQ is the curvature form for the
connection HTQ.

Proposition S1.32 (Representation of tangent lift of geodesic spray).
The following formula holds:

ST (uvq
⊕ wvq

) = vq ⊕ 0⊕ wvq
⊕

(
−ΩHTQ(hlftvq

(uvq
),hlftvq

(vq))
)
.

In writing this formula, we are regarding ΩHTQ as taking values in Vvq
TQ '

TqQ.
We may use this representation of ST to obtain a refined relationship

between solutions of the Jacobi equation and integral curves of ST . To do
so, we first prove a simple lemma. We state a more general form of this
lemma than we shall immediately use, but the extra generality will be useful
in Supplement 4.

Lemma S1.33. Let Y be a LIC∞-vector field on Q, suppose that γ : I → Q is
the LAD curve satisfying ∇γ′(t)γ

′(t) = Y (t, γ(t)), and denote by Υ: I → TQ
the tangent vector field of γ (i.e., Υ = γ′). Let X : I → TTQ be an LAC
vector field along Υ, and denote X(t) = X1(t) ⊕X2(t) ∈ Tγ(t)Q ⊕ Tγ(t)Q '
TΥ(t)TQ. Then the tangent vector field to the curve t 7→ X(t) is given by
γ′(t)⊕ Y (t, γ(t))⊕ X̃1(t)⊕ X̃2(t), where

X̃1(t) = ∇γ′(t)X1(t) + 1
2T (X1(t), γ′(t)),

X̃2(t) = ∇γ′(t)X2(t) + 1
2T (X2(t), γ′(t)).

Proof. In coordinates, the curve t 7→ X(t) has the form

(qi(t), q̇j(t), Xk
1 (t), X`

2(t)− 1
2 (Γ`mr + Γ`rm)q̇m(t)Xr

1 (t)).

The tangent vector to this curve is then given a.e. by

q̇i
∂

∂qi
+(Y i−Γijkq̇

j q̇k)
∂

∂vi
+Ẋi

1

∂

∂ui
+

(
Ẋi

2−
1
2
∂Γijk
∂q`

q̇k q̇`Xj
1−

1
2
∂Γikj
∂q`

q̇k q̇`Xj
1

− 1
2
(Γijk + Γikj)(Y

k − Γk`mq̇
`q̇m)Xj

1 −
1
2
(Γijk + Γikj)q̇

kẊj
1

) ∂

∂wi
.
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A straightforward computation shows that this tangent vector field has the
representation

γ′(t)⊕ Y (t, γ(t))⊕
(
∇γ′(t)X1(t) + 1

2T (X1(t), γ′(t))
)

⊕
(
∇γ′(t)X2(t) + 1

2T (X2(t), γ′(t))
)
,

which proves the lemma. �

We may now prove our main result that relates the integral curves of ST

with solutions to the Jacobi equation.

Theorem S1.34 (Relationship between tangent lift of geodesic spray
and Jacobi equation). Let ∇ be an affine connection on Q with S the
corresponding geodesic spray. Let γ : I → Q be a geodesic with t 7→ Υ(t) ,
γ′(t) the corresponding integral curve of S. Let a ∈ I, u,w ∈ Tγ(a)Q, and
define vector fields U,W : I → TQ along γ by asking that t 7→ U(t)⊕W (t) ∈
Tγ(t)Q⊕Tγ(t)Q ' TΥ(t)TQ be the integral curve of ST with initial conditions
u ⊕ w ∈ Tγ(a)Q ⊕ Tγ(a)Q ' TΥ(a)TQ. Then U and W have the following
properties:

(i) U satisfies the Jacobi equation

∇2
γ′(t)U(t) +R(U(t), γ′(t))γ′(t) +∇γ′(t)(T (U(t), γ′(t))) = 0;

(ii) W (t) = ∇γ′(t)U(t) + 1
2T (U(t), γ′(t)).

Proof. Throughout the proof, we represent points in TTQ as the direct sum
of tangent vectors to Q using the connection on πTQ : TQ → Q induced by
∇. The tangent vector field to the curve t 7→ U(t) ⊕W (t) at t must equal
ST (U(t)⊕W (t)). By Lemma S1.33 and Proposition S1.32, this means that

∇γ′(t)U(t) = W (t)− 1
2T (U(t), γ′(t)),

∇γ′(t)W (t) = − ΩHTQ(hlftγ′(t)(U(t)),hlftγ′(t)(γ′(t)))− 1
2T (W (t), γ′(t)).

(S1.14)
The first of these equations proves (ii). To prove (i), we covariantly differ-
entiate the first of equations (S1.14). This yields, using the second of equa-
tions (S1.14),

∇2
γ′(t)U(t) = −ΩHTQ(hlftγ′(t)(U(t)),hlftγ′(t)(γ′(t)))

− 1
2T (W (t), γ′(t))− 1

2∇γ′(t)(T (U(t), γ′(t))). (S1.15)

Now we see from Proposition S1.29 that

− ΩHTQ(hlftγ′(t)(U(t)),hlftγ′(t)(γ′(t))) = −R(U(t), γ′(t))γ′(t)

− 1
2 (∇γ′(t)T )(U(t), γ′(t)) + 1

4T (T (U(t), γ′(t)), γ′(t)). (S1.16)

Combining (S1.15), (S1.16), and the first of equations (S1.14) shows that U
the Jacobi equation. �
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Remark S1.35 (Comments on the tangent lift of an affine connec-
tion). Let us follow up on Remark S1.31–3 by showing that geodesics of ∇T

are indeed Jacobi fields. By Lemma S1.30, integral curves of ST and of the
geodesic spray for ∇T are mapped to one another by the involution IQ. Given
1. the representation t 7→ U(t) ⊕W (t) of integral curves of ST as in Theo-

rem S1.34,
2. the Ehresmann connection on πTQ : TQ → Q described in Section S1.3.6,

and
3. the coordinate expression for IQ,
one verifies that the geodesics of ∇T are exactly the vector fields t 7→ U(t)
along geodesics as described in Theorem S1.34. But these are simply Jacobi
fields according to the theorem. •

Now let us look at similar results relating to ST
∗
. First we give the coor-

dinate formula for this vector field in natural coordinates ((x,v), (α,β)) for
T∗TQ:

ST
∗

= vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
+
∂Γ`jk
∂qi

vjvkβ`
∂

∂αi

−
(
αi − Γ`ijv

jβ` − Γ`jiv
jβ`

) ∂

∂βi
. (S1.17)

To provide the decomposition for ST
∗
, we need an extra bit of notation. Fix

vq ∈ TqQ and note that, for uq ∈ TqQ, we have ΩHTQ(hlftvq
(uq),hlftvq

(vq)) ∈
VvqTQ ' TqQ. Thus we may regard uq 7→ ΩHTQ(hlftvq (uq),hlftvq (vq))
as a linear map on TqQ. Let us denote the dual linear map by βq 7→
Ω∗

HTQ(vlftvq
(βq),hlftvq

(vq)). The reason for this odd choice of notation for
a dual linear map will become clear shortly.

We need more notation concerning the curvature and torsion tensors R
and T . For uq, vq ∈ TqQ and αq ∈ T∗qQ, define R∗(αq, uq)vq ∈ T∗qQ by

〈R∗(αq, uq)vq;wq〉 = 〈αq;R(wq, uq)vq〉, wq ∈ TqQ,

and similarly define T ∗(αq, uq) ∈ T∗qQ by

〈T ∗(αq, uq);wq〉 = 〈αq;T (wq, uq)〉, wq ∈ TqQ.

With these tensors defined, we say that a covector field α : I → T∗Q along a
geodesic γ : I → Q of ∇ is a solution of the adjoint Jacobi equation if

∇2
γ′(t)α(t) +R∗(α(t), γ′(t))γ′(t)− T ∗(∇γ′(t)α(t), γ′(t)) = 0,

for t ∈ I.
Now let us recall the splittings associated with the connection H(T∗TQ)

on πT∗TQ : T∗TQ → TQ that is described in Section S1.3.9. For Λvq
∈ T∗vq

TQ
we have
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TΛvq
T∗TQ ' TqQ⊕ TqQ⊕ T∗qQ⊕ T∗qQ.

We then write Λvq ∈ T∗vq
TQ as αvq ⊕ βvq for some αvq , βvq ∈ T∗qQ, where we

again make an abuse of notation. This then gives the following formula for
ST

∗
with respect to our splitting.

Proposition S1.36 (Representation of cotangent lift of geodesic
spray). The following formula holds:

ST
∗
(αvq

⊕ βvq
) = vq ⊕ 0⊕

(
Ω∗

HTQ(vlftvq
(βvq

),hlftvq
(vq))

)
⊕ (−αvq

).

To demonstrate the relationship between integral curves of ST
∗

and so-
lutions to the adjoint Jacobi equation, we have the following analogue to
Lemma S1.33.

Lemma S1.37. Let Y be a LIC∞-vector field on Q, suppose that γ : I → Q is
the LAD curve satisfying ∇γ′(t)γ

′(t) = Y (t, γ(t)), and denote by Υ: I → TQ
the tangent vector field of γ (i.e., Υ = γ′). Let Λ: I → T∗TQ be an LAC
covector field along Υ, and denote Λ(t) = Λ1(t)⊕ Λ2(t) ∈ T∗γ(t)Q⊕ T∗γ(t)Q '
T∗Υ(t)TQ. Then the tangent vector field to the curve t 7→ Λ(t) is given by
γ′(t)⊕ Y (t, γ(t))⊕ Λ̃1(t)⊕ Λ̃2(t), where

Λ̃1(t) = ∇γ′(t)Λ1(t)− 1
2T

∗(Λ1(t), γ′(t)),

Λ̃2(t) = ∇γ′(t)Λ2(t)− 1
2T

∗(Λ2(t), γ′(t)).

Proof. In coordinates the curve t 7→ Λ(t) has the form

(qi(t), q̇j(t),Λ1
k(t) + 1

2 (Γmkr + Γmrk)q̇
r(t)Λ2

m(t),Λ2
i (t)).

The tangent vector to this curve is then given by

q̇i
∂

∂qi
+ (Y i − Γijkq̇

j q̇k)
∂

∂vi
+

(
Λ̇1
i +

1
2
∂Γjik
∂q`

q̇`q̇kΛ2
j +

1
2
∂Γjki
∂q`

q̇`q̇kΛ2
j

+
1
2
(Γjik + Γjki)(Y

k − Γk`mq̇
`q̇m)Λ2

j +
1
2
(Γjik + Γjki)q̇

kΛ̇2
j

) ∂

∂αi
+ Λ̇2

i

∂

∂βi
.

A straightforward computation shows that this tangent vector field has the
representation

γ′(t)⊕ Y (t, γ(t))⊕
(
∇γ′(t)Λ1(t)− 1

2T
∗(Λ1(t), γ′(t))

)
⊕

(
∇γ′(t)Λ2(t)− 1

2T
∗(Λ2(t), γ′(t))

)
,

which proves the lemma. �

We may now prove our main result that relates the integral curves of ST
∗

with solutions to the adjoint Jacobi equation.
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Theorem S1.38 (Relationship between cotangent lift of geodesic
spray and adjoint Jacobi equation). Let ∇ be an affine connection on Q
with S the corresponding geodesic spray. Let γ : I → Q be a geodesic with
t 7→ Υ(t) , γ′(t) the corresponding integral curve of S. Let a ∈ I, let
θ, λ ∈ T∗γ(a)Q, and define covector fields Θ,Λ: I → T∗Q along γ by ask-
ing that t 7→ Θ(t) ⊕ Λ(t) ∈ T∗γ(t)Q ⊕ T∗γ(t)Q ' T∗Υ(t)TQ be the integral curve
of ST

∗
with initial conditions θ ⊕ λ ∈ T∗γ(a)Q⊕ T∗γ(a)Q ' T∗Υ(a)TQ. Then Θ

and Λ have the following properties:
(i) Λ satisfies the adjoint Jacobi equation

∇2
γ′(t)Λ(t) +R∗(Λ(t), γ′(t))γ′(t)− T ∗(∇γ′(t)Λ(t), γ′(t)) = 0;

(ii) Θ(t) = −∇γ′(t)Λ(t) + 1
2T

∗(Λ(t), γ′(t)).

Proof. Throughout the proof, we represent points in T∗TQ as the direct sum
of cotangent vectors to Q using the connection on πT∗Q : T∗Q → Q induced
by ∇. The tangent vector field to the curve t 7→ Θ(t) ⊕ Λ(t) at t must equal
ST

∗
(Θ(t)⊕ Λ(t)). By Lemma S1.37 and Proposition S1.36, this means that

∇γ′(t)Θ(t) = Ω∗
HTQ(vlftγ′(t)(Λ(t)),hlftγ′(t)(γ′(t))) + 1

2T
∗(Θ(t), γ′(t)),

∇γ′(t)Λ(t) = −Θ(t) + 1
2T

∗(Λ(t), γ′(t)).
(S1.18)

The second of these equations proves (i). To prove (ii) we covariantly differ-
entiate the second of equations (S1.18). This yields, using the first of equa-
tions (S1.18),

∇2
γ′(t)Λ(t) = −Ω∗

HTQ(hlftγ′(t)(Λ(t)),hlftγ′(t)(γ′(t)))− 1
2T

∗(Θ(t), γ′(t))

+ 1
2 (∇γ′(t)T

∗)(Λ(t), γ′(t))) + 1
2T

∗(∇γ′(t)Λ(t), γ′(t)). (S1.19)

Now we see from Proposition S1.29 that

Ω∗
HTQ(vlftγ′(t)(Λ(t)),hlftγ′(t)(γ′(t))) = R∗(Λ(t), γ′(t))γ′(t)

+ 1
2 (∇γ′(t)T

∗)(Λ(t), γ′(t))− 1
4T

∗(T ∗(Λ(t), γ′(t)), γ′(t)). (S1.20)

Combining (S1.19), (S1.20), and the second of equations (S1.18) shows that
Λ satisfies the adjoint Jacobi equation. �

Remarks S1.39. 1. Note that the adjoint Jacobi equation, along with the
geodesic equations themselves, of course, contains the non-trivial dynam-
ics of the Hamiltonian vector field ST

∗
. Note also that the Hamiltonian

in our splitting of T∗TQ is simply given by αvq
⊕ βvq

7→ αvq
· vq. Thus,

while the Hamiltonian assumes a simple form in this splitting, evidently
the symplectic form becomes rather complicated. However, since the Max-
imum Principle employs the Hamiltonian in its statement, the simple form
of the Hamiltonian will be very useful for us.
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2. We may express the content of Proposition S1.13, in the case when the
vector field in question is the geodesic spray, as follows. We use the no-
tation of Propositions S1.32 and S1.36. Let uvq

⊕ wvq
∈ Tvq

TQ and
αvq ⊕ βvq ∈ T∗vq

TQ. Let ver(ST (uvq ⊕ wvq )) be the vertical part of
ST (uvq

⊕ wvq
) that we think of as a vector in TqQ ⊕ TqQ. In a similar

manner, we think of ver(ST
∗
(αvq

⊕ βvq
)) as a vector in T∗qQ ⊕ T∗qQ. A

straightforward computation shows that〈
ver(ST

∗
(αvq

⊕βvq
));uvq

⊕wvq

〉
+

〈
αvq

⊕βvq
; ver(ST (uvq

⊕wvq
))

〉
= 0. •

The Jacobi equation and the adjoint Jacobi equation have a closer rela-

tionship when ∇ is the Levi-Civita connection
G

∇ associated to a Riemannian
metric G. We have the following result.

Proposition S1.40 (Adjoint Jacobi equation for Levi-Civita affine

connection). Let G be a Riemannian metric on Q with
G

∇ the Levi-Civita

affine connection. If γ : I → Q is a geodesic of
G

∇, then a covector field
λ : I → T∗Q along γ is a solution of the adjoint Jacobi equation if and only
if the vector field G] ◦λ along γ is a solution of the Jacobi equation.

Proof. Using the fact that
G

∇G = 0, we compute

∇2
γ′(t)G

](λ(t)) = G](∇2
γ′(t)λ(t)). (S1.21)

Now, using the relation

G(R(X3, X4)X2, X1) = G(R(X1, X2)X4, X3),

X1, X2, X3, X4 ∈ Γ∞(TQ), (this is proved as Proposition 1.2 in Chapter V
of [Kobayashi and Nomizu 1963, volume 1]), and, for u ∈ Tγ(t)Q, we compute

〈R∗(λ(t), γ′(t))γ′(t);u〉 = 〈λ(t);R(u, γ′(t))γ′(t)〉
= G(R(u, γ′(t))γ′(t),G](λ(t)))

= G(R(G](λ(t)), γ′(t))γ′(t), u)

=〈G[(R(G](λ(t)), γ′(t))γ′(t));u〉.

This implies that

G](R∗(λ(t), γ′(t))γ′(t)) = R(G](λ(t)), γ′(t))γ′(t). (S1.22)

Combining (S1.21) and (S1.22) gives

∇2
γ′(t)G

](λ(t)) +R(G](λ(t)), γ′(t))γ′(t)

= G]
(
∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)

)
and the result now follows since

G

∇ is torsion-free, and since G] is a vector
bundle isomorphism. �
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S1.3.11 The Sasaki metric

When the constructions of this section are applied in the case when ∇ is the
Levi-Civita affine connection associated with a Riemannian metric G on Q,
there is an important additional construction that can be made.

Definition S1.41 (Sasaki metric). Let (Q,G) be a Riemannian manifold,
and for vq ∈ TQ, let Tvq

TQ ' TqQ⊕TqQ denote the splitting defined by the

affine connection
G

∇. The Sasaki metric is the Riemannian metric GT on
TQ given by

GT (u1
vq
⊕ w1

vq
, u2
vq
⊕ w2

vq
) = G(u1

vq
, u2
vq

) + G(w1
vq
, w2

vq
). •

The Sasaki metric was introduced by Sasaki [1958, 1962]. Much research
has been made into the properties of the Sasaki metric, beginning with the
work of Sasaki who studies the curvature, geodesics, and Killing vector fields
of the metric. Some of these results are also given in [Yano and Ishihara 1973].





S2

Controllability

This supplement provides extensions to some of the controllability results
given in Chapter 7 of the text. In the first two sections, we extend the con-
trollability results of Sections 7.3.2 and 7.3.3 to systems with external forces.
We consider two special cases: a basic external force and an isotropic Rayleigh
dissipative force. The third section in the supplement provides some control-
lability results in the presence of symmetry.

S2.1 Accessibility and controllability of systems with a
basic external force

In Sections 7.3.2 and 7.3.3 we considered the accessibility and controllability
of affine connection control systems, which model simple mechanical control
systems without external forces, potential or otherwise, and possibly with con-
straints. In this section we consider the possibility of adding to such systems
a basic external force. Thus we consider the external force supplied by a cov-
ector field F on Q to give a forced simple mechanical control system of the
form (Q,G, V, F,D,F = {F 1, . . . , Fm}, U). For such a system, let us define a
vector field Y on Q by Y (q) = PD

(
G(q)](F (q) − dV (q))

)
, and let us denote

Ya = PD(G](F a)), in the usual way. Then the governing equations for this
system are

D

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(c(t)) + Y (γ(t)). (S2.1)

These are the equations for a forced affine connection control system
(Q,∇, Y,D,Y , U). With the preceding discussion providing mechanical mo-
tivation, in this section we work with a general forced affine connection con-
trol system, with a basic external force. Corresponding to this is the control-
affine system (M = TQ,CΣ = {f0 = S + vlft(Y ), f1 = vlft(Y1), . . . , fm =
vlft(Ym)}, U), where S is the geodesic spray for the affine connection ∇. We
suppose the data to be analytic in this section.
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S2.1.1 Accessibility results

To describe the accessibility of the system (S2.1) is not as elegant a mat-
ter as it is in the case when Y = 0. Indeed, all we can do is provide an
inductive algorithm for determining two sequences of analytic distributions,
denoted by C

(k)
hor(Y , Y ) and C

(k)
ver(Y , Y ), k ∈ N, and defined in Algorithm S2.1.

To really understand the algorithm requires delving into the proof of Theo-

Algorithm S2.1.

For i ∈ Z+, do

For B′ ∈ Br(i)(ξ′) primitive, do

If |B′|m+1 = 0, then

If B′ ∈ Br−1(ξ
′), then

U ∈ C
( 1
2 (i+1))

ver (Y , Y )q0 where Ev
C ′

Σ
0q0

(B′) = 0q0 ⊕ U

else

U ∈ C
(i/2)
hor (Y , Y )q0 where Ev

C ′
Σ

0q0
(B′) = U ⊕ 0q0

end

else

If B′ has no components of the form [ξ′0, ξ
′
m+1], then

Compute B(B′) ∈ Br(ξ) by replacing every occurrence of ξ′0 and ξ′m+1

in B′ with ξ0 and by replacing every occurrence of ξ′a in B′ with ξa, for
a ∈ {1, . . . ,m}.
Let L(B′) = 0.

For B′′ ∈ S(B(B′)) ∩ (Br−1(ξ
′) ∪ Br0(ξ

′)), do

Write B′′ as a finite sum of primitive brackets in Br(ξ′) by Lemma B.2.

L(B′) = L(B′) +B′′

end

If B′ ∈ Br−1(ξ
′), then

U ∈ C
( 1
2 (i+1))

ver (Y , Y )q0 where Ev
C ′

Σ
0q0

(L(B′)) = 0q0 ⊕ U

else

U ∈ C
(i/2)
hor (Y , Y )q0 where Ev

C ′
Σ

0q0
(L(B′)) = U ⊕ 0q0

end

end

end

end

end

end

rem S2.2. Let us provide a guide so that the reader will be able to use the
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algorithm with a minimum of excursions into the details of the full proof.
The algorithm uses two sets of indeterminates, ξ = {ξ0, ξ1, . . . , ξm} and
ξ′ = {ξ0, ξ1, . . . , ξm, ξm+1}, defining the free Lie algebras Lie(ξ) and Lie(ξ′).
These indeterminates correspond to the families of vector fields

CΣ = {S + vlft(Y ), vlft(Y1), . . . , vlft(Ym)},
C ′

Σ = {S, vlft(Y1), . . . , vlft(Ym), vlft(Y )},

respectively, on TQ. The algorithm also uses the notation S(B), for B ∈ Br(ξ),
and this notation is explained in the preamble to the first lemma in the proof
of Theorem S2.2. By understanding this minimum of notation, it should be
possible to follow through Algorithm S2.1, and so compute C

(k)
hor(Y , Y ), k ∈ N,

and C
(k)
ver(Y , Y ), k ∈ N. To illustrate the algorithm, let us provide generators

for the first few terms in the sequences C
(k)
hor(Y , Y ) and C

(k)
ver(Y , Y ), k ∈ N:

C
(1)
hor(Y , Y ) is generated by {Y1, . . . , Ym},

C(1)
ver(Y , Y ) is generated by {Y1, . . . , Ym, Y },

C
(2)
hor(Y , Y ) is generated by {〈Ya : Yb〉 | a, b ∈ {1, . . . ,m}}
∪ { [Ya, Yb] | a, b ∈ {1, . . . ,m}} ∪ {2 〈Ya : Y 〉+ [Ya, Y ] | a ∈ {1, . . . ,m}},

C(2)
ver(Y , Y ) is generated by {〈Ya : Yb〉 | a, b ∈ {1, . . . ,m}}
∪ {〈Ya : Y 〉 | a ∈ {1, . . . ,m}}.

It would be interesting to be able to derive an inductive formula for genera-
tors for C

(k)
ver(Y , Y ) and C

(k)
hor(Y , Y ). However, such an inductive formula is not

presently known. It would also be interesting to have a geometric interpreta-
tion for these distributions, along the lines of Theorem 3.108. Again, no such
geometric description is presently known. For the objective of studying the
controllability of certain multibody systems, Shen [2002] computes generators
for C

(3)
hor(Y , Y ) and a subset of the generators for C

(4)
hor(Y , Y ).

The smallest analytic distribution containing each C
(k)
hor(Y , Y ), k ∈ N, is

denoted by C
(∞)
hor (Y , Y ), and C

(∞)
ver (Y , Y ) is similarly defined (cf. Lemma 3.94).

With this notation, we have the following result, recalling from Lemma 6.34
the natural decomposition of T0qTQ as the direct sum TqQ⊕ TqQ.

Theorem S2.2 (Accessibility of affine connection control systems
with a basic external force). Let Σ = (Q,∇, Y,D,Y ) be an an-
alytic forced affine connection pre-control system with Y basic, and let
CΣ = {S+ vlft(Y ), vlft(Y1), . . . , vlft(Ym)}. The distributions C

(∞)
hor (Y , Y ) and

C
(∞)
ver (Y , Y ) defined by Algorithm S2.1 satisfy

Lie(∞)(CΣ)0q0
' C

(∞)
hor (Y , Y )q0 ⊕ C(∞)

ver (Y , Y )q0 ⊂ Tq0Q⊕ Tq0Q ' T0q0
TQ.

In particular, the following statements hold:
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(i) Σ is accessible from q0 if and only if C
(∞)
ver (Y , Y )q0 = Dq0 and

C
(∞)
hor (Y , Y )q0 = Tq0Q;

(ii) Σ is configuration accessible from q0 if and only if C
(∞)
hor (Y , Y )q0 =

Tq0Q.

Proof. An outline of the proof we give is as follows.
1. In the proof we deal with two free Lie algebras:

(a) one is generated by indeterminates ξ = {ξ0, ξ1, . . . , ξm} that are
in correspondence with the family of vector fields CΣ = {S +
vlft(Y ), vlft(Y1), . . . , vlft(Ym)};

(b) the other is generated by the indeterminates ξ′ =
{ξ′0, ξ′1, . . . , ξ′m, ξ′m+1} that are in correspondence with the fam-
ily of vector fields C ′

Σ = {S, vlft(Y1), . . . , vlft(Ym), vlft(Y )}.
We provide a systematic way of relating these free Lie algebras using the
structure of the Lie algebra generated by CΣ.

2. We recall from the proof of Theorem 7.36 the structure of the Lie algebra
generated by C ′

Σ. The important fact is that one need only compute what
we call “primitive” brackets, and these are evaluated in terms of brackets
and symmetric products of the vector fields {Y1, . . . , Ym, Y }.

3. We then use the relationship between ξ and ξ′ to arrive at a form for
Lie(∞)(CΣ).
Let ξ = {ξ0, ξ1, . . . , ξm}. We formally set ξ0 = ξ′0 + ξ′m+1 and ξa = ξ′a,

for a ∈ {1, . . . ,m}. This corresponds to the relationship between the families
of vector fields C ′

Σ and CΣ. We may now write brackets in Br(ξ) as linear
combinations of brackets in Br(ξ′) by R-linearity of the bracket. We may, in
fact, be even more precise about this. Let B ∈ Br(ξ). We define a subset,
S(B), of Br(ξ′) by saying that B′ ∈ S(B) if each occurrence of ξa in B is
replaced with ξ′a, for a ∈ {1, . . . ,m}, and if each occurrence of ξ0 in B is
replaced with either ξ′0 or ξ′m+1. An example is illustrative. Suppose that

B = [[ξ0, ξa], [ξb, [ξ0, ξc]]].

Then

S(B) = {[[ξ′0, ξ′a], [ξ′b, [ξ′0, ξ′c]]], [[ξ′0, ξ′a], [ξ′b, [ξ′m+1, ξ
′
c]]],

[[ξ′m+1, ξ
′
a], [ξ

′
b, [ξ

′
0, ξ

′
c]]], [[ξ

′
m+1, ξ

′
a], [ξ

′
b, [ξ

′
m+1, ξ

′
c]]]}.

Now we may precisely state how we write brackets in Br(ξ).

Lemma. Let B ∈ Br(ξ). Then

B =
∑

B′∈S(B)

B′.
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Proof. It suffices to prove the lemma for the case when B is of the form

B = [ξak
, [ξak−1 , [· · · , [ξa2 , ξa1 ]]]], a1, . . . , ak ∈ {0, 1, . . . ,m}, (S2.2)

since these brackets generate Lie(ξ) by Exercise E7.2. We proceed by induction
on k. The lemma is clearly true for k = 1. Now suppose the lemma true for
k ∈ {1, . . . , `}, where ` ≥ 1, and let B be of the form (S2.2) with k = ` + 1.
Then, either B = [ξa, B′′], a ∈ {1, . . . ,m}, or B = [ξ0, B′′] with B′′ of the
form (S2.2) with k = `. In the first case, by the induction hypotheses, we have

B =
∑

B′∈S(B′′)

[ξ′a, B
′] =

∑
B′∈S(B)

B′.

In the second case we have

B =
∑

B′∈S(B′′)

[ξ′0 + ξ′m+1, B
′] =

∑
B′∈S(B)

B′.

This proves the lemma. H

By the preceding lemma, each vector field in Lie(∞)(CΣ) is a R-linear sum
of vector fields in Lie(∞)(C ′

Σ). Moreover, the characterization of Lie(∞)(C ′
Σ)

has already been obtained, during the course of the proof of Theorem 7.36,
in terms of Lie brackets and symmetric products of the vector fields
{vlft(Y1), . . . , vlft(Ym), vlft(Y )}. In this way, we arrive at a description of
Lie(∞)(CΣ) in terms of Lie brackets and symmetric products of the vector
fields {vlft(Y1), . . . , vlft(Ym), vlft(Y )}. We claim that Algorithm S2.1 deter-
mines exactly which R-linear combinations from Lie(∞)(Sym(∞)(Y ∪ {Y }))
we need to compute.

Lemma. Let q0 ∈ Q. Then

Lie(∞)(CΣ)0q0
= C

(∞)
hor (Y , Y )q0 ⊕ C(∞)

ver (Y , Y )q0 .

Proof. Studying Algorithm S2.1 that we have used to compute C
(∞)
ver (Y , Y )

and C
(∞)
hor (Y , Y ), the reader will notice that we have exactly taken each

primitive bracket B′ ∈ Br(ξ′) and computed which R-linear combinations
from Br(ξ′) appear along with B′ in the decomposition of some B ∈ Br(ξ)
given by the first lemma of the proof. Since it is only these primitive brack-
ets that appear in Lie(∞)(CΣ) | Z(TQ), this will, by construction, generate
Lie(∞)(CΣ) | Z(TQ).

We need to prove that, as stated in the first step of the algorithm, if
|B′|m+1 = 0, then EvC ′

Σ
0q0

(B′) ∈ Lie(∞)(CΣ)0q0
. To show that this is in fact the

case, let B ∈ Br(ξ) be the bracket obtained from B′ by replacing ξ′a with ξa,
for a ∈ {0, 1, . . . ,m}. We claim that the only bracket in S(B) that contributes
to EvCΣ(B) is B′. This is true since any other brackets in S(B) are obtained
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by replacing ξ′0 in B′ with ξ′m+1. Such a replacement will result in a bracket
that has at least one component that is in Br−`(ξ′) for ` ≥ 2. These brackets
evaluate to zero by Lemma B.5.

We also need to show that, if B′ has components of the form [ξ′0, ξ
′
m+1],

then it will not contribute to Lie(∞)(CΣ) | Z(TQ). This is clear since, when
constructing B(B′) in the algorithm, the component [ξ′0, ξ

′
m+1] will become

[ξ0, ξ0], which means that B(B′) will be identically zero. H

The preceding lemma is none other than Theorem S2.2. �

Clearly one should be able to recover Theorem 7.36 from Theorem S2.2.
This can indeed by done by following Algorithm S2.1 in the case where Y = 0.

A non-obvious, but useful, fact is the following.

Proposition S2.3 (Involutivity of C
(∞)
hor (Y , Y )). C

(∞)
hor (Y , Y ) is involu-

tive.

Proof. Let B1, B2 ∈ Br(ξ) be brackets that, when evaluated under EvCΣ
0q

, give

vector fields U1, U2 ∈ Γω(C(∞)
hor (Y , Y )). Then, for i ∈ {1, 2}, the decomposition

of Bi given by the first lemma of the proof of Theorem S2.2 has the form
Bi = B′

i + B̃i, where B′
i ∈ Br0(ξ′) and B̃i is a sum of brackets in Brj(ξ′), for

j ≥ 2. Therefore, [B1, B2] = [B′
1, B

′
2] + B′′ where B′′ is a sum of brackets in

Brj(ξ′), for j ≥ 2. This shows that [U1, U2](0q) ∈ C
(∞)
hor (Y , Y )q ⊕ {0q}, using

Lemma B.2. �

S2.1.2 Controllability results

Next we state a sufficient condition for small-time local controllability of sys-
tems of the type under consideration. The result we give is an adaptation of
Theorem 7.20 to the current setting. To state the theorem requires another
redevelopment of the use of weights and obstructions to this setting. An un-
derstanding of the proof of Theorem S2.2 at the same level required to make
sense of Algorithm S2.1 is required. Also, in order to eliminate the introduc-
tion of additional notation, we shall reuse some of the notation used in stating
Theorem 7.40. The reader should be aware of this not so slight abuse of no-
tation, and understand that the notation used from here to the end of the
section applies only to the results contained therein.

We consider an analytic affine connection ∇ on a manifold Q, and ana-
lytic vector fields Y ′ = {Y1, . . . , Ym, Y } on Q. We work at a point q0 ∈ Q
for which Y (q0) = 0q0 . Thus q0 is an equilibrium configuration for the
forced affine connection control system (Q,∇, Y,Y , U). The indeterminates
ξ = {ξ0, ξ1, . . . , ξm} and ξ′ = {ξ′0, ξ′1, . . . , ξ′m, ξ′m+1} have the same meaning as
in Theorem S2.2. We also introduce indeterminates η′ = {η1, . . . , ηm, ηm+1}
with the free symmetric algebra Sym(η′). An admissible weight for η′ is
an (m + 1)-tuple (w1, . . . , wm, wm+1) of nonnegative real numbers satisfying
wa ≥ wm+1, a ∈ {1, . . . ,m}. The set of admissible weights is denoted by
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wgt(η′). Let B′ ∈ Br−1(ξ′) be primitive and construct L(B′) as in Algo-
rithm S2.1. There then exists k(B′) ∈ N and P1(B′), . . . , Pk(B′)(B′) ∈ Pr(η′)
such that

EvCΣ
0q0

(L(B′)) =
k(B′)∑
j=1

vlft(EvY ′

q0 (Pj(B′))). (S2.3)

Note that k(B′) and P1(B′), . . . , Pk(B′)(B′) ∈ Pr(η′) are uniquely defined by
Algorithm S2.1. Also note that |(Pj(B′))|a, a ∈ {1, . . . ,m,m + 1}, is inde-
pendent of j ∈ {1, . . . , k(B′)} (this is a matter of checking the definition of
L(B′)). Now we define subsets Sym0(η′) and Sym0(η′) of Sym(η′) by

Sym0(η
′) =

{
P1(B′) + · · ·+ Pk(B′)(B′)

∣∣ B′ ∈ Br−1(ξ′) primitive
}
,

Sym0(η
′) = spanR {Sym0(η

′)} .

For w ∈ wgt(η′) and for S ∈ Sym0(η′), define the w-weight of S by

‖S‖w =
m∑
a=1

wa |S|a + wm+1(2 |S|m+1 − 1),

where |S|a means |P |a, where P ∈ Pr(η′) is any, it matters not which, of the
summands of S. A member of Sym0(η′) is w-homogeneous if it is a sum of
terms of the same w-weight. For w ∈ wgt(η′) and k ∈ N, let us denote

V
w,k
Y ′ = spanR

{
EvY ′

q0 (S)
∣∣ S ∈ Sym0(η

′), ‖S‖w ≤ k
}
.

By convention we take V
w,0
Y ′ = 0q0 . If S ∈ Sym0(η′) is w-homogeneous, then

it is w-neutralized by Y ′ at q0 if there exists an integer k < ‖S‖w such that
EvY ′

q0 (S) ∈ V
w,k
Y ′ . Denote

B(Sym0(η
′)) = spanR{S ∈ Sym0(η

′) | |S|a is even, a ∈ {1, . . . ,m}}.

For σ ∈ Sm and w ∈ wgt(η′), define

σ(w) = (wσ(1), . . . , wσ(m), wm+1),

and denote by Sw
m those permutations for which σ(w) = w. For P ∈

Pr(η′), denote by σ(P ) the product obtained by replacing ηa with ησ(a),
a ∈ {1, . . . ,m}. For S ∈ Sym0(η′), let σ(S) be defined by applying σ to
each of the summands from Sym0(η′). For w ∈ wgt(η′), define

Bw
0 (Sym0(η

′)) = {S ∈ B(Sym0(η
′)) | σ(S) = S for all σ ∈ Sw

m} .

A w-obstruction is an element of Bw
0 (Sym0(η′)). Next define ρq0Y ′(w) ∈ N

to be the largest integer for which all w-obstructions S satisfying ‖S‖w ≤
ρq0Y ′(w) are w-neutralized by Y ′ at q0.
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Since Y (q0) = 0q0 , we may define symY (q0) ∈ L(Tq0Q;Tq0Q) as in Exer-
cise E7.23. Now define

Vw
Y ′(q0) = spanR

{
symY (q0)j(X)

∣∣ X ∈ V
w,ρ

q0
Y ′ (w)

Y ′ (q0), j ∈ N0

}
.

We are now ready to state the adaptation of Theorem 7.20 to the systems
we are considering.

Theorem S2.4 (Controllability of affine connection control systems
with a basic external force). Let Σ = (Q,∇, Y,D,Y = {Y1, . . . , Ym}) be
an analytic forced affine connection pre-control system with Y basic, and let
η′ = {η1, . . . , ηm, ηm+1}. If Y (q0) = 0q0 and if∑

w∈wgt(η′)

Vw
Y (q0) = C(∞)

ver (Y , Y )q0 ,

then the following statements hold:
(i) if C

(∞)
ver (Y , Y )q0 = Dq0 and if C

(∞)
hor (Y , Y )q0 = Tq0Q, then Σ is properly

STLC from q0;
(ii) if C

(∞)
hor (Y , Y )q0 = Tq0Q, then Σ is properly STLCC from q0.

Proof. We claim that, if B ∈ B(ξ), then EvCΣ
0q0

(B) = vlftq0(EvY ′

q0 (S)) where
S ∈ B(Sym0(η′)). First note that Sym0(η′) is specifically constructed such
that, if B ∈ Br−1(ξ) is primitive, then EvCΣ

0q0
(B) = vlftq0(EvY ′

q0 (S)) where
S ∈ Sym0(η′). Now let B ∈ B(ξ). Thus |B|a is even for a ∈ {1, . . . ,m}
and |B|0 is odd. When we evaluate EvCΣ

0q0
(B), the only terms that will re-

main in the decomposition of EvCΣ
0q0

(B) given by the first lemma in the proof
of Theorem S2.2 are the terms obtained from brackets in S(B) that are in
Br0(ξ′)∪Br−1(ξ′). Thus let B′ ∈ S(B)∩(Br0(ξ′)∪Br−1(ξ′)). Since B ∈ B(ξ),
we must have |B′|a even and |B′|0 + |B′|m+1 odd. We now have two cases.

1. If |B′|0 is odd, then |B′|m+1 must be even. In this case we get
∑m+1
a=1 |B′|a

as even and |B′|0 as odd. Thus the only such brackets B′ ∈ S(B) that
contribute to EvCΣ

0q0
(B) must be in Br−1(ξ′).

2. If |B′|0 is even for B′ ∈ S(B), then |B′|m+1 must be odd. In this case∑m+1
a=1 |B′|a is odd and |B′|0 is even and again, the only brackets in S(B)

that contribute to EvCΣ
0q0

(B) must be in Br−1(ξ′).

Thus we must have EvCΣ
0q0

(B′) as a linear combination of terms like

vlftq0(EvY ′

q0 (P ′)), for P ′ ∈ P(η′). Since this is true for every B′ ∈ S(B) ∩
(Br0(ξ′) ∪ Br−1(ξ′)), it is also true for B. Clearly, if B ∈ B(ξ), then
S ∈ B(Sym0(η′)).

The above argument shows that all obstructions evaluate to vectors in
C

(∞)
ver (Y , Y ). Since Y (q0) = 0q0 it follows as in Exercise E7.23 that we may re-

gard symY (q0) as a linear map on Tq0Q. The hypotheses of the theorem ensure
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the existence of w1, . . . ,wk ∈ wgt(η′) and elements S1, . . . , Sk ∈ Sym0(η′)
such that ‖Sj‖wj

< ρq0Y ′(wj), j ∈ {1, . . . , k}, and such that〈
symY (q0), spanR

{
EvY ′

q0 (Sj)
∣∣ j ∈ {1, . . . , k}}〉

= C(∞)
ver (Y , Y )q0 . (S2.4)

For j ∈ {1, . . . , k}, write wj = (wj,1, . . . , wj,m, wj,m+1), and define w̃j ∈
wgt(ξ) by w̃j = (wj,m+1, wj,1, . . . , wj,m). Next we note that a direct compu-
tation may be used to verify that Af0(0q0) is the linear map on T0q0

TQ '
Tq0Q⊕ Tq0Q represented by the block matrix[

0 idTq0Q

symY (q0) 0

]
.

Now, our definitions of Sym0(η′), ‖·‖w, ρq0Y ′(wj), Bw
0 (Sym0(η)), and

symY (q0) ensure that (S2.4) implies the existence of B1, . . . , Bk ∈ Br(ξ) such
that〈

Af0(0q0), spanR
{
EvCΣ

0q0
(Bj)

∣∣ j ∈ {1, . . . , k}}〉
= {0q0} ⊕ C(∞)

ver (Y , Y )q0
)
.

A similar (but easier since there are no obstructions to consider) argument
may be used to show that

C
(∞)
hor (Y , Y )q0 ⊕ {0q0} ⊂

∑
w∈wgt(ξ)

Vw
CΣ

(0q0),

and this gives the theorem. �

We next state the “good/bad product” characterization for controllability
resulting from an application of Corollary 7.24 to our present setting. We
adopt the notation deployed in the buildup to Theorem S2.4. In particular,
recall the subset Sym0(η′) of Sym(η′) consisting of sums of products of the
form P1(B′), . . . , Pk(B′)(B′) for a primitive B′ ∈ Br−1(ξ′). Recall that, for
a ∈ {1, . . . ,m,m + 1}, |S|a is well-defined for S ∈ Sym0(η′). We say that
S ∈ Sym0(η′) is bad if |S|a is even and good otherwise. The degree of
S ∈ Sym0(η′) is

deg(S) =
m+1∑
a=1

|S|a .

For S ∈ Sym0(η′), define

ρ(S) =
∑
σ∈Sm

σ(S).

As usual, the following result may be proved by a direct application of The-
orem S2.4 (or of Theorem 7.20), and we leave the working out of this to the
motivated reader.
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Corollary S2.5 (Controllability of affine connection control systems
with a basic external force). Let Σ = (Q,∇, Y,D,Y ) be an analytic forced
affine connection control system with Y (q0) = 0q0 . Suppose that, for every
bad S ∈ Sym0(η′), there exists good Q1, . . . , Qk ∈ Sym0(η′) with deg(Qj) <
deg(S), j ∈ {1, . . . , k}, and constants a1, . . . , ak ∈ R such that

EvY ′

q0 (ρ(S)) =
k∑
j=1

ajEvY
q0 (Qj).

Then the following statements hold:

(i) if C
(∞)
ver (Y , Y )q0 = Dq0 and if C

(∞)
hor (Y , Y )q0 = Tq0Q, then Σ is properly

STLC from q0;
(ii) if C

(∞)
hor (Y , Y )q0 = Tq0Q, then Σ is properly STLCC from q0.

Remark S2.6. Theorem 5.15 in [Lewis and Murray 1997], which is an at-
tempt to state Corollary S2.5, is incorrect. While the statement in [Lewis and
Murray 1997] is correct when specialized to systems without potential (this is
Corollary 7.41 in the text), for systems with potential, the more complicated
development of Corollary S2.5 is necessary. •

S2.2 Accessibility of systems with isotropic dissipation

The final general situation we consider is that when, to an affine connection
control system, we add a dissipative force of a certain type. Specifically, we
consider a simple mechanical control system Σ = (Q,G, V = 0, Fdiss,D,F =
{F 1, . . . , Fm}, U) where Fdiss is a dissipative force satisfying Fdiss(vq)] = δvq,
for some δ > 0. Thus the dissipation is “isotropic,” meaning that the dissi-
pative force is independent of direction. This is not a very general model for
dissipation in practice, and the results in this section merely provide a starting
point for further investigation of controllability of systems with dissipation.
The governing equations for a system of this type are

D

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(c(t))− δγ′(t). (S2.5)

We consider, therefore, the setting of a forced affine connection control system
(Q,∇,−δidTQ,Y , U). This gives the corresponding control-affine system (M =
TQ,CΣ = {f0 = S − δVL, f1 = vlft(Y1), . . . , fm = vlft(Ym)}, U), where VL

is the Liouville vector field. Cortés, Mart́ınez, and Bullo [2003] provide the
following characterization of the accessibility of the system (S2.5).

Theorem S2.7 (Accessibility of affine connection control systems
with isotropic dissipation). Consider the analytic forced affine connection
control system Σ = (Q,∇,−δidTQ,Y , U). Then we have
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Lie(∞)(CΣ)0q
' Lie(∞)(Sym(∞)(Y))q0 ⊕ Sym(∞)(Y)q0 .

In particular, if U is almost proper, then the following statements hold:
(i) Σ is accessible from q0 if and only if Sym(∞)(Y)q0 = Dq0 and

Lie(∞)(D)q0 = Tq0Q;
(ii) Σ is configuration accessible from q0 if and only if

Lie(∞)(Sym(∞)(Y))q0 = Tq0Q.

Proof. We work with the families of vector fields

C ′
Σ = {f ′0 = S, f ′1 = vlft(Y1), . . . , f ′m = vlft(Ym)},

CΣ = {f0 = S − δVL, f1 = vlft(Y1), . . . , fm = vlft(Ym)}.

We claim that the ideal generated by {f ′1, . . . , f ′m} in Γ∞(Lie(∞)(C ′
Σ)) agrees

with the ideal generated by {f1, . . . , fm} in Γ∞(Lie(∞)(CΣ)). These ideals are
generated by vector fields of the form

[f ′ak−1
, [f ′ak−2

, · · · , [f ′a1
, fa]]],

a1, . . . , ak−1 ∈ {0, 1, . . . ,m}, a ∈ {1, . . . ,m}, k ∈ N,

and

[fak−1 , [fak−2 , · · · , [fa1 , fa]]],
a1, . . . , ak−1 ∈ {0, 1, . . . ,m}, a ∈ {1, . . . ,m}, k ∈ N,

respectively. For fixed k ∈ N, let G ′
k and Gk denote these sets of generators.

We will show by induction that, for each k ∈ N,
1. [VL,G ′

k] ⊂ spanR {G ′
k} and

2. spanR {Gk} = spanR {G ′
k}.

These trivially hold when k = 1. One may readily compute [VL, vlft(Ya)] =
vlft(Ya), a ∈ {1, . . . ,m}, and [VL, S] = S, thus giving Fact 1 for k = 2. Also,
it is clear that Fact 2 holds when k = 2.

Now assume that Facts 1 and 2 hold for k = ` > 2. To show that
[VL,G ′

`+1] ⊂ spanR
{
G ′
`+1

}
, we show that

[VL, [X,Y ]] ∈ spanR
{
G ′
`+1

}
, X ∈ C ′

Σ, Y ∈ G ′
` .

By the Jacobi identity, we have [VL, [X,Y ]] = −[Y, [VL, X]]−[X, [Y, VL]]. Since
Fact 1 holds when k = 2, we have [VL, X] ∈ spanR {G ′

1} and so [Y, [VL, X]] ∈
spanR

{
G ′
`+1

}
. By the induction hypotheses, [Y, VL] ∈ spanR {G ′

`}, and so
[X, [Y, VL]] ∈ spanR

{
G ′
`+1

}
. This shows that Fact 1 holds when k = `+ 1.

Now we show that Fact 2 holds when k = `+1. Let X ′ ∈ C ′
Σ and Y ′ ∈ G ′

` .
If X ′ = vlft(Ya) for some a ∈ {1, . . . ,m}, then [X ′, Y ′] ∈ spanR {G`+1} since
X ′ ∈ CΣ and since Y ′ ∈ spanR {G`} by the induction hypothesis. If X ′ = S,
then we write X ′ = S + VL − VL and we have
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[X ′, Y ′] = [S + VL, Y
′]− [VL, Y

′] ∈ spanR {G`+1} ,

using the fact that both Facts 1 and 2 hold when k = `. This shows that
spanR

{
G ′
`+1

}
⊂ spanR {G`+1}. Now let X ∈ CΣ and Y ∈ G`. If X = vlft(Ya)

for some a ∈ {1, . . . ,m}, then [X,Y ] ∈ spanR
{
G ′
`+1

}
since X ∈ C ′

Σ and since
Y ∈ spanR {G ′

`} by the induction hypothesis. If X = S + VL then we have

[X,Y ] = [S + VL, Y ] = [S, Y ] + [VL, Y ] ∈ spanR
{
G ′
`+1

}
,

using the fact that both Facts 1 and 2 hold when k = `. This shows that
spanR {G`+1} ⊂ spanR

{
G ′
`+1

}
. Thus we have shown that the ideals stated as

being equal are indeed equal. Thus Lie(∞)(C ′
Σ) and Lie(∞)(CΣ) differ only by

spanR {f ′0 − f0} = spanR {VL}. Since VL(0q) = 00q , the result follows. �

S2.3 Controllability in the presence of symmetry

The results stated in Section 7.3 are general in nature. In this section we
consider the effects of some additional structure on the configuration space,
namely that when a Lie group G acts on Q in such a way that the problem
data is invariant. We consider two cases of this. The first, considered in Sec-
tion S2.3.1, is that when Q is itself a Lie group. In this case, the controllability
results of Section 7.3 can be simplified to algebraic tests. This work was pre-
sented in the paper of Bullo, Leonard, and Lewis [2000]. In Section S2.3.2 we
consider the situation where Q is a principal fiber bundle, and where the in-
put vector fields Y = {Y1, . . . , Ym} are G-invariant and horizontal. A situation
similar to this was considered by Bloch and Crouch [1992].

S2.3.1 Controllability of systems on Lie groups

We shall consider simple mechanical control systems for which the config-
uration space is a Lie group: Q = G. We ask that all problem data be
invariant under left translations in the group. Since left-invariant functions
are locally constant, we assume that the potential function is zero. Indeed,
let us for simplicity assume that there are no external forces on the sys-
tem, so that we may reduce to the case of an affine connection control sys-
tem Σ = (G,∇,D,Y = {Y1, . . . , Ym}, U), where ∇ is a left-invariant affine
connection, D is a left-invariant distribution, and Y is a collection of left-
invariant vector fields. Let us write Ya(g) = TeLg(ηa), thus defining ηa ∈ g,
a ∈ {1, . . . ,m}. We define a bilinear map 〈· : ·〉g on g by

〈ξ : η〉g = 〈X : Y 〉 (e),

where X and Y are the left-invariant extensions of ξ, η ∈ g. Note that, if ∇
is the Levi-Civita connection for a left-invariant Riemannian metric, one may
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use Theorem 5.40 to deduce the following formula, which is given as part (b)
in Exercise E7.19 in the text:

〈ξ : η〉g = −I]
(
ad∗ξ I[(η) + ad∗η I[(ξ)

)
, (S2.6)

where I is the inner product on g induced by the left-invariant Riemannian
metric, and where ξ, η ∈ g (this follows from part (iii) of Theorem 5.40).

The controllability of the system can now be stated, using Theorems 7.36
and 7.40, in purely algebraic terms. The following result characterizes the
distributions needed to decide accessibility as per Theorem 7.36.

Proposition S2.8 (Accessibility of affine connection control systems
on Lie groups). Let Σ = (G,∇,D,Y = {Y, . . . , Ym}, U) be a left-invariant
affine connection control system. The following statements hold:

(i) Sym(∞)(Y)e is the smallest subspace of g containing Ye and closed under
the product 〈· : ·〉g;

(ii) Lie(∞)(Sym(∞)(Y))e is the smallest Lie subalgebra of g containing
Sym(∞)(Y)e;

(iii) Sym(∞)(Y)g = TeLg(Sym(∞)(Y)e);
(iv) Lie(∞)(Sym(∞)(Y))g = TeLg(Lie(∞)(Sym(∞)(Y))e).

It is also possible to restate Theorem 7.40 for left-invariant systems on Lie
groups. We leave the straightforward details to the reader in Exercise E7.20.

Remark S2.9. Some advantages of the methods we propose in this section
are the following.
1. They reduce the computations to algebraic manipulations, and so elimi-

nate any differentiations. Additionally, left-invariance allows one to check
for accessibility or controllability only at the identity, and the conclusions
will then automatically hold at any other configuration.

2. There is no need to introduce coordinates on G, a process which can be
cumbersome on Lie groups such as SO(3) or SE(3). •

Example S2.10 (Section 7.4.2 cont’d). As we saw in Example 5.47, the
planar body with a thruster can be regarded as a left-invariant system on
the Lie group G = SE(2). The Lie algebra is naturally isomorphic as a vector
space to R ⊕ R2 ' R3, and we let {e1, e2, e3} be the standard basis. The
input vector fields Y1 and Y2 for the system are left-invariant extensions of
η1 = 1

me2 and η2 = −h
J e1 + 1

me3. In Example 5.47 we give the Lie algebra
structure constants in this basis (cf. (5.20)), and using this and (S2.6) we
make the following computations:

〈η1 : η1〉se(2) = 0, 〈η1 : η2〉se(2) = − h

mJ
e3, 〈η2 : η2〉se(2) =

2h
mJ

e2,

〈η2 : 〈η2 : η2〉〉se(2) = − 2h
mJ2

e3.

One may now use Proposition S2.8 and Exercise E7.20 to deduce the control-
lability conclusions we produced in Section 7.4.2. •
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S2.3.2 Controllability of a class of systems on principal fiber
bundles

We now look at a simple mechanical control system Σ = (Q,G, V,F =
{F 1, . . . , Fm}, U), and we consider the situation where a Lie group G acts
with an action Φ on the configuration manifold Q in such a way that
π : Q → B = Q/G is a principal fiber bundle. We also suppose that G is a left-
invariant Riemannian metric on Q. This setup is described in Section 5.4.3,
where, in particular, the momentum map JΦ : TQ → g∗ is defined. We denote
by VQ the subbundle of TQ defined by VqQ = ker(Tqπ). Thus VQ is the ver-
tical subbundle . The horizontal subbundle HQ of TQ is the G-orthogonal
complement of VQ.

Let us first record a useful fact about the momentum map.

Proposition S2.11 (Characterization of the horizontal subbundle).
The horizontal distribution HQ is smooth, regular, and geodesically invariant
distribution on Q, and furthermore, HQ = J−1

Φ (0).

Proof. By definition of JΦ, it is clear that JΦ(vq) = 0 if and only vq is G-
orthogonal to ξQ(q) for every ξ ∈ g. That is to say, J−1

Φ (0) is the G-orthogonal
complement to VQ. Since VQ is smooth and regular, so too is J−1

Φ (0). Con-
servation of momentum translates to J−1

Φ (0) being a submanifold of TQ that
is invariant under the flow of S. The result now follows from fact 1 given in
the proof of Theorem 3.108. �

As usual, we let Y = {Y1 = G](F 1), . . . , Ym = G](Fm)} be the input
vector fields for the system. We shall suppose that the input vector fields Y

1. take values in the regular distribution J−1
Φ (0) and

2. are G-invariant.
These assumptions, particularly the first, are quite restrictive. More generally,
one can consider vector fields satisfying just the second assumption, although
the situation here is not understood in as elegant manner as is likely possi-
ble (but see [Cortés, Mart́ınez, Ostrowski, and Zhang 2002]). Note that this
renders our treatment in this section “opposite” to that in Section S2.3.1. In-
deed, in Section S2.3.1 the regular distribution J−1

Φ (0) is trivial. Essentially,
we deal in this section with input vector fields that are horizontal, whereas
the situation of Section S2.3.1 uses input vector fields that are vertical (al-
though the reduced space is a point in Section S2.3.1). The two assumptions
we make on the input vector fields Y ensure that there are vector fields
YB = {YB,1, . . . , YB,m} on B with the property that Tqπ(Ya(q)) = YB,a(b) for
each q ∈ π−1(b) and for each a ∈ {1, . . . ,m}. What is more, we also have a
reduced Riemannian metric GB on B defined by

GB(ub, vb) = G(hlftq(ub),hlftq(vb))

for some (and so for all) q ∈ π−1(b). We also denote FB = {F 1
B =

G[
B(YB,1), . . . , FmB = G[

B(YB,m)}. Assuming that the potential function V is
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also G-invariant, this defines a function VB on B by VB(b) = V (q) for some
(and so for all) q ∈ π−1(b). We then obtain a reduced simple mechanical
control system ΣB = (B,GB, VB,FB, U). We refer the reader to Section 5.5
for related constructions. We wish to ascertain the relationship between the
controllability properties of Σ and ΣB.

The following result lists some of the conclusions that may be drawn.

Theorem S2.12 (Controllability of simple mechanical control sys-
tems on principal fiber bundles). Let Σ = (Q,G, V,F , U) and ΣB =
(B,GB, VB,FB, U) be as above, and suppose that all data are analytic. The
following statement holds:

(i) if dim(G) > 0, then Σ is not accessible from any q ∈ Q.
Now suppose that Lie(∞)(J−1

Φ (0)) = TQ and that V = 0. Then the following
statements hold:
(ii) Σ is configuration accessible from q ∈ Q if ΣB is accessible from π(q) ∈

B;
(iii) Σ satisfies the hypotheses of Theorem 7.40 at q ∈ Q if and only if ΣB

satisfies the hypotheses of Theorem 7.40 at π(q) ∈ B.

Proof. (i) As in the proof of Proposition S2.11, the geodesic spray S is tan-
gent to J−1

Φ (0) ⊂ TQ. Since the vector fields Y take values in J−1
Φ (0), the

vector fields vlft(Ya), a ∈ {1, . . . ,m}, are also tangent to J−1
Φ (0) by fact 3

given in the proof of Theorem 3.108. Since V is G-invariant, V is constant on
fibers of π : Q → B. Therefore, dV ∈ Γ∞(ann(VQ)), and from this it follows
that G] ◦dV ∈ Γ∞(J−1

Φ (0)). Again, using fact 3 given in the proof of The-
orem 3.108, it follows that vlft(gradV ) is tangent to J−1

Φ (0). Therefore, the
control-affine system corresponding to Σ has J−1

Φ (0) as an invariant submani-
fold, precluding the possibility of accessibility, unless J−1

Φ (0) = TQ. However,
this can happen only if VQ = Z(TQ), from which the result follows.

(ii) By Theorem 7.36, ΣB is accessible from b ∈ B if and only if
Sym(∞)(YB) = TbB. Since the vector fields Y are G-invariant, and since sym-
metric products commute with Φg for each g ∈ G, we have

Tqπ(Sym(∞)(Y)q) = Sym(∞)(YB)b

for each q ∈ π−1(b). Therefore, ΣB is accessible at b if and only if
Sym(∞)(Y)q = J−1

Φ (0)q for each q ∈ π−1(b). From the assumption that
Lie(∞)(J−1

Φ (0)) = TQ, this part of the result now follows.
(iii) We introduce some terminology that makes connections with the work

on reduction described in [Marsden 1992]. The computations here will also
be seen to be strongly reminiscent of the computations of Section 5.5. The
mechanical connection is the map AG : TQ → g defined by

G((AG(vq))Q(q), ξQ(q)) = G(vq, ξQ(q)), vq ∈ TqQ.
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Thus AG(vq) returns the Lie algebra element whose infinitesimal generator at
q is the vertical component, relative to G-orthogonality, of vq. The curvature
of the mechanical connection is the map BG : TQ× TQ → g defined by

BG(uq, vq) = −AG([hor(U),hor(V )](q)),

with hor : TQ → TQ being the G-orthogonal projection onto J−1
Φ (0), and

where U and V are arbitrary vector fields extending uq and vq, respectively.
One can show that

G

∇Ya
Yb = hlft

(GB

∇YB,a
YB,b

)
− 1

2BG(Ya, Yb)Q.

Since BG is skew-symmetric, we have

〈Ya : Yb〉 = hlft(〈YB,a : YB,b〉).

From this the result immediately follows. �

To illustrate the theorem, we consider the robotic leg example considered
in the text at various points.

Example S2.13 (Example 5.71 and Section 7.4.1 cont’d). The robotic
leg whose controllability was considered in Section 7.4.1 is a system of the type
considered in this section. To illustrate this, we need to specify the symmetry
group and its action on Q. We take G = SO(2) and the action of G on Q =
R+ × S1 × S1 given by Φ(R, (r,x,y)) = (r,Rx,Ry). Recall the coordinates
(r, θ, ψ) used for this example. The quotient space B = Q/G is diffeomorphic
to R×S1, and we identity the orbit through the point (r, θ, ψ) with (r, θ−ψ).
That is to say, we use (r, φ) as coordinates for B, and the projection π : Q → B
is given by π(r, θ, ψ) = (r, θ−ψ). For a ∈ g ' R, the infinitesimal generator is

aQ(r, θ, ψ) = a
( ∂

∂θ
+

∂

∂ψ

)
.

We let {e1} be the standard basis for g ' R with {e1} the dual basis. With
this, a direct computation yields

JΦ((r, θ, ψ), (vr, vθ, vψ)) = (Jvψ +mr2vθ)e1,

GB(r, φ)((ur, uφ), (vr, vφ)) = murvr +
Jmr2

J +mr2
uφvφ.

The input vector fields Y1 and Y2 are horizontal lifts of the vector fields

YB,1 =
J +mr2

Jmr2
∂

∂φ
, YB,2 =

∂

∂r

on B. Thus this system does indeed fit into the class of systems discussed in
this section, and the results of Theorem S2.12 may be applied. To apply the
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results, we need a few computations. The nonzero Christoffel symbols for the
Levi-Civita connection on B associated with GB are

Γrφφ = − J2r

(J +mr2)2
, Γφrφ = Γφφr =

J

r(J +mr2)
.

This then gives the symmetric products〈
YB,1 : YB,1

〉
= − 2

m2r3
∂

∂r
,

〈
YB,1 : YB,2

〉
= − 2J

mr(J +mr2)
∂

∂r
,

〈
YB,2 : YB,2

〉
= − 2J2r

(J +mr2)2
∂

∂r
.

We also recall that
[Y1, Y2] = − 2

m2r3
∂

∂θ
,

from which we conclude that Lie(∞)(J−1
Φ (0)) = TQ.

From Theorem S2.12 we draw the following conclusions.
1. All cases: By part (i) of Theorem S2.12, we conclude that the system is

not accessible from any q ∈ Q.
2. Y1 only: Since {YB,1, 〈YB,1 : YB,1〉} generate TB, we deduce from part (ii)

of Theorem S2.12 that Σ is configuration accessible from any q ∈ Q.
The hypotheses of Theorem 7.40 do not hold for ΣB, and so they also
do not hold for Σ. Also, ΣB can be directly seen to be neither STLC nor
STLCC at any b ∈ B. This alone does not allow us, using the results
that we give here, to deduce anything concerning the controllability or
configuration controllability of Σ. However, we have already seen that it
is neither STLC nor STLCC from any q ∈ Q.

3. Y2 only: ΣB is not accessible, so we conclude from part (ii) of Theo-
rem S2.12 that Σ is not configuration accessible from any q ∈ Q. This,
of course, also precludes Σ from being STLC or STLCC.

4. Y1 and Y2 only: Since ΣB is fully actuated, we deduce from part (ii) of
Theorem S2.12 that Σ is configuration accessible from each q ∈ Q. Also,
since ΣB is fully actuated, it satisfies the hypotheses of Theorem 7.40 for
each b ∈ B. Thus we conclude that Σ is STLCC from each q ∈ Q.

These conclusions, of course, agree with the conclusions of Section 7.4.1. •





S3

Linearization and stabilization of relative
equilibria

In Section 6.3 of the text, we considered the stability of relative equilibria. In
this supplement, we apply this analysis, in combination with the analysis of
Section 10.4 on nonlinear potential shaping, to obtain some results concerning
the stabilization of relative equilibria. In the literature, this problem has been
addressed by, for example, Bloch, Leonard, and Marsden [2001], Jalnapurkar
and Marsden [1998, 2000] and Bullo [2000]. Papers dealing with applications
include the work on underwater vehicles by Woolsey and Leonard [2004]. We
do not discuss here systems with constraints, although preliminary work in
this area includes [Zenkov, Bloch, and Marsden 2002].

Let us outline what we do in this supplement. Since we wish to consider
stabilization using linear techniques, in Section S3.1 we consider the lineariza-
tion around a relative equilibrium. The development here is significantly more
complicated than linearization about equilibrium configurations. For example,
it utilizes the Ehresmann connections of Section S1.3 that give rise to the Ja-
cobi equation. The processes of reduction and linearization produce various
natural energies, and these are related in Section S3.2. Linear stability of
relative equilibria is studied in Section S3.3. In Section S3.4 we define the
natural stabilization problems for relative equilibria. In Section S3.5 we then
discuss stabilization of relative equilibria using linear and potential shaping
techniques. The results in this last section are analogous to those in Sec-
tions 10.3 and 10.4 for the stabilization of equilibrium configurations. There
are, however, some additional complications arising from the extra structure
of the relative equilibrium.

S3.1 Linearization along relative equilibria

We let Σ = (Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical control
system with F time-independent, X be a complete infinitesimal symmetry
of Σ, and χ : R → Q be a regular relative equilibrium for (Q,G, V, F ). Thus
χ is an integral curve for X that is also an uncontrolled trajectory for the
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system. We let B denote the set of X-orbits, and following Assumption 5.78,
we assume that B is a smooth manifold for which πB : Q → B is a surjective
submersion. We let Ya = G] ◦F a, a ∈ {1, . . . ,m}, and if u : I → Rm is a
locally integrable control, we denote

Yu(t, q) =
m∑
a=1

ua(t)Ya(q), t ∈ I, q ∈ Q, (S3.1)

for brevity. Define vector fields YB,a, a ∈ {1, . . . ,m}, by YB,a(b) = TqπB(Ya(q))
for q ∈ π−1

B (b). Since the vector fields Y are X-invariant, this definition is
independent of q ∈ π−1

B (b). Similarly to (S3.1), we denote

YB,u(t, b) =
m∑
a=1

ua(t)YB,a(b).

In Theorem 5.83 we showed that the reduced system has TB × R as its
state space, and satisfies the equations

GB

∇η′(t)η
′(t) = −gradB

(
V eff
X,v(t)

)
B
(η(t)) + v(t)CX(η′(t))

+ TπB ◦G] ◦F (γ′(t)) + YB,u(t, η(t))),

v̇(t) = −
v(t)〈d(‖X‖2G)B(η(t)); η′(t)〉

(‖X‖2G)B(η(t))
+
〈F (γ′(t));X(γ(t))〉

(‖X‖2G)B(η(t))

+
G(Yu(t, γ(t)), X(γ(t)))

(‖X‖2G)B(η(t))
,

(S3.2)

where (γ, u) is the controlled trajectory on Q, η = πB ◦γ, and v is defined by
ver(γ′(t)) = v(t)X(γ(t)). As we saw in the proof of Theorem 6.56, the rela-
tive equilibrium χ corresponds to the equilibrium point (TπB(χ′(0)), 1) of the
reduced equations (S3.2). Therefore, linearization of the relative equilibrium
χ could be defined to be the linearization of the equations (S3.2) about the
equilibrium point (TπB(χ′(0)), 1). This is one view of linearization of relative
equilibria. Another view is that, since χ is a trajectory for the unreduced
system, we could linearize along it in the manner described in Section S1.3.1
when describing the Jacobi equation. In this section we shall see how these
views of linearization of relative equilibria tie together. We build up to this
by first considering linearization in more general settings.

S3.1.1 Linearization of a control-affine system along a controlled
trajectory

In order to talk about linearization along a relative equilibrium, we first discuss
linearization along a general controlled trajectory. In order to do this, it is
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convenient to first consider the general control-affine case, then specialize to
the mechanical setting.

First we need to extend our notion of a control-affine system to be time-
dependent. This is because the linearization of a control-affine system will
generally be time-dependent.

Definition S3.1 (Time-dependent control-affine system). For r ∈ N ∪
{∞} ∪ {ω}, a Cr-time-dependent control-affine system is a triple
(M,C = {f0, f1, . . . , fm}, U) where

(i) M is a Cr-manifold,
(ii) f0, f1, . . . , fm are locally integrally class Cr-vector fields on M, and
(iii) U ⊂ Rm. •

The governing equations for a time-dependent control-affine system
(M,F , U) are then

γ′(t) = f0(t, γ(t)) +
m∑
a=1

ua(t)fa(t, γ(t)).

Clearly, the only difference from our usual notion of a control-affine system
is the dependence of the drift vector field and the control vector fields on
time. Many of the same notions one has for control-affine systems, controlled
trajectories, controllability, stability, etc., carry over to the time-dependent
setting with appropriate modifications. However, we shall only use this more
general time-dependent setup in a fairly specific manner.

Suppose that we have a (time-independent) control-affine system (M,F =
{f0, f1, . . . , fm}, U) of class C∞, and a controlled trajectory (γ0, u0) defined
on an interval I. Let us take U = Rm to avoid unnecessary complication. We
wish to linearize the system about this controlled trajectory. Linearization is
to be done with respect to both state and control. Thus, speaking somewhat
loosely for a moment, to compute the linearization, one should first fix the
control at u0 and linearize with respect to state, then fix the state and linearize
with respect to control, and then add the results to obtain the linearization.
Let us now be more formal about this.

If we fix the control at u0, we obtain the LIC∞-vector field fu0 on M
defined by

fu0(t, x) = f0(x) +
m∑
a=1

ua0(t)fa(x).

We call fu0 the reference vector field for the controlled trajectory (γ0, u0).
The linearization of the reference vector field is exactly described by its tan-
gent lift, as discussed in Remark S1.10–4. Thus one component of the lin-
earization is fTu0

. The other component is computed by fixing the state, say
at x, and linearizing with respect to the control. Thus we consider the map

R× Rm 3 (t, u) 7→ f0(x) +
m∑
a=1

(ua0(t) + ua)fa(x) ∈ TxM,
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and differentiate this with respect to u at u = 0. The resulting map from
T0Rm ' Rm to Tfu0 (t,x)(TxM) ' TxM is simply given by

u 7→
m∑
a=1

uafa(x).

In order to add the results of the two computations, we regard TxM as being
identified with Vfu0 (t,x)TM. Thus the linearization with respect to the con-
trol yields the linearized control vector fields vlft(fa), a ∈ {1, . . . ,m}. In this
way, we arrive at the C∞-time-dependent control-affine system ΣT (γ0, u0) =
(TM, {fTu0

, vlft(f1), . . . , vlft(fa)},Rm), whose controlled trajectories (ξ, u) sat-
isfy

ξ′(t) = fTu0
(t, ξ(t)) +

m∑
a=1

ua(t)vlft(fa)(ξ(t)). (S3.3)

The following result gives an important property of these controlled trajecto-
ries.

Lemma S3.2. For every locally integrable control t 7→ u(t), the LIC∞-vector
field

(t, vx) 7→ fTu0
(t, vx) +

m∑
a=1

ua(t)vlft(fa)(vx)

is a linear vector field over fu0 .

Proof. This is easily proved in coordinates. �

From our discussion of linear vector fields in Section S1.3.4, we then know
that, if (ξ, u) is a controlled trajectory for ΣT (γ0, u0), then πTM ◦ ξ is an inte-
gral curve of fu0 . In particular, if (ξ, u) is a controlled trajectory for ΣT (γ0, u0)
that satisfies πTM ◦ ξ(t) = γ0(t) for some t ∈ I, then ξ is a vector field along
γ0.

To formally define the linearization along (γ0, u0), we need an additional
concept, following Sussmann [1997].

Definition S3.3 (Differential operator along a curve). Let M be a Cr-
manifold, r ∈ N∪{∞}∪{ω}, let γ : I → M be an LAC curve, and let π : E → M
be a vector bundle. A differential operator in E along γ assigns, to each
LAC section ξ of E along γ, a locally integrable section L (ξ) along γ, and the
assignment has the property that, if f ∈ Cr(M) and if Ξ ∈ Γr(E), then

L ((f ◦γ(Ξ ◦γ))(t) = f ◦γ(t)L (Ξ ◦γ) + (L γ′(t)f)(γ(t))Ξ ◦γ(t). •

Thus a differential operator simply “differentiates” sections of E along
γ, with the differentiation rule satisfying the usual derivation property with
respect to multiplication with respect to functions. Sussmann [1997] shows
that, in coordinates (x1, . . . , xn) for M, if t 7→ (ξ1(t), . . . , ξm(t)) are the fiber
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components of the local representative of an LAC section ξ of E, then the fiber
components of the local representative of L (ξ) satisfy

(L (ξ))a(t) = ξ̇a(t) +
m∑
b=1

Lab (t)ξ
b(t), a ∈ {1, . . . ,m},

for some locally integrable functions t 7→ Lba(t), a, b ∈ {a, . . . ,m}. If γ : I → M
is an integral curve of an LICr-vector field X, then there is a naturally induced
differential operator in TM along γ, denoted by LX,γ , and defined by

LX,γ(ξ) = [Xt,Ξ](γ(t)), a.e. t ∈ I,

where Ξ is a vector field satisfying ξ = Ξ ◦γ, and where Xt is the Cr-vector
field defined by Xt(x) = X(t, x). In coordinates this differential operator
satisfies

LX,γ(ξ)i(t) = ξ̇i(t)− ∂Xi

∂xj
(γ(t))ξj(t), i ∈ {1, . . . , n}.

This differential operator is sometimes referred to as the “Lie drag”
(see [Crampin and Pirani 1986, Section 3.5]).

A coordinate computation readily verifies the following result, and we refer
to [Lewis and Tyner 2003, Sussmann 1997] for details.

Proposition S3.4 (Relationship between tangent lift and a differen-
tial operator). Let X : I×M → TM be an LICr vector field, let vx0 ∈ TxM ,
let t0 ∈ I, and let γ : I →M be the integral curve of X satisfying γ(t0) = x0.
For a vector field ξ along γ satisfying ξ(t0) = vx0 , the following statements
are equivalent:

(i) ξ is an integral curve for XT ;
(ii) there exists a variation σ of X along γ such that d

ds

∣∣
s=0

σ(t, s) = ξ(t)
for each t ∈ I;

(iii) LX,γ(ξ) = 0.

With the preceding as motivation, we can define the linearization of a
control-affine system.

Definition S3.5 (Linearization of a control-affine system about a
controlled trajectory). Let Σ = (M,F = {f0, f1, . . . , fm},Rm) be a Cr-
control-affine system with (γ0, u0) a controlled trajectory. The linearization
of Σ about (γ0, u0) is given by {LΣ(γ0, u0), bΣ,1(γ0, u0), . . . , bΣ,m(γ0, u0)},
where

(i) LΣ(γ0, u0) is the differential operator in TM along γ0 defined by

LΣ(γ0, u0) = L fu0 ,γ0 ,

and
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(ii) bΣ,a, a ∈ {1, . . . ,m}, are the vector fields along γ0 defined by

bΣ,a(γ0, u0)(t) = vlft(fa(γ0(t)), a ∈ {1, . . . ,m}. •

The equations governing the linearization are

LΣ(γ0, u0)(ξ)(t) =
m∑
a=1

ua(t)bΣ,a(γ0, u0),

which are thus equations for a vector field ξ along γ0. By Proposition S3.4,
these equations are exactly the restriction to image(γ0) of the equations for
the time-dependent control-affine system in (S3.3). In the special case where
f0(x0) = 0x0 , u0 = 0, γ0 = x0 for some x0 ∈ M, one can readily check, along
the lines of Proposition 3.75, that we recover the linearization of the system
at x0 as per Definition 7.27.

S3.1.2 Linearization of a forced affine connection control system
along a controlled trajectory

After beginning our discussion of linearization in the context of control-affine
systems, we next specialize to affine connection control systems. We let Σ =
(Q,∇, Y,Y ,Rm) be a C∞-forced affine connection control system. In this
section, we make the following assumption about the external force Y .

Assumption S3.6 (Form of external force for linearization along a
controlled trajectory). Assume that the vector force Y is time-independent
and decomposable as Y (vq) = Y 0(q)+Y 1(vq), where Y 0 is a basic vector force
and where Y 1 is a (1, 1)-tensor field. •

This assumption will allow us to model potential forces and Rayleigh dis-
sipative forces when we discuss stabilization in subsequent sections. The gov-
erning equations for the system are

∇γ′(t)γ
′(t) = Y 0(γ(t)) + Y 1(γ′(t)) +

m∑
a=1

ua(t)Ya(γ(t)).

To linearize these equations about any controlled trajectory (γ0, u0), following
the development in the preceding section, we first need to compute the tangent
lift for the LIC∞-vector field Su0 on TQ defined by

Su0(t, vq) = S(vq) + vlft(Y 0(q) + Y 1(vq) + Yu0(t, q)),

where Yu0 is defined as in (S3.1). The Jacobi equation, as we have seen in
Theorem S1.34, contains the essential features of the tangent lift of S. Fur-
thermore, the computations of Lemma S1.33 allow us to determine what needs
to be added to the Jacobi equation to include the external and control forces.
We recall the notation from Section S1.3.10 where points in TTQ are written
as uvq ⊕wvq , relative to the splitting defined by the Ehresmann connection on
πTTQ : TTQ → TQ. The following result gives the linearization along (γ0, u0)
using the Ehresmann connection of Section S1.3.8.
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Proposition S3.7 (State linearization of an affine connection control
system). Let Σ = (Q,∇, Y,Y , U) be a C∞-forced simple mechanical control
system where Y satisfies Assumption S3.6, let (γ0, u0) be a controlled trajec-
tory for Σ defined on I, and let t 7→ Υ0(t) = γ′0(t) be the tangent vector field
of γ0. For a ∈ I, let u,w ∈ Tγ0(a)Q, and define vector fields U,W : I → TQ
along γ0 by asking that t 7→ U(t)⊕W (t) ∈ Tγ0(t)Q⊕ Tγ0(t)Q ' TΥ0(t)TQ be
the integral curve of STu0

with initial conditions u⊕w ∈ Tγ0(a)Q⊕Tγ0(a)Q '
TΥ0(a)TQ. Then U and W satisfy the equations

W (t) = ∇γ′0(t)
U(t) + 1

2T (U(t), γ′0(t)),

∇2
γ′0(t)

U(t) +R(U(t), γ′0(t))γ
′
0(t) +∇γ′0(t)

(T (U(t), γ′0(t)))

= ∇U(t)(Y 0 + Yu0)(γ0(t)) + (∇U(t)Y 1)(γ′0(t)) + Y 1(∇γ′0(t)
U(t)).

Proof. Let us denote Xu0 = Y 0 + Yu0 , for brevity. A computation in coordi-
nates readily shows that the tangent lift of the vertical lift of Xu0 is given
by

vlft(Yu0)
T (uvq ⊕ wvq ) = 0⊕Xu0(q)⊕ 0⊕ (∇Xu0(uvq ) + 1

2T (Xu0(q), uvq )).

A coordinate computation also gives

vlft(Y 1)T (uvq
⊕ wvq

) = 0⊕ Y 1(vq)⊕ 0

⊕
(
∇uvq

Y 1(v) + Y 1(wvq
) + 1

2T (Y 1(vq), uvq
) + 1

2Y 1(T (uvq
, vq))

)
.

The tangent lift of S is given by Propositions S1.29 and S1.32 as

ST (uvq
⊕ wvq

) = vq ⊕ 0⊕ wvq
⊕ (−R(uvq

, vq)vq − 1
2 (∇vq

T )(uvq
, vq)

+ 1
4T (T (uvq

, vq), vq)).

Thus, using Lemma S1.33, we have that U and W satisfy

∇γ′0(t)
U(t) + 1

2T (U(t), γ′0(t)) = W (t),

∇γ′0(t)
W (t) + 1

2T (W (t), γ′0(t)) = −R(U(t), γ′0(t))γ
′
0(t)

− 1
2 (∇γ′0(t)

T )(U(t), γ′0(t)) + 1
4T (T (U(t), γ′0(t)), γ

′
0(t))

+∇Xu0(U(t)) + 1
2T (Xu0(t, γ0(t)), U(t))

+∇U(t)Y 1(γ′0(t)) + Y 1(W (t)) + 1
2T (Y 1(γ′0(t)), U(t))

+ 1
2Y 1(T (U(t), γ′0(t))).

The first of the equations is the first equation in the statement of the propo-
sition. Differentiating this first equation, and substituting the second, gives
the second equation in the statement of the proposition, after some simplifi-
cation. �
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Next we linearize with respect to the controls. This is simpler, and fol-
lowing the procedure in the preceding section gives the control vector fields
vlft(vlft(Ya)), a ∈ {1, . . . ,m}. Thus, we arrive at the time-dependent control-
affine system ΣT (γ0, u0) = (TTQ, {STu0

, vlft(vlft(Y1)), . . . , vlft(vlft(Ym)),Rm).
With respect to the splitting defined by the Ehresmann connection associated
with ∇, it is easy to verify that

vlft(vlft(Ya))(uq ⊕ wq) = 0⊕ 0⊕ 0⊕ Ya(q).

If we write a controlled trajectory for ΣT (γ0, u0) as (U ⊕W,u), reflecting the
notation of Proposition S3.7, we see that the following equations govern this
trajectory:

W (t) = ∇γ′0(t)
U(t) + 1

2T (U(t), γ′0(t))

∇2
γ′0(t)

U(t) +R(U(t), γ′0(t))γ
′
0(t) +∇γ′0(t)

(T (U(t), γ′0(t)))

= ∇(Y 0 + Yu0)(U(t)) + (∇U(t)Y 1)(γ′0(t)) + Y 1(∇χ′(t)U(t))

+
m∑
a=1

ua(t)Ya(γ0(t)).

With the above as backdrop, we make the following definition, and in so
doing, hope the reader will forgive our using the same notation as was used
for control-affine systems.

Definition S3.8 (Linearization of affine connection control system
about a controlled trajectory). Let Σ = (Q,∇, Y,Y ,Rm) be a C∞-forced
affine connection control system where Y satisfies Assumption S3.6, and let
(γ0, u0) be a controlled trajectory. The linearization of Σ about (γ0, u0) is
given by {AΣ(γ0, u0), bΣ,1(γ0, u0), . . . , bΣ,m(γ0, u0)}, where

(i) AΣ(γ0, u0) is the differential operator in TQ along γ0 defined by

AΣ(γ0, u0)(t) · ξ(t) = R(ξ(t), γ′0(t))γ
′
0(t) +∇γ′0(t)

(T (ξ(t), γ′0(t)))

−∇ξ(t)Y 0(γ0(t))−∇ξ(t)Yu0(t, γ0(t))+(∇ξ(t)Y 1)(γ′0(t))+Y 1(∇γ′0(t)
ξ(t)),

and
(ii) bΣ,a(γ0, u0), a ∈ {1, . . . ,m}, are vector fields along γ0 defined by

bΣ,a(γ0, u0)(t) = Ya(γ0(t)). •

The equations governing the linearization are then

∇2
γ′0(t)

ξ(t) +AΣ(γ0, u0)(t) · ξ(t) =
m∑
a=1

ua(t)Ya(γ0(t)). (S3.4)

In particular, a controlled trajectory for the linearization of Σ along (γ0, u0)
is a pair (ξ, u), where u : I → Rm is a locally integrable control, and where
ξ : I → TQ is the LAD curve along γ0 satisfying (S3.4).
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Remarks S3.9. 1. Note that the structure of the Ehresmann connection in-
duced by ∇ allows us to use a differential operator along γ0 rather than
along γ′0.

2. If ∇ is torsion-free and if Y 1 = 0, then AΣ(γ0, u0) is no longer a differential
operator, but is actually a (1, 1)-tensor field. In such a case, it is still
possible to consider this as a differential operator, but one of “order zero.”

•

S3.1.3 Linearization of the unreduced equations along a relative
equilibrium

With the work done in the preceding two sections, it is easy to give the form of
the linearization along a relative equilibrium. We let Σ = (Q,G, V, F,F ,Rm)
be a C∞-forced simple mechanical control system. In this and the next section,
we make the following assumption about the external force F .

Assumption S3.10 (Form of external force for linearization along a
relative equilibrium). Assume that the force F is time-independent and
that F (vq) = A[(vq −X(q)) for an X-invariant (0, 2)-tensor field A. •

This assumption will allow the inclusion of Rayleigh dissipative forces
along the relative equilibrium in the stabilization results in subsequent sec-
tions. We suppose that X is an infinitesimal symmetry for Σ and that χ is
a relative equilibrium. Then, according to Definition S3.8, a pair (ξ, u) is a
controlled trajectory for the linearization of Σ along (χ, 0) if and only if

G

∇2
χ′(t)ξ(t) +R(ξ(t), χ′(t))χ′(t)

= −
G

∇ξ(t)(gradV )(χ(t))−
G

∇ξ(t)(G] ◦A[ ◦X)(χ(t))

+ (
G

∇ξ(t)(G] ◦A[))(χ′(t)) + G] ◦A[(
G

∇χ′(t)ξ(t)) +
m∑
a=1

ua(t)Ya(χ(t)). (S3.5)

In order to facilitate making the connection between the preceding result and
the reduced linearization given in the next section, we state the following
characterization of the unreduced linearization.

Theorem S3.11 (Linearization of relative equilibrium before reduc-
tion). Let Σ = (Q,G, V, F,F ,Rm) be a C∞-simple mechanical control system
satisfying Assumption S3.10, let X be a complete infinitesimal symmetry of
Σ for which the projection πB : Q → B onto the set of X-orbits is a sur-
jective submersion, and let χ : R → Q be a regular relative equilibrium. For
a vector field ξ along χ, let x(t) = Tχ(t)πB(ξ(t)) and ν(t) = ζ̇(t), where
ver(ξ(t)) = ζ(t)X(χ(t)). Then the pair (ξ, u) is a controlled trajectory for the
linearization of Σ along (χ, 0) if and only if
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hlftχ(t)(ẍ(t)) + ν̇(t)X(χ(t)) = −G] ◦ HessV ]X(hlftχ(t)(x(t)))

−
2〈dV (χ(t)); hlftχ(t)(ẋ(t))〉

‖X‖2G (χ(t))
X(χ(t))

+ hlftχ(t)(CX(ẋ(t))) + 2ν(t)gradV (χ(t))

+ G] ◦A[(hlftχ(t)(ẋ(t))) + ν(t)G] ◦A[ ◦X(χ(t)), (S3.6)

where b0 = πB(χ(0)).

Proof. As in Proposition 5.64(ii),
G

∇XX = − 1
2grad ‖X‖2G. Therefore,

G

∇XX + gradV = grad(V − 1
2 ‖X‖

2
G) = gradVX .

By Theorem 6.56(i), for each t ∈ R, gradVX(χ(t)) = 0. Using this fact, it is
straightforward (e.g., using coordinates) to show that

G

∇(gradVX)(χ(t)) = G](χ(t)) ◦ HessV [X(χ(t)).

Furthermore, since VX is X-invariant, for any x ∈ Tb0B, we have

G](χ(t)) ◦ HessV [X(χ(t))(hlftχ(t)(x))

= hlftχ(t)(G]
B(b0) ◦ Hess(VX)]B(b0)(x)).

For a vertical tangent vector vχ(t) ∈ Vχ(t)Q we have

G

∇(gradVX)(vχ(t)) = 0,

using the fact that gradVX(χ(t)) = 0 and using X-invariance of VX . Summa-
rizing the preceding computations is the following formula for a vector field ξ
along χ:

G

∇(
G

∇XX + gradV )(ξ(t)) = hlftχ(t)

(
G]

B(b0) ◦ Hess(VX)[B(b0)(TπB(ξ(t)))
)
.

(S3.7)
Now let ξ be a vector field along χ and let Ξ be a vector field extending ξ.

Since X(χ(t)) = χ′(t), we have, using the definition of the curvature tensor,

G

∇2
χ′(t)ξ(t) +R(ξ(t), χ′(t))χ′(t)

=
G

∇X

G

∇XΞ(χ(t)) +
G

∇Ξ

G

∇XX(χ(t))−
G

∇X

G

∇ΞX(χ(t))−
G

∇[Ξ,X]X(χ(t)).

A straightforward manipulation, using the fact that
G

∇ has zero torsion, gives
G

∇X

G

∇XΞ+
G

∇Ξ

G

∇XX−
G

∇X

G

∇ΞX−
G

∇[Ξ,X]X =
G

∇Ξ

G

∇XX+2
G

∇[X,Ξ]X+[X, [X,Ξ]].
(S3.8)

Around a point χ(t0) ∈ image(χ), let (U, φ) be coordinates with the following
properties:
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1. X = ∂
∂qn ;

2. ((q1, . . . , qn−1), (qn)) are fiber bundle coordinates for πB : Q → B;
3. for any point χ(t) ∈ U, the basis { ∂

∂q1 (χ(t)), . . . , ∂
∂qn (χ(t))} for Tχ(t)Q is

G-orthogonal.
In these coordinates one readily determines that

[X,Ξ](χ(t)) = ξ̇i(t)
∂

∂qi
, [X, [X,Ξ]](χ(t)) = ξ̈i(t)

∂

∂qi
(S3.9)

for all values of t for which χ(t) ∈ U. In these coordinates it also holds that

hlftχ(t)
∂

∂qa
(b0) =

∂

∂qa
(χ(t)), a ∈ {1, . . . , n− 1}. (S3.10)

Therefore, if ξ is as above and if x(t) = TπB(ξ(t)), then we have

2
G

∇X([X,Ξ](χ(t))) = 2
( G

∇hlftχ(t)(ẋ(t))X(χ(t))
)

+ 2
G

∇X(ver([X,Ξ])(χ(t)))

= − hlftχ(t)(CX(ẋ(t))) + 2ver(
G

∇X(hlftχ(t)(ẋ(t))))

+ 2
G

∇X(ver([X,Ξ])(χ(t)))

= − hlftχ(t)(CX(ẋ(t))) + 2
G

∇X(ver([X,Ξ])(χ(t)))

+
2X(χ(t))
‖X‖2G (χ(t))

G(
G

∇X(hlftχ(t)(ẋ(t))), X(χ(t)))

= − hlftχ(t)(CX(ẋ(t))) + 2
G

∇X(ver([X,Ξ])(χ(t)))

− 2X(χ(t))
‖X‖2G (χ(t))

G(
G

∇XX(χ(t)),hlftχ(t)(ẋ(t)))

= − hlftχ(t)(CX(ẋ(t))) + 2
G

∇X(ver([X,Ξ])(χ(t)))

+
2X(χ(t))
‖X‖2G (χ(t))

〈dV (χ(t)); hlftχ(t)(ẋ(t))〉, (S3.11)

using the fact that
G

∇XX = gradVX − gradV , and that dVX(χ(t)) = 0 for all
t ∈ R. Also,

hlftχ(t)(ẍ(t)) = hor([X, [X,Ξ]](χ(t))), t ∈ R. (S3.12)

In the coordinates (q1, . . . , qn), one also computes

G

∇X =
G

Γinj
∂

∂qi
⊗ dqj ,

from which we ascertain that
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2
G

∇X(ver([X,Ξ])(χ(t))) = 2
G

Γinnξ̇
n ∂

∂qi
,

where no summation is intended over the index “n.” One readily verifies that,
in our coordinates,

G

Γinn
∂

∂qi
=

G

∇XX = gradVX − gradV.

Since dVX(χ(t)) = 0, we have

2
G

∇X(ver([X,Ξ])(χ(t))) = −2ver([X,Ξ](χ(t)))gradV (χ(t)). (S3.13)

We also clearly have, by definition of LX,χ,

ξ̇n(t)
∂

∂qn
= ver(LX,χ(ξ(t))), (S3.14)

where no summation is intended over “n.”
To simplify the terms involving the external force, we note that

G

∇ξ(t)(G] ◦A[(X(χ(t)))) = (
G

∇ξ(t)(G] ◦A[))(X(χ(t))) + G] ◦A[(∇ξ(t)X(χ(t))).

Thus, using the fact that
G

∇ is torsion-free, we have

−
G

∇ξ(t)(G] ◦A[ ◦X)(χ(t)) + (
G

∇ξ(t)(G] ◦A[))(χ′(t))

+ G] ◦A[(
G

∇χ′(t)ξ(t)) = G] ◦A[([X,Ξ](χ(t))).

Using (S3.9) and (S3.10) we arrive at

−
G

∇ξ(t)(G] ◦A[ ◦X)(χ(t)) + (
G

∇ξ(t)(G] ◦A[))(χ′(t))

+ G] ◦A[(
G

∇χ′(t)ξ(t)) = G] ◦A[(hlftχ(t)(ẋ(t))) + ξ̇nG] ◦A[(X(χ(t))),
(S3.15)

where x(t) = Tχ(t)πB(ξ(t)).
Finally, for a vector field ξ along χ, let x(t) = TπB(ξ(t)) and let ν(t)X(t) =

ver(LX,χ(ξ)). In terms of our coordinates above, ν(t) = ξ̇n(t). One now
combines equations (S3.7), (S3.8), (S3.9), (S3.11), (S3.12), (S3.13), (S3.14)
and (S3.15) to get the result. �

Remark S3.12. The preceding theorem is not very obvious; in particular,
the equivalence of equations (S3.5) and (S3.6) is not transparent. Indeed,
the relationship between the curvature tensor and the components of the
system that appear in the theorem statement, C, Hess(VX), and gradV , is
rather subtle. In this respect, the proof of the theorem bears study, if these
relationships are to be understood. •
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S3.1.4 Linearization of the reduced equations along a relative
equilibrium

We again consider a C∞-forced simple mechanical control system Σ =
(Q,G, V, F,F ,Rm) satisfying Assumption S3.10, take X to be a complete
infinitesimal symmetry for Σ, ask that πB : Q → B be a surjective submersion,
and let χ be a relative equilibrium. In this section we provide the form of the
linearization along a relative equilibrium by linearizing, in the usual manner,
the reduced equations, which we reproduce here for convenience:

GB

∇η′(t)η
′(t) = −gradB

(
V eff
X,v(t)

)
B
(η(t)) + v(t)CX(η′(t))

+ TπB ◦G] ◦A[
(
γ′(t)−X(γ(t))

)
+ YB,u(t, η(t)),

v̇(t) = −
v(t)〈d(‖X‖2G)B(η(t)); η′(t)〉

(‖X‖2G)B(η(t))
+
〈A[(γ′(t)−X(γ(t)));X(γ(t))〉

(‖X‖2G)B(η(t))

+
G(Yu(t, γ(t)), X(γ(t)))

(‖X‖2G)B(η(t))
.

(S3.16)
Here (γ, u) is a controlled trajectory for Σ, η = πB ◦γ, and v is defined by
ver(γ′(t)) = v(t)X(γ(t)).

The reduced equations are straightforward to linearize, since we are merely
linearizing about an equilibrium point. To compactly state the form of the
linearization requires some notation. Define a (1, 1)-tensor field AB on B by

AB(vb) = TqπB ◦G](q) ◦A[(q) ◦hlftq(vb),

for q ∈ π−1
B (b). This definition can be shown to be independent of the choice

of q ∈ π−1
B (b) by virtue of the X-invariance of A. Define a vector field aB on

B by
aB(b) = TqπB ◦G](q) ◦A[(q)(X(q)),

where q ∈ π−1
B (b), and again this definition can be shown to be well-defined.

Finally, define a covector field αB on B by

〈αB(b); vb〉 =
〈A[(hlftq(vb));X(q)〉

(‖X‖2G)B(b)
,

where q ∈ π−1
B (b) and vq ∈ TqQ. This definition, too, is independent of the

choice of q and vq.
We may now state the form of the linearization of the reduced equations.

Proposition S3.13 (Linearization of relative equilibrium after reduc-
tion). Let Σ = (Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical control
system, let X be a complete infinitesimal symmetry of Σ for which the pro-
jection πB : Q → B onto the set of X-orbits is a surjective submersion, and
let χ be a regular relative equilibrium with b0 = πB ◦χ(0).
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The linearization of equations (S3.16) about (0b0 , 1) is the linear control
system (Tb0B⊕ Tb0B⊕ R, AΣ(b0), BΣ(b0)), where

AΣ(b0) =

 0 idTb0B

−GB(b0)] ◦ Hess(VX)B(b0)[ CX(b0) +AB(b0)
0 −2 dVB(b0)

(‖X‖2G)B(b0)
+ αB(b0)

0
2gradBVB(b0) + aB(b0)

〈A[(X(q0));X(q0)〉
(‖X‖2G)B(b0)

 ,
BΣ(b0) =

 0
BΣ,2(b0)
BΣ,3(b0)

 ,
where BΣ,2(b0) ∈ L(Rm;Tb0B) is defined by

BΣ,2(b0)(u) =
m∑
a=1

uaYB,a(b0),

and where BΣ,3(b0) ∈ L(Rm; R) is defined by

BΣ,3(b0)(u) =
m∑
a=1

ua
G(Ya(χ(0)), X(χ(0)))

(‖X‖2G)B(b0)
.

Proof. Let us outline the computations that can be used to prove the result.
For convenience, we break down AΣ(b0) into nine entries which we call the
(i, j)th entry, i, j ∈ {1, 2, 3}, based on the block form of AΣ(b0). To linearize
the equations (S3.16) we use three curves. The first curve is on Z(TB), we
denote it by η1, and we require that η1(0) = 0b0 and η′1(0) = vb0 ⊕ 0b0 . The
second curve we use is a curve t 7→ η2(t) on Tb0B for which η2(0) = 0b0 and for
which η′2(0) = 0b0⊕vb0 ∈ Tb0B⊕Tb0B. In defining η1 and η2 we have used the
identification of T0b0

TB with Tb0B⊕Tb0B as given in Lemma 6.33. The third
curve is on R, and is defined by t 7→ v(t) = 1 + t. During the course of the
proof, η1(t), η2(t), and v(t) will always be taken to be so defined. Following
the same arguments leading to Proposition 6.37, we arrive at the following
conclusions.
1. The (1, 1), (1, 2), and the (1, 3) entries are directly verified to have the

stated form.
2. One computes

d
dt

∣∣∣
t=0

gradB

(
V eff
X,1

)
B
(η1(t)) = vb0 ⊕ 0b0 ,

d
dt

∣∣∣
t=0

gradB

(
V eff
X,1

)
B
(η2(t)) = 0b0 ⊕G(b0)] ◦ (VX)B(b0)[,

d
dt

∣∣∣
t=0

gradB

(
V eff
X,v(t)

)
B
(b0) = 0b0 ⊕ (−2gradBVB(b0)),



S3.1 Linearization along relative equilibria S67

where we use the fact that V eff
X,λ = V (q)− λ2

2 ‖X‖2G and that (VX)B has a
critical point at b0.

3. One computes

d
dt

∣∣∣
t=0

CX(η1(t)) = vb0 ⊕ 0b0 ,

d
dt

∣∣∣
t=0

CX(η2(t)) = 0b0 ⊕ CX(vb0),

d
dt

∣∣∣
t=0

v(t)CX(0b0) = 0b0 ⊕ 0b0 .

This gives the first term in the (2, 2) entry of AΣ(b0).
4. Let q0 ∈ π−1

B (b0). Let γ1 be the curve on Z(TQ) satisfying γ1(0) = 0q0
and with tangent vector field γ′1(t) = hlftγ1(t)(η

′
1(t))−X(γ1(t)), where we

make the identification of Z(TB) with B and of Z(TQ) with Q. Let γ2 be
the curve on Tq0Q with γ2(0) = 0q0 and with γ′2(t) = hlftq0(η

′
2(t))−X(q0).

Finally, let γ3 be the curve in Q satisfying γ3(0) = q0, and with tangent
vector field γ′3(t) = v(t)X(γ3(t)). To simplify notation, let Ã : TQ → TB
be the vector bundle map over πB defined by Ã = TπB ◦G] ◦A[. We then
compute

d
dt

∣∣∣
t=0

Ã(γ1(t)−X ◦πTQ(γ1(t))) = vb0 ⊕ 0q0 ,

d
dt

∣∣∣
t=0

Ã(γ2(t)−X ◦πTQ(γ2(t))) = 0b0 ⊕
(
Tq0πB ◦G](q0) ◦A[(q0) ◦hlftq0(vb0)

)
,

d
dt

∣∣∣
t=0

Ã(γ′3(t)−X(γ3(t))) = 0b0 ⊕
(
Tq0πB ◦G](q0) ◦A[(q0)(X(q0))

)
.

This computation can be done directly using the coordinates (q1, . . . , qn)
introduced in the proof of Theorem S3.11. It gives the second parts of the
(2, 2) and the (2, 3) entry in AΣ(b0).

5. We compute

d
dt

∣∣∣
t=0

〈d(‖X‖2G)B(πTB ◦η1(t)); η1(t)〉
(‖X‖2G)B(πTB ◦η1(t))

= vb0 ⊕ 0b0 ,

d
dt

∣∣∣
t=0

〈d(‖X‖2G)B(b0); η2(t)〉
(‖X‖2G)B(b0)

= 0b0 ⊕
(
−2

〈dVB(b0); vb0〉
(‖X‖2G)B(b)

)
,

d
dt

∣∣∣
t=0

〈v(t)d(‖X‖2G)B(b0); 0b0〉
(‖X‖2G)B(b0)

= 0b0 ⊕ 0b0 ,

using the fact that VX = V − 1
2 ‖X‖

2
G, and that b0 is a critical point for

VX . This gives the (3, 2) entry of AΣ(b0).
6. Let q0 ∈ π−1

B (b0) and define curves γi, i ∈ {1, 2, 3}, as in step 4 of the
proof. We compute
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d
dt

∣∣∣
t=0

〈A[(γ1(t)−X ◦πTQ(γ1(t)));X(πTQ ◦γ1(t))〉
(‖X‖2G)B(πTB ◦η1(t))

= vq0 ⊕ 0q0 ,

d
dt

∣∣∣
t=0

〈A[(γ2(t)−X ◦πTQ(γ2(t)));X(q0)〉
(‖X‖2G)B(b0)

=
〈A[(hlftq0(vb0));X(q0)〉

(‖X‖2G)B(b0)
,

d
dt

∣∣∣
t=0

〈A[(γ′3(t)−X(γ3(t)));X(γ3(t))〉
(‖X‖2G)B(b0)

=
〈A[(X(q0));X(q0)〉

(‖X‖2G)B(b0)
,

so giving the (3, 3) entry in AΣ(q0).
The linearization of the input vector fields is readily verified to give the stated
form for BΣ(b0), and this concludes the proof. �

The equations governing controlled trajectories for the linearization of the
reduced system are

ẍ(t) = −GB(b0)] ◦ Hess(VX)B(b0)[(x(t)) + CX(b0)(ẋ(t))
+ 2ν(t)gradBVB(b0) +AB(b0)(ẋ(t)) + ν(t)aB(b0) +BΣ,2(b0) · u(t),

ν̇(t) = − 2
〈dVB(b0); ẋ(t)〉
(‖X‖2G)B(b0)

+ αB(b0)(ẋ(t))

+ ν(t)
〈A[(X(q0));X(q0)〉

(‖X‖2G)B(b0)
+BΣ,3(b0) · u(t).

The following result gives the relationship between the reduced and the
unreduced linearization.

Theorem S3.14 (Relationship between linearization before and after
reduction). Let Σ = (Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical
control system with F satisfying Assumption S3.10, let X be a complete in-
finitesimal symmetry of Σ for which the projection πB : Q → B onto the set of
X-orbits is a surjective submersion, and let χ be a regular relative equilibrium
with b0 = πB ◦χ(0).

For a curve t 7→ x(t) ∈ Tb0B, a vector field ξ along χ, a function ν : R →
R, and a locally integrable control t 7→ u(t), the following statements are
equivalent:

(i) t 7→ (x(t)⊕ẋ(t)⊕ν(t), u(t)) is a controlled trajectory for the linearization
of the equations (S3.16) about (0b0 , 1), hor(ξ(t)) = hlftχ(t)(x(t)), and
ν(t) = ζ̇(t), where ver(ξ(t)) = ζ(t)X(χ(t));

(ii) (ξ, u) is a controlled trajectory for the linearization of Σ about (χ, 0),
x(t) = TπB(ξ(t)), and ν(t) = ζ̇(t), where ver(ξ(t)) = ζ(t)X(χ(t)).

Proof. This follows easily from Theorem S3.11 and Proposition S3.13. �

The theorem is an important one, since it will allow us to switch freely
between the reduced and unreduced linearizations. In some cases, it will be
convenient to think of certain concepts in the unreduced setting, while com-
putations are more easily performed in the reduced setting.
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S3.2 Linearized effective energies

In many of the existing results concerning stability of relative equilibria, a
central role is played by Hessian of the energy. This is a consequence of the
fact that definiteness of the Hessian, restricted to certain subspaces, can easily
deliver stability results in various forms. In this section we study the Hessian
of the effective energy for a relative equilibria. In particular, we consider the
interplay of the various natural energies with the reduction process and with
linearization. Specifically, we spell out the geometry relating the processes of
linearization and reduction.

S3.2.1 Some geometry associated to an infinitesimal isometry

The utility of the constructions in this section may not be immediately ap-
parent, but will become clear in Proposition S3.20 below.

In this section we let (Q,G) be a Riemannian manifold with X an infinites-
imal isometry satisfying Assumption 5.78. We denote by TTQX the restriction
of the vector bundle πTTQ : TTQ → TQ to image(X). Thus TTQX is a vec-
tor bundle over image(X) whose fiber at X(q) is TX(q)TQ. We denote this
fiber by TTQX,X(q). In like manner, HTQX and VTQX denote the restrictions
of HTQ and TQ, respectively, to image(X). The Ehresmann connection on

πTQ : TQ → Q, defined by
G

∇ as in Section S1.3.6, gives a splitting of each
fiber of TTQX as

TTQX,X(q) = HTQX,X(q) ⊕ VTQX,X(q).

This gives a vector bundle isomorphism σX : TTQX → HTQX ⊕ VTQX . De-
note by ΠB : TQ → TQ/R the projection onto the set of XT -orbits. We let
φB : TQ → TB× R be defined by

φB(wq) = (TπB(wq), νX(wq)),

where νX(wq) is defined by ver(vq) = νX(vq)X(q). Note that φB ◦X(q) =
(0πB(q), 1). Indeed, one can easily see that φB,X , φB|image(X) : image(X) →
Z(TB)× {1} is a surjective submersion. We next define a vector bundle map
ψB : TTQ → T(TB×R) over φB by ψB = TφB. We denote ψB,X = ψB|TTQX ,
noting that this is a surjective vector bundle map from TTQX to the restricted
vector bundle T(TB×R)|(Z(B)×{1}). Next we wish to give a useful description
of the vector bundle T(TB×R)|(Z(B)×{1}). We think of TB×R as a vector
bundle over B×R, and we let RB×R be the trivial vector bundle (B×R)×R
over B × R. We then note that T0b

TB ' Tb ⊕ TbB, as in Lemma 6.33. Thus
we have a natural identification

T(TB× R)|(Z(B)× {1}) ' (TB× R)⊕ (TB× R)⊕ RB×R (S3.17)

of vector bundles over Z(TB)×{1} ' B×{1}. The fiber over (b, 1) is isomor-
phic to TbB ⊕ TbB ⊕ R. We shall implicitly use the identification (S3.17)
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in the sequel. Next, we define a vector bundle map ιB : HTQ ⊕ VTQ →
(TB× R)⊕ (TB× R)⊕ RB×R by

ιB(uvq
⊕ wvq

) =
(
TqπB(uvq

), TqπB(wvq
−

G

∇X(uvq
)), νX(wvq

−
G

∇X(uvq
))

)
.

We then let ιB,X be the restriction of ιB to HTQX ⊕ VTQX .
The following result summarizes and ties together the above constructions.

Lemma S3.15. The following statements hold:
(i) σX is a vector bundle isomorphism over idimage(X) from TTQX to

HTQX ⊕ VTQX ;
(ii) φB,X is a surjective submersion from image(X) to B× {1};
(iii) ψB,X is a surjective vector bundle map over φB,X from TTQX to (TB×

R)⊕ (TB× R)⊕ RB×R;
(iv) ιB,X is a surjective vector bundle map over φB,X from HTQX ⊕ VTQX

to (TB× R)⊕ (TB× R)⊕ RB×R;
(v) the following diagram commutes:

TTQX
σX //

ψB,X ))TTTTTTTTTTTTTTT HTQX ⊕ VTQX

ιB,Xttiiiiiiiiiiiiiiiii

(TB× R)⊕ (TB× R)⊕ RB×R

Proof. This is most easily proved in an appropriate set of coordinates. Take
coordinates (q1, . . . , qn) for Q with the following properties:

1. X = ∂
∂qn ;

2. for times t for which χ(t) is in the chart domain, { ∂
∂q1 (χ(t)), . . . , ∂

∂qn (χ(t))}
is an orthogonal basis for Tχ(t)Q.

This means that (q1, . . . , qn−1) are coordinates for B. These also form, there-
fore, coordinates for Z(TB) and thus also for Z(TB) × {1}. Since a typical
point in image(X) has the form

((q1, . . . , qn), (0, . . . , 0, 1))

in natural coordinates for TQ, we can use (q1, . . . , qn) as coordinates for
image(X). We denote natural coordinates for TTQ by ((q,v), (u,w)). Then
(q,u,w) form a set of coordinates for TTQX .

The map φB from TQ to TB× R has the form

((q1, . . . , qn), (v1, . . . , vn)) 7→ ((q1, . . . , qn−1), (v1, . . . , vn−1), vn).

In the coordinates for image(X) and for Z(TB)× {1}, the map φB,X has the
form

(q1, . . . , qn) 7→ (q1, . . . , qn−1).
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The coordinate form of ψB is then

(((q1, . . . , qn), (v1, . . . , vn)), ((u1, . . . , un), (w1, . . . , wn)))

7→ (((q1, . . . , qn−1), (v1, . . . , vn−1), vn), ((u1, . . . , un−1), (w1, . . . , wn−1), wn))

and the coordinate form for ψB,X is given by

((q1, . . . , qn), (u1, . . . , un), (w1, . . . , wn))

7→ ((q1, . . . , qn−1), (u1, . . . , un−1), (w1, . . . , wn−1), wn) (S3.18)

In coordinates, the map σX is given by

((q1, . . . , qn), (u1, . . . , un), (w1, . . . , wn))

7→ ((q1, . . . , qn), (u1, . . . , un), (w1 +
G

Γinju
j , . . . , wn +

G

Γnnju
j)).

Finally, in our above coordinates, the form of the map ιB,X is

((q1, . . . , qn), (u1, . . . , un), (w1, . . . , wn))

7→ ((q1, . . . , qn−1), (u1, . . . , un), (w1−
G

Γ1
nju

j , . . . , wn−1−
G

Γn−1
nj wj), wn−

G

Γnnju
j).

All statements in the statement of the lemma follow directly from the preced-
ing coordinate computations. �

We shall see in Proposition S3.20 that ιB,X relates two natural energies
associated to a relative equilibrium.

S3.2.2 The effective energies and their linearizations

We let Σ = (Q,G, V, F ) be a C∞-simple mechanical system with X a com-
plete infinitesimal symmetry for Σ satisfying Assumption 5.78. First recall
from (6.17) that the effective energy for a forced simple mechanical system
Σ = (Q,G, V, F ) with complete infinitesimal symmetry X is

EX(vq) = 1
2 ‖vq −X(q)‖2G + VX(q),

where VX = V − 1
2 ‖X‖

2
G is the effective potential. The relative equilibria for

Σ are then characterized by the critical points of EX , as in part (i) of Theo-
rem 6.56. As we shall see in Section S3.3, the Hessian of the effective energy at
such critical points is useful for determining the stability of the corresponding
relative equilibrium. The following result characterizes this Hessian in terms

of the splitting of the fibers of TTQ using
G

∇.
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Lemma S3.16 (Hessian of effective energy). Let Σ = (Q,G, V, F ) be
a C∞-forced simple mechanical system and let X be a complete infinitesi-
mal symmetry for Σ. Let vq be a critical point for the effective energy and

let TqQ ⊕ TqQ be the splitting of Tvq
TQ associated with

G

∇, as described in
Section S1.3.6. Then

HessEX(u1⊕w1, u2⊕w2) = G(w1−
G

∇u1X(q), w2−
G

∇u2X(q))+HessVX(u1, u2).

Proof. This is a messy, but straightforward, proof in coordinates. �

With this as background, we make the following definition, recalling the
notation uvq

⊕wvq
to denote a point in Tvq

TQ relative to the splitting defined

by
G

∇.

Definition S3.17 (Linearized effective energy). Let Σ = (Q,G, V, F ) be
a C∞-forced simple mechanical system, let X be a complete infinitesimal
isometry for Σ, and let χ be a relative equilibrium. The linearized effective
energy is the function on TTQ|image(χ′) defined by

Eχ(uvq
⊕ wvq

) = 1
2‖wvq

−
G

∇uvq
X‖2G + 1

2 HessVX(uvq
, uvq

),

where vq = χ′(0). •

Next we consider the linearized effective energy, but now for the reduced
system. To do so, we assume that πB : Q → B is a surjective submersion, as
in Assumption 5.78. The effective energy EX is X-invariant and so drops to
TQ/R ' TB×R. During the course of the proof of Theorem 6.56, we further
explicitly computed this “reduced effective energy,” denoted here by Ered

X , as

Ered
X (wb, v) = 1

2GB(wb, wb) + (VX)B(b) + 1
2 (‖X‖2G)B(b)(v − 1)2.

It then makes sense that the “reduced linearized effective energy” should be
the Hessian of this function at a critical point, which corresponds, as we have
seen, to a relative equilibrium. The following result records the form of the
Hessian.

Lemma S3.18. Let Σ = (Q,G, V, F ) be a C∞-forced simple mechanical sys-
tem, let X be a complete infinitesimal symmetry for Σ satisfying Assump-
tion 5.78, and let (0b, 1) ∈ TB× R be a critical point for Ered

X . Then

HessEred
X (0b, 1)(u1 ⊕ v1 ⊕ ν1, u2 ⊕ v2 ⊕ ν2)

= GB(b)(v1, v2) + Hess(VX)B(b)(u1, u2) + (‖X‖2G)B(b)ν1ν2.

Proof. This is a straightforward computation. �

Based on this computation, let us make the following definition.
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Definition S3.19 (Reduced linearized effective energy). Let Σ =
(Q,G, V, F ) be a C∞-forced simple mechanical system, let X be a complete
infinitesimal isometry for Σ satisfying Assumption 5.78, and let b0 = πB(χ(0)).
The reduced linearized effective energy is the function on Tb0B⊕Tb0B⊕R
defined by

Ered
χ (ub0 , vb0 , ν) = 1

2 ‖vb0‖
2
GB

+ 1
2 Hess(VX)B(b0)(ub0 , ub0) + 1

2 (‖X‖2G)B(b0)ν2.
•

The preceding definition of the reduced linearized effective energy is ob-
tained by “reducing” the effective energy, and then “linearizing” it. It should
be possible to perform the operations in the opposite order to get to the
same answer. To do this explicitly, we use the constructions of the preceding
section. In particular, we use the vector bundle map ιB,X . As the following
result indicates, one should think of this map as describing how the process of

linearization is reduced when using the Ehresmann connection defined by
G

∇.

Proposition S3.20 (Relating the linearized effective energies). Let
Σ = (Q,G, V, F ) be a C∞-forced simple mechanical system with X a com-
plete infinitesimal symmetry satisfying Assumption 5.78. If χ is a regular
relative equilibrium, then ιB,X(χ′(t))∗Ered

χ = Eχ for all t ∈ R.

Proof. Let q = χ(t) and let b = πB(q). We compute

ιB,X(χ′(t))∗Ered
χ (uvq

⊕ wvq
) = 1

2‖TqπB(wvq
−

G

∇X(uvq
))‖2GB

+ 1
2 (‖X‖2G)B(ν(wvq

−
G

∇X(uq)))
+ 1

2 Hess(VX)B(b)(TqπB(ub), TqπB(ub))

= 1
2‖hor(wvq

−
G

∇X(uvq
))‖2G + ‖ver(wvq

−
G

∇X(uvq
))‖2G

+ 1
2 HessVX(q)(uvq

, uvq
),

as desired. �

S3.3 Linear stability of relative equilibria

In the text, we did not discuss linear stability of relative equilibria. Since we
will be performing stabilization using linear methods, we now present this
linear theory.

S3.3.1 Definitions and alternative characterizations

We let Σ = (Q,G, V, F ) be a C∞-forced simple mechanical system where the
force F satisfies Assumption S3.10, with X a complete infinitesimal symme-
try for the system, and with χ : R → Q a regular relative equilibrium. First
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we need a definition for linear stability of a relative equilibrium. The defini-
tion relies on the linearization along the relative equilibrium, which, from the
developments of Section S3.1, satisfies an initial value problem of the form

G

∇2
χ′(t)ξ(t) +R(ξ(t), χ′(t))χ′(t)

= −
G

∇ξ(t)(gradV )(χ(t))−
G

∇ξ(t)(G] ◦A[ ◦X)(χ(t))

+ (
G

∇ξ(t)(G] ◦A[))(χ′(t)) + G] ◦A[(
G

∇χ′(t)ξ(t)),

ξ(0) = ξ0, LX,χ(ξ)(0) = vξ,0. (S3.19)

Remarks S3.21. 1. Note that it is immaterial that we specify the initial
condition at t = 0 due to X-invariance of the system.

2. Also note that we can specify the initial derivative condition for ξ by spec-

ifying
G

∇χ′(0)ξ(0). Since both LX,χ and
G

∇χ′ are differential operators in

TQ along χ, LX,χ(ξ)(t)−
G

∇χ′(t)ξ(t) depends only on ξ(t). Thus specifying

ξ(0) and LX,χ(ξ)(0) is equivalent to specifying ξ(0) and
G

∇χ′(0)ξ(0). For
our purposes, it is more convenient to specify the derivative initial condi-
tion in terms of LX,χ(ξ)(0). •

We may now state our stability definitions.

Definition S3.22 (Linear stability of relative equilibria). Let Σ =
(Q,G, V, F ) be a C∞-forced simple mechanical system with F satisfying As-
sumption S3.10, with X a complete infinitesimal symmetry for Σ, and with
χ : R → Q a relative equilibrium. For a vector field ξ along χ, let ν(t) = ζ̇(t),
where ver(ξ(t)) = ζ(t)X(χ(t)).

(i) The relative equilibrium χ is linearly base (resp. fiber) stable if
there exists M > 0 such that the solution t 7→ ξ(t) to the initial
value problem (S3.19) satisfies ‖hor(ξ(t))‖G + ‖LX,χ(hor(ξ))(t)‖G ≤
M(‖hor(ξ0)‖G + ‖vξ,0‖G) (resp. |ν(t)| ≤M(‖hor(ξ0)‖G + ‖vξ,0‖G)).

(ii) The relative equilibrium χ is linearly asymptotically base
(resp. fiber) stable if each solution t 7→ ξ(t) to the initial value prob-
lem (S3.19) satisfies limt→∞(‖hor(ξ(t))‖G + ‖LX,χ(hor(ξ))(t)‖G) = 0
(resp. limt→∞ ν(t) = 0). •

Let us now give the relationship between these definitions of linear stability
and the linear stability of the reduced system. To do this, let us write the
equations governing the reduced linearization, following Proposition S3.13:

ẍ(t) = −GB(b0)] ◦ Hess(VX)B(b0)[(x(t)) + CX(b0)(ẋ(t))
+ 2ν(t)gradBVB(b0) + FB(b0)(ẋ(t)) + ν(t)fB(b0),

ν̇(t) = − 2
〈dVB(b0); ẋ(t)〉
(‖X‖2G)B(b0)

+ αB(b0)(ẋ(t)) + ν(t)
〈A[(X(q0));X(q0)〉

(‖X‖2G)B(b0)
,

(S3.20)
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where we adopt the notation for FB, fB, and αB as given before the statement
of Proposition S3.13.

Proposition S3.23 (Base characterization of linear stability of rel-
ative equilibria). Let Σ = (Q,G, V, F ) be a C∞-forced simple mechanical
system with F satisfying Assumption S3.10, with X a complete infinitesimal
symmetry for the system, and with χ : R → Q a regular relative equilibrium.
Suppose that the projection πB : Q → B onto the set of X-orbits is a surjective
submersion, and let b0 = πB(χ(0)). The following statements hold:

(i) χ is linearly base stable if and only if, for every solution t 7→ x(t) ⊕
ẋ(t)⊕ ν(t) of the equations (S3.20), the function R̄+ 3 t 7→ ‖x(t)‖GB(b0)

is bounded;
(ii) χ is linearly asymptotically base stable if and only if, for every solution

t 7→ x(t)⊕ ẋ(t)⊕ ν(t) of the equations (S3.20), limt→∞ ‖x(t)‖GB(b0)
= 0;

(iii) χ is linearly fiber stable if and only if, for every solution t 7→ x(t) ⊕
ẋ(t) ⊕ ν(t) of the equations (S3.20), the function R̄+ 3 t 7→ |ν(t)| is
bounded;

(iv) χ is linearly asymptotically fiber stable if and only if, for every solution
t 7→ x(t)⊕ ẋ(t)⊕ ν(t) of the equations (S3.20), limt→∞ |ν(t)| = 0.

Proof. Since the equations (S3.20) are linear, their solution has the form

x(t)⊕ ẋ(t)⊕ ν(t) = exp(AΣ(b0)t)(x(0)⊕ ẋ(0)⊕ ν(0)).

Let us abbreviate V = Tb0B⊕Tb0B⊕R, and define maps p1, p2, p3 ∈ L(V;V)
by

p1(ub0 ⊕ vb0 ⊕ ν) = ub0 ⊕ 0b0 ⊕ 0,
p2(ub0 ⊕ vb0 ⊕ ν) = 0b0 ⊕ vb0 ⊕ 0,
p3(ub0 ⊕ vb0 ⊕ ν) = 0b0 ⊕ 0b0 ⊕ ν.

Define a norm ‖·‖ on V by

‖ub0 ⊕ vb0 ⊕ ν‖ = ‖ub0‖GB(b0)
+ ‖vb0‖GB(b0)

+
ν2

(‖X‖2G)B(b0)
.

Due to the nature of exp(AΣ(b0)t) (its components are linear combinations
of products of polynomial, exponential, and trigonometric functions of t), the
function t 7→ ‖x(t)‖GB(b0)

is bounded if and only if

sup
{
|||p1 ◦ exp(AΣ(b0)t)||| | t ∈ R̄+

}
<∞,

where |||·||| is the operator norm (see Definition 3.15). Again due to the nature
of the components of exp(AΣ(b0)t), if t 7→ ‖x(t)‖GB(b0)

is bounded, then so
too is t 7→ ‖ẋ(t)‖GB(b0)

. Thus we have

sup
{
|||p2 ◦ exp(AΣ(b0)t)||| | t ∈ R̄+

}
<∞.
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Therefore, if t 7→ ‖x(t)‖GB(b0)
is bounded, it follows that, since x(t) =

p1 ◦ exp(AΣ(b0)t)(x(0) ⊕ ẋ(0) ⊕ ν(0)) and ẋ(t) = p2 ◦ exp(AΣ(b0)t)(x(0) ⊕
ẋ(0)⊕ ν(0)),

‖x(t)‖GB(b0)
+ ‖ẋ(t)‖GB(b0)

≤M1 ‖x(0)⊕ ẋ(0)⊕ ν(0)‖ , (S3.21)

for someM1 > 0. Conversely, if (S3.21) holds for every solution of (S3.20), then
it clearly holds that t 7→ ‖x(t)‖GB(b0)

is bounded for every solution of (S3.20).
Thus we have shown that t 7→ ‖x(t)‖GB(b0)

is bounded for every solution
of (S3.20) if and only if (S3.21) holds for every solution of (S3.20).

A similar argument can be used to show that t 7→ |ν(t)| is bounded for
every solution of (S3.20) if and only if the estimate

|ν(t)|
(‖X‖G)B(b0)

≤M2 ‖x(0)⊕ ẋ(0)⊕ ν(0)‖ (S3.22)

holds for every solution of (S3.20), for some M2 > 0.
Parts (i) and (iii) now follow from (S3.21), (S3.22), and Theorem S3.14,

along with the fact that the maps

Tb0B 3 ub0 7→ hlftχ(t)(ub0) ∈ Hχ(t)Q,

Tb0B⊕ R 3 vb0 ⊕ ν 7→ hlftχ(t)(vb0) + νX(χ(t)) ∈ Tχ(t)Q

are isometries. Part (ii) follows from Theorem S3.14, along with the fact that,
by properties of the components of exp(AΣ(b0)), limt→∞ ‖ẋ(t)‖GB(b0)

= 0 if
limt→∞ ‖x(t)‖GB(b0)

= 0. Part (iv) follows immediately from Theorem S3.14.
�

Remark S3.24. The definitions of base and fiber stability are examples of
what is sometimes called “partial stability” in more general contexts. With
this sort of stability, one is only interested in the behavior of some of the states
of the system. This is studied in the text [Vorotnikov 1998], and, in particular,
there one can find characterizations of partial stability of linear systems. •

S3.3.2 Sufficient conditions for linear stability of relative equilibria

Now let us give some natural sufficient conditions that we can use for the
stabilization theory we give in the sections to follow. These conditions should
be thought of as the linear analogue to the stability results of Section 6.3. As
such, they use the preceding two notions of linearized effective energies. In
this regard, the next result is the main result in this section.

Theorem S3.25 (Linear stability of relative equilibria). Let Σ =
(Q,G, V, F ) be a C∞-forced simple mechanical system, with X a complete in-
finitesimal symmetry for Σ satisfying Assumption 5.78, and with χ : R → Q
a regular relative equilibrium. Suppose that F (vq) = −R[diss(vq−X(q)), where
Rdiss is a Rayleigh dissipation function. For b0 = πB ◦χ(0), the following
statements hold:
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(i) χ is linearly base and fiber stable if Hess(VX)B(b0) is positive-definite;
(ii) χ is linearly asymptotically base stable and linearly asymptotically fiber

stable if Hess(VX)B(b0) is positive-definite and if Rdiss is positive-
definite.

Proof. Note that combined linear (asymptotic) base and fiber stability of χ is
equivalent to the linear (asymptotic) stability of the equilibrium point b0 for
the reduced system on TB×R. Therefore, in the proof, we shall check for the
stability in the reduced space, using the reduced linearized effective energy,
Ered
χ , as a candidate Lyapunov function. First note that, under the hypothesis

that Hess(VX)B(b0) is positive-definite, it follows that Ered
χ is positive-definite

about 0b ⊕ 0b ⊕ 0. Next, a straightforward computation, the details of which
we omit, shows that

dEred
χ

dt
(x(t)⊕ ẋ(t)⊕ ν(t)) = GB(ẋ(t), FB(b0)(ẋ(t))) + ν(t)GB(ẋ, fB(b0))

+ ν(t)(‖X‖2G)B(b0)αB(b0)(ẋ(t)) + ν(t)2〈A[(X(q0));X(q0)〉,

along a solution t 7→ x(t)⊕ẋ(t)⊕ν(t) to equations (S3.20), where q0 ∈ π−1
B (b0),

and where A is as in Assumption S3.10. One now can easily show that

GB(ẋ(t), FB(b0)(ẋ(t))) = A(hlftq0(ẋ(t)),hlftq0(ẋ(t))),
ν(t)GB(ẋ, fB(b0)) = A(ν(t)X(q0),hlftq0(ẋ(t))),

ν(t)(‖X‖2G)B(b0)αB(b0)(ẋ(t)) = A(hlftq0(ẋ(t)), ν(t)X(q0)).

These computations allow us to conclude that

dEred
χ

dt
(x(t)⊕ ẋ(t)⊕ ν(t))

= A(hlftq0(ẋ(t)) + ν(t)X(q0),hlftq0(ẋ(t)) + ν(t)X(q0)).

In part (i), A = −Rdiss is negative-semidefinite, and in part (ii), A = −Rdiss

is negative-definite, and the result then follows directly. �

Alternatively, one can check the hypotheses of the theorem using the lin-
earized effective energy. The following result contains the results of this tran-
scription.

Corollary S3.26 (Linear stability of relative equilibria using unre-
duced data). Let Σ = (Q,G, V, F ) be a C∞-forced simple mechanical sys-
tem, with X a complete infinitesimal symmetry for Σ satisfying Assump-
tion 5.78, and with χ : R → Q a regular relative equilibrium. Suppose that
F (vq) = −R[diss(vq − X(q)), where Rdiss is a Rayleigh dissipation function.
The following statements hold:

(i) χ is linearly base and fiber stable if HessVX(χ(t)) is positive-definite on
any (and so every) complement to spanR {X(χ(t))} for some (and so
for all) t ∈ R;
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(ii) χ is linearly asymptotically base stable and linearly asymptotically fiber
stable if HessVX(χ(t)) is positive-definite on any (and so every) com-
plement to spanR {X(χ(t))} for some (and so for all) t ∈ R, and if Rdiss

is positive-definite.

Remarks S3.27. 1. Note that since positive-definiteness of the Hessian of
(VX)B at b0 implies that b0 is an isolated local minimum for (VX)B, the
satisfaction of the hypotheses of Theorem S3.25 implies the satisfaction of
the hypotheses of Theorem 6.56.

2. The presence of gyroscopic forces in the reduced linearization makes it
difficult to draw the sharpest possible conclusions regarding linear stabil-
ity. This is to be contrasted with the linear stability of equilibrium points,
where, in Theorem 6.42, we are able to give much sharper stability condi-
tions in the presence of only dissipative forces.

3. In part (ii) of Theorem S3.25 we require that Rdiss be positive-definite.
As is the case with stability of equilibria for mechanical systems, this
hypothesis is stronger than required. When we discuss stabilization in
Theorems S3.41 and S3.47 below, we shall see that controllability of the
linearization is all that is required to achieve asymptotic stabilization. •

S3.4 Stabilization problems for relative equilibria

The problems one encounters for stabilization of relative equilibria are, of
course, similar to those one encounters for equilibria. However, the additional
structure of a base space and a symmetry direction make for more variants
of the sort of stability one can encounter (cf. Definitions 6.52 and S3.22), and
these should also be accounted for in the stabilization problems.

First let us characterize feedback for relative equilibria.

Definition S3.28 (Feedback for relative equilibria). Let Σ =
(Q,∇, V, F,D,F = {F1, . . . , Fm}, U) be a C∞-general simple mechanical con-
trol system for which F is time-independent, and letX be a complete infinites-
imal symmetry for Σ.

(i) A controlled relative equilibrium for Σ is a pair (χ, u0) where
(a) χ : R → Q is an integral curve of X and
(b) u0 ∈ U has the property that

G

∇χ′(t)χ
′(t) = −gradV (χ(t)) +

m∑
a=1

ua0G] ◦F a(χ(t)).

(ii) An X-invariant state feedback (resp. X-invariant time-
dependent state feedback) for Σ is a map u : TQ → U (resp. u : R̄+×
TQ → U) with the property that u ◦γ′(s) (resp. u(t, γ′(s))) is indepen-
dent of s for each integral curve γ of X.
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(iii) For an X-invariant state feedback (resp. X-invariant time-dependent
state feedback) u for Σ, the closed-loop system is the forced simple
mechanical control system with constraints defined by the 5-tuple Σcl =
(Q,G, V, Fcl,D), where

Fcl(vq) = F (vq) +
m∑
a=1

ua(vq)F a(q),

(
resp. Fcl(t, vq) = F (vq) +

m∑
a=1

ua(t, vq)F a(q)
)
.

(iv) For r ∈ Z+ ∪ {∞} ∪ {ω}, a state feedback (resp. time-dependent state
feedback) is Cr if the corresponding closed-loop system is of class Cr.

(v) For r ∈ Z+ ∪ {∞} ∪ {ω} and χ : R → Q an integral curve for X, a
state feedback is almost Cr about χ if there exists an X-invariant
neighborhood U of image(χ) such that the corresponding closed-loop
system is Cr on U \ {image(χ)}. •

Remark S3.29. Note that, for a controlled relative equilibrium, we take the
control to be constant. More generally, one could allow time-dependent con-
trols to maintain a relative equilibrium. However, the constant control has the
advantage that a controlled relative equilibrium corresponds to a controlled
equilibrium point for the reduced system. •

Note that we include constraints in the formulation here. Although rela-
tive equilibria, and therefore base and fiber stability, are not given in Defini-
tions 6.51 and 6.52 for systems with constraints, the modifications to those
definitions are straightforward. In particular, a relative equilibrium is still an
integral curve of X that is a solution of the equations of motion. The defini-
tions for stabilizability are as follows.

Definition S3.30 (Stabilization problems for relative equilibria). Let
Σ = (Q,∇, V, F,D,F = {F1, . . . , Fm}, U) be a C∞-general simple mechanical
control system for which F is time-independent, and let X be a complete
infinitesimal symmetry for Σ.

(i) A controlled relative equilibrium (χ, u0) is base (resp. fiber) stabi-
lizable by X-invariant state feedback (resp. stabilizable by X-
invariant time-dependent state feedback) if there exists an X-
invariant state feedback (resp. X-invariant time-dependent state feed-
back) u for Σ with the property that the closed-loop system has χ as a
base (resp. fiber) stable relative equilibrium.

(ii) A controlled relative equilibrium (χ, u0) is locally asymptotically base
(resp. fiber) stabilizable by X-invariant state feedback (resp. by
time-dependent state feedback) if there exists an X-invariant state
feedback (resp. X-invariant time-dependent state feedback) and an X-
invariant neighborhood U of image(χ) with the properties that
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(a) the closed-loop system leaves TU invariant, and
(b) the restriction of the closed-loop system to TU possesses χ as an

asymptotically base (resp. fiber) stable relative equilibrium.
(iii) A controlled relative equilibrium (χ, u0) is globally asymptotically

base (resp. fiber) stabilizable by X-invariant state feedback
(resp. by X-invariant time-dependent state feedback) if, in
part (vii), one can take U = Q. •

Remark S3.31. As was the case with stabilization of equilibrium points, we
shall use the language of “u base (resp. fiber) stabilizes the controlled
relative equilibrium (χ,0)” to mean that the closed-loop system with the
control u is base (resp. fiber) stable. Similar statements can be made, of course,
for local asymptotic stability. •

S3.5 Relative equilibrium stabilization

In this section we produce results for relative equilibria, mirroring those in
Sections 10.3 and 10.4 for equilibria. Before we give our stabilization results,
we first discuss how stabilization of the unreduced equations is related to sta-
bilization of the reduced equations. Since the latter case involves stabilization
of an equilibrium point, it is simpler to prove stability in this case.

S3.5.1 The relationship between reduced and unreduced
stabilization

In this section, we let Σ = (Q,G, V, F,F ,Rm) be a C∞-simple mechanical con-
trol system with F satisfying Assumption S3.10, X be a complete infinitesimal
symmetry for Σ satisfying Assumption 5.78, and (χ,0) be a regular controlled
relative equilibrium. We let b0 = πB(χ(0)), so that (0b0 , 1) is the equilibrium
point for the reduced equations

GB

∇η′(t)η
′(t) = −gradB

(
V eff
X,v(t)

)
B
(η(t)) + v(t)CX(η′(t))

+ TπB ◦G] ◦A[
(
γ′(t)−X(γ(t))

)
+ YB,u(t, η(t)),

v̇(t) = −
v(t)〈d(‖X‖2G)B(η(t)); η′(t)〉

(‖X‖2G)B(η(t))
+
〈A[(γ′(t)−X(γ(t)));X(γ(t))〉

(‖X‖2G)B(η(t))

+
G(Yu(t, γ(t)), X(γ(t)))

(‖X‖2G)B(η(t))
.

Let us denote by Σred the control-affine system on TB × R defined by these
equations. Let UB be a neighborhood of b0 in B, and note that UQ , π−1

B (UB)
is a neighborhood of χ that is X-invariant. Now let uB : TUB ×R → Rm be a
state feedback for Σred, and define uQ : TUQ → Rm by
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uQ(vq) = uB(TπB(vq), νX(vq)),

where νX(vq) ∈ R is defined by ver(vq) = νX(vq)X(q).
The following result says that uQ is an X-invariant state feedback, as

per Definition S3.28, and that stabilization of the reduced equations gives
stabilization of the unreduced equations.

Proposition S3.32 (Relative equilibrium stabilization using reduced
stabilization). Let Σ = (Q,G, V, F,F ,Rm) be a C∞-simple mechanical con-
trol system with F satisfying Assumption S3.10, X be a complete infinitesimal
symmetry for Σ satisfying Assumption 5.78, and (χ,0) a regular controlled
relative equilibrium. If uB and uQ are defined as above, then uQ is an X-
invariant state feedback for Σ. Furthermore, if uB is of class C∞, then the
following statements hold:

(i) if uB stabilizes the controlled equilibrium point ((0b0 , 1),0) for Σred, then
uQ base and fiber stabilizes the controlled relative equilibrium (χ,0);

(ii) if uB locally asymptotically stabilizes the controlled equilibrium point
((0b0 , 1),0) for Σred, then uQ locally asymptotically base and fiber sta-
bilizes the controlled relative equilibrium (χ,0).

Proof. First let us show that uQ is X-invariant. Let γ : R → UQ be an integral
curve of X lying in UQ. We then have

uQ(γ′(t)) = uB(TπB(γ′(t)), ν(t)) = uB(0b0 , 1) = uQ(γ′(0)),

using the fact that ver(γ′(t)) = X(γ(t)).
The second two statements in the proposition follow directly from the

definitions of base and fiber stability. �

One can refine the result by separately considering base and fiber stability.
However, the results we state below will be for joint base and fiber stability.
We therefore leave the refined statements to the reader.

On the basis of Proposition S3.32, the results we give in the remainder of
the section concern stabilization of the reduced system associated to a relative
equilibrium.

S3.5.2 Stabilization of linearization of reduced system

In Section 10.3, we developed the theory of potential shaping for linear sys-
tems, and then applied this to the stabilization of not necessarily linear sys-
tems in the case when their linearization satisfied the hypotheses needed for
linear stabilization. In this section, we carry out the same procedure, but now
for relative equilibria. As we shall see, the ideas do not translate verbatim,
as the extra structure of the relative equilibrium introduces some additional
complications.

Let us recall that the reduced system is governed by the equations
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GB

∇η′(t)η
′(t) = −gradB

(
V eff
X,v(t)

)
B
(η(t)) + v(t)CX(η′(t))

+ TπB ◦G] ◦A[
(
γ′(t)−X(γ(t))

)
+ YB,u(t, η(t)),

v̇(t) = −
v(t)〈d(‖X‖2G)B(η(t)); η′(t)〉

(‖X‖2G)B(η(t))
+
〈A[(γ′(t)−X(γ(t)));X(γ(t))〉

(‖X‖2G)B(η(t))

+
G(Yu(t, γ(t)), X(γ(t)))

(‖X‖2G)B(η(t))
.

Let us denote by Σred the control-affine system on TB × R defined by these
equations. The linearization of Σred about the equilibrium point (0b0 , 1) is
governed by the equations

ẍ(t) = −GB(b0)] ◦ Hess(VX)B(b0)[(x(t)) + CX(b0)(ẋ(t))
+ 2ν(t)gradBVB(b0) +AB(b0)(ẋ(t)) + ν(t)aB(b0) +BΣ,2(b0) · u(t),

ν̇(t) = − 2
〈dVB(b0); ẋ(t)〉
(‖X‖2G)B(b0)

+ αB(b0)(ẋ(t))

+ ν(t)
〈A[(X(q0));X(q0)〉

(‖X‖2G)B(b0)
+BΣ,3(b0) · u(t).

Let us denote by Σred,lin the linear system on Tb0B⊕Tb0B⊕R defined by these
equations. Recall the notation AΣ(b0) and BΣ(b0) from Proposition S3.13.

Let us give some definitions concerning the type of feedback we use to
stabilize Σred,lin. We first make some constructions concerning the control
forces F = {F 1, . . . , Fm}. For a ∈ {1, . . . ,m}, define a covector field F aB on
B by

〈F aB (b);wb〉 = 〈F a(q); hlftq(wb)〉,

for q ∈ π−1
B (b). Denote FB = {F 1

B , . . . , F
m
B }. Also define functions faB , a ∈

{1, . . . ,m}, on B by
faB(b) = 〈F a(q);X(q)〉,

for q ∈ π−1
B (b). Now define linear maps FB(b) ∈ L(Rm;T∗bB) and fB(b) ∈

L(Rm; R) by

FB(b) · u =
m∑
a=1

uaF aB (b), fB(b) · u =
m∑
a=1

uafaB(b).

With these definitions we have the following result that characterizes the linear
maps BΣ,2(b0) and BΣ,3(b0) that arise in Proposition S3.13.

Lemma S3.33. The following statements hold:
(i) BΣ,2(b0) = GB(b0)] ◦FB(b0);
(ii) BΣ,3(b0) = fB(b0)

(‖X‖2G)B(b0)
.
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Proof. Let q0 ∈ π−1
B (b0). We compute

BΣ,2(b0) · u =
m∑
a=1

uaYB,a(b0) =
∑
a=1

uaTq0πB(Ya(q0))

=
∑
a=1

uaTq0πB(hor(Ya(q0))) =
m∑
a=1

uahor(G](F a(q0)))

=
m∑
a=1

G]
B(F aB (b0)) = GB(b0)] ◦FB(b0) · u,

and

BΣ,3(b0) · u =
m∑
a=1

ua
G(Ya(q0), X(q0))

(‖X‖2G)B(b0)
=

m∑
a=1

ua
〈F a(q0);X(q0)〉
(‖X‖2G)B(b0)

=
fB(b0) · u

(‖X‖2G)B(b0)
. �

For PD control for the reduced linearization, it will be necessary to place
restrictions on the proportional and derivative gains that respect the horizon-
tal/vertical splitting of tangent spaces to Q; this is a complication added by
the fact that we are stabilizing a relative equilibrium. The following definition
indicates how this is done.

Definition S3.34 (Compatible gain matrix and control vector). Let
Σ = (Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical control system and
let X be a vector field on Q. For K ∈ Σ2((Rm)∗), define AK ∈ Γ∞(T 0

2 (TQ))
by

AK(uq, vq) = K(FΣ(q)∗(uq), FΣ(q)∗(vq)).

We make the following definitions:
(i) K ∈ Σ2((Rm)∗) is compatible with X at q ∈ Q if A[K(HqQ) ⊂

ann(VqQ);
(ii) u ∈ Rm is compatible with X at q ∈ Q if FΣ(q) · u ∈ ann(HqQ).

We denote by Σ2((Rm)∗)X(q) the subset of Σ2((Rm)∗) consisting of tensors
compatible with X at q, and we denote by RmX(q) RmX(q)set of compatible
control vectorsthe subset of Rm consisting of vectors compatible with X at
q. •

It is fairly clear that Σ2((Rm)∗)X(q) is a subspace of Σ2((Rm)∗) and that
RmX(q) is a subspace of Rm. Let us denote by prX(q) : Rm → RmX(q) the GRm -
orthogonal projection.

The following result gives a useful, alternative characterization of compat-
ibility, in the sense of the preceding definition.

Lemma S3.35 (Characterization of compatibility). Let Σ =
(Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical control system
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and let X be a complete infinitesimal symmetry for Σ for which the projec-
tion πB : Q → B onto the set of X-orbits is a surjective submersion. The
following statements hold:

(i) K ∈ Σ2((Rm)∗)X(q) if and only if fB(πB(q)) ◦K] ◦F ∗B(πB(q)) = 0;
(ii) u ∈ RmX(q) if and only if u ∈ ker(FB(πB(q))).

Proof. (i) Let b = πB(q). Note that, by definition of fB, u ∈ ker(fB(b)) if and
only if FΣ(q) ·u ∈ ann(VqQ). Now, for any u ∈ Rm and wb ∈ TbB, we compute

〈FΣ(q) ◦K] ◦FB(b)∗(wb);X(q)〉 = 〈FΣ(q) ◦K] ◦FΣ(q)∗(hlftq(wb));X(q)〉
= K(FΣ(q)∗(hlftq(wb)), FΣ(q)∗(X(q)))
= AK(hlftq(wb), X(q)).

Thus K] ◦FB(b)∗(wb) ∈ ker(fB(b)) for every wb ∈ TbB if and only if
A]K(hlftq(wb)) ∈ ann(VqQ) for every wb ∈ TbB. But this is exactly this part
of the lemma.

(ii) By definition of FB, u ∈ ker(FB(b)) if and only if FΣ(q) ·u ∈ ann(HqQ),
which is the result. �

Now, with Lemma 10.22 in mind, we make the following definition.

Definition S3.36 (PD control for linearization of reduced system).
Let Σ = (Q,G, V, F,F ,Rm) be a C∞-forced simple mechanical control system
and let X be a complete infinitesimal symmetry for Σ for which the projection
πB : Q → B onto the set of X-orbits is a surjective submersion. For the linear
control system Σred,lin, a linear proportional-derivative (PD) control
law at b0 is a linear state feedback of the form

u(x, v, ν) = −K]
P
◦F ∗B(b0) · x−K]

D
◦F ∗B(b0) · v − kDprX(q0)

◦fB(b0)∗ν,

where KP,KD ∈ Σ2((Rm)∗)X(q0), q0 ∈ π
−1
B (b0), and where kD ∈ R. If KD and

kD are both zero, then u is a linear proportional control law . •

Remark S3.37. There are some potentially confusing identifications that
arise in properly interpreting the term “kDprX(q0)fB(b0)∗ν” in the linear
PD control law. Let us address these. First of all, we had defined fB(b0) as a
linear map from Rm to R. However, were we to be consistent with forces be-
ing cotangent space-valued, then we would more properly have defined fB(b0)
as taking values in R∗. However, this is resolved by noting that there is a
natural isomorphism of R with R∗. Therefore, although by our definition
fB(b0)∗ ∈ L(R∗; (Rm)∗), we should really think of fB(b0) ∈ L(R; (Rm)∗).
In order that kDprX(q0)

◦fB(b0)∗ν lie in RmX(q0)
⊂ Rm, as it should, we must,

therefore, regard prX(q0) as a linear map from (Rm)∗ to RmX(q0)
. To do this, we

would properly replace prX(q0) with prX(q0)
◦ ιm, where ιm ∈ L((Rm)∗; Rm)

is the canonical isomorphism (i.e., defined by the standard inner product on
Rm). The reader might find it useful to keep these identifications in mind,
since they will be made tacitly in the calculations below. •
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Let us give the form for the closed-loop system for linear PD control.

Lemma S3.38 (Closed-loop system for linear PD control). Let
KP,KD ∈ Σ2((Rm)∗)X(q0), q0 ∈ π−1

B (b0), define a quadratic function Vcl on
Tb0B by

Vcl(x) = 1
2 Hess(VX)B(b0)(x, x) + 1

2FB(b0) ◦K
]
P
◦FB(b0)∗ · (x, x),

and define a symmetric (0, 2)-tensor field Acl on Q by

Acl(uq, vq) = A(uq, vq)− FΣ(q) ◦K]
D
◦FΣ(q)∗ · (hor(uq),hor(vq))

− kD‖prX(q)(fB(b)∗)‖2RmνX(uq)νX(vq),

where νX(wq) ∈ R is defined by ver(wq) = νX(wq)X(q) for wq ∈ TQ.
Then, the closed-loop system for the linear PD control law defined by KP

and KD is the linear system on Tb0B⊕ Tb0B⊕ R defined by the linear map

AΣ,cl(b0) =

 0 idTb0B

−GB(b0)] ◦ HessV [cl CX(b0) +Acl,B(b0)
0 −2 dVB(b0)

(‖X‖2G)B(b0)
+ αcl,B(b0)

0
2gradBVB(b0) + acl,B(b0)

〈A[
cl(X(q0));X(q0)〉
(‖X‖2G)B(b0)

 ,
where Acl,B, acl,B, and αcl,B are as defined preceding the statement of Propo-
sition S3.13.

Proof. Let us first perform some computations. For brevity, we let b = b0 and
q = q0. For wb ∈ TbB and βb ∈ T∗bQ we compute

Acl,B(wb) = TqπB ◦G(q)] ◦Acl(q)[ ◦hlftq(wb)

= AB(wb)− TqπB ◦G(q)] ◦hor∗ ◦FΣ(q) ◦K]
D
◦FΣ(q)∗ ◦hlftq(wb)

= AB(wb)− TqπB ◦G(q)] ◦FΣ(q) ◦K]
D
◦FΣ(q)∗ ◦hlftq(wb)

= AB(wb)−GB(b)] ◦FB(b) ◦K]
D
◦FB(b)∗(wb).

Here hor∗ denotes the projection onto ann(VqQ) associated with the decom-
position T∗qQ = ann(VqQ) ⊕ ann(HqQ). In the third step in the calculation,
we have used the fact that KD ∈ Σ2((Rm)∗)X(q). We next compute

acl,B(b) = TqπB ◦G(q)] ◦Acl(q)[(X(q))

= aB(b)− kD‖prX(q)(fB(b)∗)‖2RmTqπB ◦G(q)]ν

= aB(b),

where we think of ν as an element of ann(HqQ) ⊂ T∗qQ. We compute
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(‖X‖2G)B(b) 〈αcl,B(b);wb〉 = 〈A[cl(hlftq(wb));X(q)〉

= (‖X‖2G)B(b)〈αB(b);wb〉,

using the definition of Acl. Finally, we have

〈A[cl(X(q));X(q)〉 = 〈A[(X(q));X(q)〉 − kD‖prX(q)(fB(b)∗)‖2Rm .

With these computations, and using Lemmas S3.33 and S3.35, the result
follows from a direct computation. �

Remark S3.39. In order that the closed-loop system have the desired form,
it is essential to restrict the proportional gain KP to lie in Σ2((Rm)∗)X(q0).
It is not, however, necessary to so restrict KD, nor is it necessary to project
fB(b0)∗ onto RmX(q0)

. However, by placing these restrictions on the form of the
derivative feedback, we ensure that the horizontal and vertical components of
the derivative feedback are separated. In practice, this may be useful. How-
ever, it is also possible to state Lemma S3.38 for the most general derivative
feedback, and we leave the details of this to the reader. •

We may also make the corresponding definitions for stabilizability of the
reduced system using linear PD control.

Definition S3.40 (Stabilizability of reduced linearized system using
linear PD control). The system Σred,lin is

(i) stabilizable by proportional control if there exists a linear pro-
portional control law that stabilizes the controlled equilibrium point
(0b0 ⊕ 0b0 ⊕ 0,0), and is

(ii) asymptotically stabilizable by proportional-derivative control if
there exists a linear PD control law that asymptotically stabilizes the
controlled equilibrium point (0b0 ⊕ 0b0 ⊕ 0,0). •

We can now state conditions for stabilization of the reduced linearization,
and of the reduced system, using linear PD control. First let us state a suffi-
cient condition for stabilization of the linearization.

Theorem S3.41 (Stabilizability of reduced linearization by linear
PD control). The following statements hold:

(i) if Hess(VX)B(b0)|coann(image(FB)) is positive-definite, then Σred,lin is
stabilizable by proportional control, and Σred is stabilizable at (0b0 , 1) by
linear proportional control;

(ii) if
(a) Hess(VX)B(b0)|coann(image(FB(b0))) is positive-definite and
(b) Σred,lin is STLC from (0b0 ⊕ 0b0 ⊕ 0),

then Σred,lin is asymptotically stabilizable by PD control, and Σred is
locally asymptotically stabilizable at (0b0 , 1) by linear PD control.
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Proof. Let us define the closed-loop linearized reduced effective energy by

Ered,cl
χ (x, v, ν) = 1

2GB(b0)(v, v) + 1
2Vcl(x) + 1

2 (‖X‖2G)B(b0)ν2,

where Vcl is as defined in Lemma S3.38. For a general linear PD control defined
by KP, KD, and kD, we compute, following the proof of Theorem S3.25,

d
dt
Ered,cl
χ (x(t)⊕ ẋ(t)⊕ ν(t))

= Acl(hlftq0(ẋ(t)) + ν(t)X(q0),hlftq0(ẋ(t)) + ν(t)X(q0)),

where Acl is as defined in Lemma S3.38, and where t 7→ x(t) ⊕ ẋ(t) ⊕ ν(t) is
a trajectory for the closed-loop system.

(i) In the case that image(FΣ(q0)) ⊂ ann(Vq0Q), it follows that fB(b0) = 0,
and that Σ2((Rm)∗)X(q0) = Σ2((Rm)∗). In this case, the result follows in
the same manner as part (i) of Theorem 10.26. For simplicity, we there-
fore assume that image(FΣ(q0)) 6⊂ ann(Vq0Q). Let q0 ∈ π−1

B (b0) and de-
fine V = coann(image(FΣ(q0))) + Vq0Q. Note that, by our assumption that
image(FΣ(q0)) 6⊂ ann(Vq0Q), it holds that V = coann(image(FΣ(q0)))⊕Vq0Q.

The following lemma contains the essential observation in this part of the
proof.

Lemma. Let φ : Tq0Q → R be a quadratic function (i.e., one that satisfies
φ(λvq0) = λ2φ(vq0) for every λ ∈ R and vq0 ∈ Tq0Q) satisfying

(i) dφ(vq0) ∈ ann(V) for each vq0 ∈ Tq0Q and
(ii) 〈dφ(vq0);X(q0)〉 = 0.

Then there exists K ∈ Σ2((Rm)∗)X(q0) such that Hessφ =
FΣ(q0) ◦K] ◦FΣ(q0)∗.

Proof. Without loss of generality, suppose that FΣ(q0) is injective. Let
{e1, . . . , en} be a basis for Tq0Q with the following properties:
1. {ek+1, . . . , en} is a basis for coann(image(FΣ(q0)));
2. ek = X(q0).
Let (v1, . . . , vn) be the induced coordinates for Tq0Q. Then the function φ in
the statement of the lemma is a function of the coordinates v1, . . . , vk−1. The
matrix representation for FΣ in the basis is

[FΣ(q0)] =

 F 1

F 2

0(n−k)×m

 ,
where F 1 ∈ R(k−1)×m and F 2 ∈ R1×m. To prove the lemma, we must solve
the equation
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F 2

0(n−k)×m

K
[
F T

1 F T
2 0m×(n−k)

]

=

 Φ 0(k−1)×1 0(k−1)×(n−k)
01×(k−1) 0 01×(n−k)

0(n−k)×(k−1) 0(n−k)×1 0(n−k)×(n−k)

 , (S3.23)

for K ∈ Rm×m, where Φ = [Hessφ] ∈ R(k−1)×(k−1). Since FΣ(q0) is assumed
to be injective, the equation[

F 1

F 2

]
K

[
F T

1 F T
2

]
=

[
Φ 0(k−1)×1

01×(k−1) 0

]
can be solved for K, and this same matrix clearly solves (S3.23). Next we need
to show that, if K is the matrix representative for K ∈ Σ2((Rm)∗), then it
holds that K ∈ Σ2((Rm)∗)X(q0). This is true, however, since AK(q0) = Hessφ,
and since it is clear that (Hessφ)[(Hq0Q) ⊂ ann(Vq0Q). H

To complete the proof of this part of the theorem, note that the hypotheses,
along with the lemma, ensure that there exists KP ∈ Σ2((Rm)∗)X(q0) such
that HessVX +FΣ(q0) ◦K

]
P
◦FΣ(q0)∗ is positive-definite on Hq0Q. Since KP ∈

Σ2((Rm)∗)X(q0), it holds that

FΣ(q0) ◦K
]
P
◦FΣ(q0)∗(vq0 , wq0) = FB(b0) ◦K

]
P
◦FB(b0)∗(TπB(vq0), TπB(wq0)

for all vq0 , wq0 ∈ Tq0Q. Thus Ered,cl
χ is a Lyapunov function for the closed-loop

system, and so stability follows from Theorem 6.14.
(ii) To prove this part of the theorem, we suppose that a linear propor-

tional control law has already been designed as in part (i), and thus we may
suppose that Hess(VX)B is positive-definite. For simplicity, and without loss
of generality, let us also assume that there is no open-loop dissipation. We
next claim that the derivative part of the PD control law is dissipative as
in Section 10.1.5. To see this, let ba ∈ Tb0B ⊕ Tb0B ⊕ R, a ∈ {1, . . . ,m}, be
defined such that

BΣ(b0) · u =
m∑
a=1

bau
a.

Using Proposition S3.13 and Lemma S3.33, and thinking of ba as a constant
vector field on Tb0B⊕ Tb0B⊕ R, we compute

L baE
red,lin
χ (x⊕ v ⊕ ν) = 〈F aB (b0); v〉+ faB(b0)ν.

Now define udiss : Tb0B ⊕ Tb0B ⊕ R → Rm by uadiss(x, v, ν) = −L ba
Ered,lin
χ .

We next note that, if KD ∈ Σ2((Rm)∗)X(q0),

prX(q0)
◦FB(b0)∗(v) = 0, v ∈ Tb0B,
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and
FB(b0) ◦K

]
D(fB(b0)∗) = 0,

with both equalities following from Lemma S3.35. These facts then give the
following formula:

FB(b0)(K
]
D + kDprX(q0))(udiss(x⊕ v ⊕ ν))

= −FB(b0) ◦K
]
D
◦FB(b0)∗(v)− kDFB(b0) ◦prX(q0)(fB(b0)∗)ν.

This shows that the derivative control law associated with KD ∈
Σ2((Rm)∗)X(q0) and kD ∈ R is equivalent to the feedback

x⊕ v ⊕ ν 7→ (K]
D + kDprX(q0))(udiss(x⊕ v ⊕ ν)).

We next claim that it is possible to choose KD ∈ Σ2((Rm)∗)X(q0) and
kD ∈ R such that the linear map AKD,kD defined by

Rm 3 u 7→ (K]
D + kDprX(q0))(u) ∈ (Rm)∗ (S3.24)

is positive-definite with respect to the standard inner product on Rm. This will
follow if we can show thatKD can be chosen so that the linear map in (S3.24) is
positive-definite on a complement to RmX(q0)

in Rm. To prove this, we proceed
indirectly. Denote by FFB,fB

the linear map from Rm to T∗b0B× R defined by

FFB,fB
(u) = (FB · u)⊕ (fB(b0) · u).

We assume, without loss of generality, that this map is injective. On Tb0B⊕R
consider the symmetric bilinear map defined by

v ⊕ ν 7→ FFB,fB
◦A]KD,kD

◦F ∗FB,fB
(v ⊕ ν).

The computations of Lemma S3.38 show that this map can be expressed as

v ⊕ ν 7→ (FB(b0) ◦K
]
D
◦FB(b0)∗(v))⊕ (kD‖prX(q0)(fB(b0)∗)‖2Rmν). (S3.25)

From the lemma used in the proof of the first part of the theorem, we know
that it is possible to choose KD ∈ Σ2((Rm)∗)X(q0) such that the symmetric
bilinear map defined by

v 7→ FB(b0) ◦K
]
D
◦FB(b0)∗(v)

is positive-definite on a complement to coann(image(FB(b0))). Therefore, it
is possible to choose KD ∈ Σ2((Rm)∗)X(q0) and kD > 0 such that the
symmetric bilinear map defined by (S3.25) is positive-definite on a com-
plement to coann(image(FFB,fB

)). This, however, implies that AKD,kD is
positive-definite. That derivative feedback is dissipative now follows from
Remark 10.18–2. That derivative control asymptotically stabilizes Σred,lin fol-
lows from Lemma 10.17, along with the assumption that Σred,lin is STLC from
0b0 ⊕ 0b0 ⊕ 0. �
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Remark S3.42. Theorem 10.26, the result for stabilization of equilibria for
linear mechanical systems using PD control, gives necessary and sufficient
conditions for stabilizability and asymptotic stabilizability. This is because,
in Theorem 6.42, we were able to give necessary and sufficient conditions for
stability of linear mechanical systems with dissipative forces. However, since
the linearization of the reduced equations for a relative equilibrium involve gy-
roscopic forces, it is more difficult to give sharp stability conditions for stability
(cf. Exercise E6.10). Moreover, while the linear controllability condition for
systems with no external forces can be simplified to a computation involving
vector spaces of dimension equal to the dimension of the configuration mani-
fold, rather than the dimension of its tangent bundle (see Theorem 7.31), no
such results are known when gyroscopic forces are present. Thus there is the
possibility of weakening, or improving the computability of, the hypotheses of
Theorem S3.41 in multiple directions. •

S3.5.3 Stabilization of reduced system using linear control law

We may also define the notion of stabilizability of the nonlinear system Σred

using linear state feedback. To do so, we recall from Definition 10.29 the notion
of a near identity diffeomorphism. If (ψ,U0,U1) is a near identity diffeomor-
phism at b0 ∈ B, then we denote by Tψ−1× idR : TU1×R → (U0×Tb0B)×R
the map

Tψ−1 × idR(wb, v) = (Tψ−1(wb), v).

We now make a definition.

Definition S3.43 (Stabilizability of reduced system using linear
PD control). If ulin is a linear PD control law for Σred,lin, then an im-
plementation of ulin for Σred is a state feedback on TU1 × R given by
unonlin = ulin ◦ (Tψ−1 × idR), where (ψ,U0,U1) is a near identity diffeomor-
phism at b0.

Furthermore, we say that Σred is
(i) stabilizable by linear proportional control at (0b0 , 1) if there exists

a linear proportional control law ulin and an implementation of this
control law for Σred which stabilizes ((0b0 , 1),0), and is

(ii) locally asymptotically stabilizable by linear proportional-
derivative control at (0b0 , 1) if there exists a linear PD control law
ulin and an implementation of this control law for Σred which locally
asymptotically stabilizes ((0b0 , 1),0). •

The following result follows from Theorem S3.41 in the same manner in
which Theorem 10.32 follows from Theorem 10.26.

Theorem S3.44. For a near identity diffeomorphism (ψ,U0,U1) at b0 and a
linear PD control law

ulin(x, v, ν) = −K]
P
◦FB(b0)∗(x)−K]

D
◦FB(b0)∗(v)− kDprX(q0)

◦fB(b0)∗ν,
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for Σred,lin, define a state feedback for Σred on TU1 × R by unonlin =
ulin ◦ (Tχ−1 × idR). The following statements hold.

(i) If Hess(VX)B(b0)|coann(image(FB(b0))) is positive-definite, then
there exists KP ∈ Σ2((Rm)∗)X(q0) such that Hess(VX)B(b0) +
FB(b0) ◦K

]
P
◦FB(b0)∗ ∈ Σ2(Tq0Q) is positive-definite. Furthermore,

((0b0 , 1),0) is stabilized by the state feedback unonlin with KP so chosen
and with KD positive-semidefinite.

(ii) Suppose that Hess(VX)B(b0)|coann(image(FB(b0))) is positive-definite,
that KP is chosen as in part (i), that Σred,lin is STLC from 0b0⊕0b0⊕0,
and that KD ∈ Σ2((Rm)∗)X(q0) is positive-definite. Then ((0b0 , 1),0) is
locally asymptotically stabilized by the state feedback unonlin with KP and
KD so chosen.

S3.5.4 Stabilization of reduced equations using potential shaping

In this section we define the notion of PD control for the system Σred, and
we give sufficient conditions for stabilization of an equilibrium point for the
reduced system using PD control. The results here are analogous to those in
Section 10.4 in the text.

To get started, we need some notation. We let FB be the codistribution on
B defined by FB,b = image(FB(b)). Following our notation in Section 10.4, we
denote by C∞(B)FB

the set of C∞-functions φ on B for which dφ ∈ Γ∞(F).
By F

(∞)
B we denote the codistribution annihilating the involutive closure of

coann(FB) (see the discussion in Section 10.4.1), and recall that FB is totally

regular at b0 if FB and F
(∞)
B are both regular at b0.

With this notation, let us define what we mean by PD control for Σred.

Definition S3.45 (PD control for reduced system). Suppose that FB

is totally regular at b0. A proportional-derivative (PD) control law at
(0b0 , 1) is a state feedback satisfying

FB(b) · u(wb, v) = −dVP(b)−K]
D
◦FB(b)∗(wb)− kDprX(q) ◦fB(b)∗v,

where VP ∈ C∞(B)FB
, KD ∈ Σ2((Rm)∗)X(q), q ∈ π−1

B (b), and kD ∈ R. If KD

and kD are zero, then u is a proportional control law . •
Correspondingly, one has the following notions of stabilizability.

Definition S3.46 (Stabilizability of reduced system using PD con-
trol). Suppose that FB is totally regular at b0. Σred is

(i) stabilizable by proportional control at (0b0 , 1) if there exists a pro-
portional control law at (0b0 , 1) such that the closed-loop system pos-
sesses (0b0 , 1) as a stable equilibrium point, and is

(ii) locally asymptotically stabilizable by proportional-derivative
control at (0b0 , 1) if there exists a PD control law at (0b0 , 1) such that
the closed-loop system possesses (0b0 , 1) as a locally asymptotically sta-
ble equilibrium point. •
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It is now straightforward to state a sufficient condition for stabilization
using PD control.

Theorem S3.47 (Stabilization of reduced system using PD con-
trol). Suppose that FB is totally regular at b0 and that FB =
{dφ1, . . . ,dφk, F k+1, . . . , Fm} is proportionally adapted at b0. Then the fol-
lowing statements hold.

(i) If Hess(VX)B(b0)|coann(F(∞)
B,b0

) is positive-definite, then there exists

KP ∈ Σ2((Rk)∗)X(q0) such that Vcl = (VX)B + 1
2

∑k
a,c=1(KP)acφaφc

is locally positive-definite about b0. Furthermore, (0b0 , 1) is stabilized by
the proportional control law

u(wb, v) = −
k∑

a,c=1

(KP)acφc(b)ea,

where {e1, . . . ,em} is the standard basis for Rm.
(ii) Suppose that Hess(VX)B(b0)|coann(F(∞)

B,b0
) is positive-definite, that KP

is chosen as in part (i), that Σred,lin is STLC from 0b0 ⊕ 0b0 ⊕ 0, that
KD ∈ Σ2((Rm)∗)X(q0) is positive-definite, and that kD > 0. Then (0b0 , 1)
is locally asymptotically stabilized by the PD control law

u(wb, v) = −
k∑

a,c=1

(KP)acφc(b)ea−K]
D
◦FB(b)∗(wb)−kDprX(q) ◦fB(b)∗v.

Proof. Let us define a function E on TB× R by

E(wb, v) =
1
2

GB(wb, wb) + (VX)B(b)

+
1
2

k∑
a,c=1

(KP)acφa(b)φc(b) +
1
2
(‖X‖2G)B(b)(v − 1)2.

Let us compute the time-derivative of E along controlled trajectories t 7→
((η′(t), v(t)), u(t)) of Σred when the control is a general PD control law. We
compute

d
dt
E(η′(t), v(t))

= Acl(hlftγ(t)(η′(t)) + v(t)X(γ(t)),hlftγ(t)(η′(t)) + v(t)X(γ(t)),

where Acl is as defined in Lemma S3.38.
(i) That there exists KP as asserted follows in the same manner as the

analogous statement in Theorem 10.43. To prove the second assertion of this
part of the theorem, one notes that dE

dt (η′(t), v(t)) ≤ 0. The result then follows
from Theorem 6.14.
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(ii) For simplicity, let us suppose that the open-loop dissipation is zero, and
let Σred,cl be the control-affine system on TB×R obtained after the potential
has been shaped as in part (i). From the proof of part (ii) of Theorem S3.41,
we know that the derivative control is dissipative. Thus the result will follow
from Lemma 10.17 if we can show that Σred,cl has a controllable linearization
at (0b0 , 1). We observe that the linearization of Σred,cl at (0b0 , 1) is given by
the linear control system (Tb0B⊕Tb0B⊕R, Acl

Σ(b0), BΣ(b0)), where BΣ(b0) is
as defined in Proposition S3.13, where

AΣ(b0) +BΣ(b0)
[
0 −K]

P
◦F ∗B(b0) 0

]
,

and where AΣ(b0) is as defined in Proposition S3.13. The proof is completed
by making the observation that if a linear system (V, A,B) is STLC from 0,
then so too is the linear system (V, A+B ◦F,B), for any F ∈ L(V; Rm). We
leave the fairly straightforward proof of this fact to the reader to look up in
[Wonham 1985]. �





S4

Optimal control theory

In the field of control theory, optimal control theory is one of the more distin-
guished subjects. For example, the linear stabilization methods discussed in
Section 10.5.1 have their roots in optimal control theory. However, the sub-
ject goes well beyond the linear theory. The seminal work in the subject is
without question that which led to the publication of [Pontryagin, Boltyan-
skii, Gamkrelidze, and Mishchenko 1961]. This work came to fruition in the
years following the Second World War. In this work appeared the first state-
ment and proof of the Maximum Principle, to which a significant portion of
this chapter is dedicated. Another cornerstone of optimal control theory is
the Dynamic Programming Principle, the initial contributions to which are
described in the book of Bellman [1957]. Since the appearance of these basic
works, many fundamental contributions to the subject have been made, and
it would be nearly impossible to give an accurate outline of the research liter-
ature. However, the contributions of Kalman [1960] to the linear theory have
been very important, since they provide implementable design tools that see
wide use in practice. Contributions to the geometric theory of optimal con-
trol, particular geometric formulations of the Maximum Principle, have been
made by Sussmann in a series of papers in the late 1990’s (see, for example,
[Sussmann 1997, 2000]). Sussmann’s work is devoted to giving versions of the
Maximum Principle that hold with very weak hypotheses, and in quite general
control theoretic frameworks. Beyond the Maximum Principle, the subject of
higher-order conditions for optimality are important in optimal control theory.
Significant contributions have been made here by Krener [1977]. Second-order
conditions (thinking of the Maximum Principle as being a first-order condi-
tion) have been studied in great depth by Agrachev and coauthors, and these
results are detailed in the book of Agrachev and Sachkov [2004], along with
a nice geometric formulation of the Maximum Principle. For additional refer-
ences, we refer to the books [Agrachev and Sachkov 2004, Jurdjevic 1997, Lee
and Markus 1967].

One way to view the Maximum Principle in optimal control theory is as
a generalization of the classical calculus of variations. This is the point of
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view with which we start this chapter, in Section S4.1, following the excellent
account of Sussmann and Willems [1997]. After this motivation, we precisely
state the Maximum Principle in Section S4.2, following the account of Suss-
mann [1997], although our treatment is far less general than that of Sussmann.
We make use here of the Hamiltonian framework developed in Section S1.1.
In Section S4.3 we discuss some ways in which one can interpret the Max-
imum Principle. Here we make connections between optimal control theory
and controllability theory. This hints at something quite deep, and we refer
to the treatment in [Agrachev and Sachkov 2004, Lee and Markus 1967] for
further discussion along these lines. In Section S4.4 we give a version of the
Maximum Principle for affine connection control systems. Here we make use
of the tangent bundle geometry described in Sections S1.2 and S1.3. In Sec-
tions S4.5 and S4.6 we consider the special cases of optimal control problems
that minimize the inputs (in a certain sense) and time, respectively. We con-
clude the chapter with an analysis, in Section S4.7, of force- and time-optimal
control for the planar rigid body system discussed in the text.

S4.1 Going from the calculus of variations to the
Maximum Principle

A profitable view of the Maximum Principle is that it is a generalization of
the classical calculus of variations, as discussed briefly in the first two sections
in Section 4.3. However, this connection is not obvious when one simply states
the Maximum Principle and Hamilton’s Principle side-by-side. Therefore, in
this section we explicitly develop the calculus of variations in a manner that
fairly obviously leads to the Maximum Principle. We suppose all data to be
of class C∞ in this section.

S4.1.1 Some additional discussion of the calculus of variations

In Section 4.3 we stated a problem, Problem 4.37, in the calculus of variations,
and a necessary condition, Theorem 4.38, for the solution of this problem. In
this section we give two additional necessary conditions that will be essential
to understanding how the Maximum Principle arises from the calculus of
variations. In this section, to simplify notation and to emphasize geometry, we
deal exclusively with time-independent Lagrangians. The extension to time-
independent Lagrangians is straightforward. We do not prove the results in
this section, but refer the reader to any somewhat more than basic account
of the calculus of variations, e.g., [Giaquinta and Hildebrandt 1996].

Let L : TM → R be a C∞-Lagrangian. To state the first of the two condi-
tions, we need to associate to a L a certain symmetric (0, 2)-tensor field. More
accurately, this tensor field will be a section of the vector bundle T 0

2 (VTM).
First we define a map FL : TM → T∗M by
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〈FL(vx);wx〉 =
d
dt

∣∣∣
t=0

L(vx + twx).

In natural coordinates for TM and T∗M, FL has the local representative

((x1, . . . , xn), (v1, . . . , vn)) 7→
(
(x1, . . . , xn),

( ∂L
∂v1

, . . . ,
∂L

∂vn

))
Note that FL is a fiber bundle map, but is not generally a vector bundle map.
If L(vx) = 1

2G(vx, vx) for a Riemannian metric G on M, then FL = G[. The
map FL is called the fiber derivative of L, and plays an important role in
the calculus of variations. Next one defines a section GL of T 0

2 (VTM) by

GL(vx)(Uvx , Vvx) =
d
dt

∣∣∣
t=0

〈FL(vx + tUvx);Vvx〉 , (S4.1)

for Uvx , Vvx ∈ VvxTM. Note that, in writing (S4.1), we are making the natu-
ral identification of Vvx

TM with TxM. Under this identification, if (x,v) are
natural coordinates for TM, then { ∂

∂x1 , . . . ,
∂
∂xn } can be thought of as local

generators for VTM.1 With this notation and with these identifications, one
verifies that

GL =
∂2L

∂vi∂vj
dxi ⊗ dxj .

From this we see that GL is a symmetric tensor field. Also, if L(vx) =
1
2G(vx, vx), then GL(Uvx

, Vvx
) = G(Uvx

, Vvx
), where again we identify Vvx

TM
with TxM.

We can now state a second necessary condition for a solution to Prob-
lem 4.37 in the calculus of variations.

Theorem S4.1 (Legendre Condition). If γ ∈ C2([a, b], xa, xb) solves
Problem 4.37, then GL(γ′(t)) is positive-semidefinite for each t ∈ [a, b].

Note that this necessary condition is automatically satisfied when L(vx) =
1
2G(vx, vx) for a Riemannian metric G on M. However, in the framework of the
Maximum Principle, it is no longer natural to restrict attention to Lagrangians
of this special form.

The third necessary condition we provide is due to Weierstrass, and relies
on a new construction for its statement. We let TM⊕TM be the Whitney sum
of TM with itself. The Weierstrass excess function is then the function
WL : TM⊕ TM → R defined by

WL(vx ⊕ ux) = L(ux)− L(vx)− FL(vx) · (ux − vx).

We now have the following result.

Theorem S4.2 (Weierstrass Side Condition). If γ ∈ C2([a, b], xa, xb)
solves Problem 4.37, then, for each t ∈ [a, b], WL(γ′(t) ⊕ uγ(t)) ≥ 0 for all
uγ(t) ∈ Tγ(t)M.

1 Another way of understanding this, as elucidated in Section S1.3.4, is to note that
VTM is isomorphic to the pull-back bundle π∗TTMTM.
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S4.1.2 A Hamiltonian setting for the calculus of variations

Now we provide a reorganization of Theorems 4.38, S4.1 and S4.2 in a Hamil-
tonian setting. This seems slightly contrived at this point. However, as we
shall see, it provides just the right setting for the generalization of the calcu-
lus of variations to optimal control. We let TM ⊕ T∗M be the Whitney sum
of TM and T∗M. We denote a typical point in TM⊕ T∗M by vx ⊕ αx. Given
a Lagrangian L as above, define a C∞-function HL on TM⊕ T∗M by

HL(vx ⊕ αx) = 〈αx; vx〉 − L(vx).

Let us make some constructions associated to the function HL. The notation
suggests that HL might serve as a Hamiltonian in some manner. This is indeed
the case, although the standard Hamiltonian setup needs to be adapted to the
Whitney sum TM ⊕ T∗M. We have a natural projection π2 : TM ⊕ T∗M →
T∗M defined by π2(vx ⊕ αx) = αx. We then define a differential two-form on
TM⊕T∗M by ω0 = π∗2ω0, where ω0 is the canonical symplectic form on T∗M.
In natural coordinates (x,v,p) for TM⊕ T∗M we have

ω0 = dxi ∧ dpi.

We now state a condition that is equivalent to Theorem 4.38.

Proposition S4.3 (Hamiltonian version of the Euler–Lagrange equa-
tions). The following statements are equivalent for a curve t 7→ Υ(t) ⊕ λ(t)
in TM⊕ T∗M:

(i) the Euler–Lagrange equations for π ◦Υ are satisfied, along with the equa-
tion λ(t) = FL(Υ(t));

(ii) if t 7→ Υ′(t) ⊕ λ′(t) denotes the tangent vector field to the curve t 7→
Υ(t)⊕ λ(t), then ω[0(Υ

′(t)⊕ λ′(t)) = −dHL(Υ(t)⊕ λ(t)) for each t.

Proof. The most straightforward proof is done in natural coordinates (x,v,p)
for TM ⊕ T∗M. We denote by t 7→ (x(t),v(t),p(t)) the local representative
of t 7→ Υ(t) ⊕ λ(t). One readily determines that the local representative of
t 7→ ω[0(Υ

′(t)⊕ λ′(t)) is
ṗi(t)dqi − ẋi(t)dpi.

From this, one readily ascertains that part (ii) is equivalent to the three equa-
tions

ẋi =
∂HL

∂pi
(x(t),v(t),p(t)), i ∈ {1, . . . , n},

ṗi = − ∂HL

∂qi
(x(t),v(t),p(t)), i ∈ {1, . . . , n},

0 =
∂HL

∂vi
(x(t),v(t),p(t)), i ∈ {1, . . . , n}.

(S4.2)

(i) =⇒ (ii) The equation additional to the Euler–Lagrange equation imme-
diately implies the third of equations (S4.2). The Euler–Lagrange equations
imply that v(t) = ẋ(t). Since ∂HL

∂pi
= vi, i ∈ {1, . . . , n}, this implies that
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ẋi(t) =
∂HL

∂pi
(x(t),v(t),p(t)), i ∈ {1, . . . , n},

which is the first of equations (ii). Taking the time derivative of the equation
λ(t) = FL(Υ(t)), and using the relation

∂HL

∂xi
= − ∂L

∂xi
, i ∈ {1, . . . , n},

gives

ṗi(t) = −∂HL

∂xi
(x(t),v(t),p(t)), i ∈ {1, . . . , n},

which is the second of equations (S4.2).
(ii) =⇒ (i) The third of equations (S4.2) implies that

pi(t) =
∂L

∂vi
(ξ(t), χ(t)), i ∈ {1, . . . , n},

which is the local form for λ(t) = FL(Υ(t)). The first of equations (S4.2)
implies that ẋ(t) = v(t), which means that Υ is the tangent vector field of
some curve γ on M. Also, since

∂HL

∂xi
= − ∂L

∂xi
, i ∈ {1, . . . , n},

this shows that part (ii) implies

d
dt

( ∂L
∂vi

)
(x(t), ẋ(t)) =

∂L

∂xi
(x(t), ẋ(t)), i ∈ {1, . . . , n},

which are the Euler–Lagrange equations. �

Part (ii) of Proposition S4.3 involves the classical Hamilton’s equations,
although they now involve a “parameter” v. In natural coordinates these equa-
tions are as given in the proof as (S4.2). The importance of the third of equa-
tions (S4.2) becomes fully realized when one throws Theorem S4.1 into the
mix. We now state how the three necessary conditions, Theorems 4.38, S4.1,
and S4.2, can be expressed in Hamiltonian language.

Proposition S4.4 (Hamiltonian version of necessary conditions in
calculus of variations). The following statements are equivalent for γ ∈
C2([a, b], xa, xb):

(i) γ satisfies the necessary conditions of Theorems 4.38, S4.1, and S4.2;
(ii) there exists a covector field λ along γ such that, for the curve t 7→

(γ′(t)⊕ λ(t)), the following relations hold:
(a) if t 7→ Υ′(t) ⊕ λ′(t) denotes the tangent vector field to the curve

t 7→ Υ(t) ⊕ λ(t), then ω[0(Υ
′(t) ⊕ λ′(t)) = −dHL(Υ(t) ⊕ λ(t)) for

each t;
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(b) for each t ∈ [a, b],

HL(γ′(t)⊕ λ(t)) = sup
{
HL(vγ(t) ⊕ λ(t))

∣∣ vγ(t) ∈ Tγ(t)M
}
.

Proof. As in the proof of Proposition S4.3, we use natural coordinates (x,v,p)
for TM⊕ T∗M. In this case, the coordinate expression of part (ii) consists of
the four equations

ẋi(t) =
∂HL

∂pi
(x(t), ẋ(t),p(t)), i ∈ {1, . . . , n},

ṗi(t) = − ∂HL

∂xi
(x(t), ẋ(t),p(t)), i ∈ {1, . . . , n},

0 =
∂HL

∂vi
(x(t), ẋ(t),p(t)), i ∈ {1, . . . , n},

HL(x(t), ẋ(t),p(t)) = sup {HL(x(t),u,p(t)) | u ∈ Rn} .

(S4.3)

Clearly, these four equations are equivalent to the three equations remaining
when the third is omitted, and therefore, part (ii) is equivalent in coordinates
to the first, second, and fourth of equations (S4.3).

(i) =⇒ (ii) Define a covector field λ along γ by λ(t) = FL(γ′(t)). A direct
calculation shows that the excess function satisfies

WL(γ′(t)⊕ vγ(t)) = HL(γ′(t)⊕ λ(t))−HL(vγ(t) ⊕ λ(t)),

for t ∈ [a, b]. Therefore the necessary condition of Theorem S4.2 translates to
asserting that, for each t ∈ [a, b],

HL(γ′(t)⊕λ(t))−HL(vγ(t)⊕λ(t)) ≥ 0, vγ(t) ∈ Tγ(t)M, t ∈ [a, b]. (S4.4)

This is exactly the fourth of equations (S4.3). By Proposition S4.3, the neces-
sary condition of Theorem 4.38 implies the first two of equations (S4.3). This
shows that (ii) holds since the first, second, and fourth of equations (S4.3)
hold.

(ii) =⇒ (i) We suppose that the first, second, and fourth of equations (S4.3)
hold for some covector field along γ whose local representative is t 7→ p(t).
The fourth of the equations (S4.3) implies that

∂HL

∂vi
(x(t), ẋ(t),p(t)) = 0, i ∈ {1, . . . , n}.

The definition of HL then gives pi(t) = ∂L
∂vi (ξ(t), ξ̇(t)), i ∈ {1, . . . , n}. This

then shows that λ(t) = FL(γ′(t)). By Proposition S4.3, this also implies that
the necessary condition of Theorem 4.38 holds. The fourth of equations (S4.3)
also implies that (S4.4) holds. Thus the necessary condition of Theorem S4.2
holds. Since (S4.4) holds, it follows that the matrix with components

∂2HL

∂vi∂vj
(ξ(t), ξ̇(t), λ(t)), i, j ∈ {1, . . . , n}
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is negative-semidefinite for each t ∈ [a, b]. Since

∂2HL

∂vi∂vj
= − ∂2L

∂vi∂vj
, i, j ∈ {1, . . . , n},

it follows that the necessary condition of Theorem S4.1 holds. �

Remark S4.5. Readers familiar with mechanics will recall that, in La-
grangian mechanics, there is a standard technique for going from the Eu-
ler–Lagrange equations on TQ to Hamilton’s equations on T∗Q. In order for
the equations to have a nice correspondence, there are conditions that must be
placed on the Lagrangian, namely that FL : TQ → T∗Q be a diffeomorphism.
In the setup in this section, no restrictions are placed on the Lagrangian. That
this is possible is a consequence of the fact that, in the Hamiltonian setting
in this section, we use, not T∗Q, but TQ ⊕ T∗Q. As we shall see, this way
of doing things pays off when one looks at optimization problems in control
theory. •

S4.1.3 From the calculus of variations to the Maximum Principle

We now make a transition to optimal control from the calculus of variations
setting of the preceding section. We begin by introducing the “Maximum”
in the Maximum Principle. As in the previous section, we let L be a C∞-
Lagrangian on M, and we let HL be the corresponding Hamiltonian defined
on TM⊕ T∗M. We then define a function Hmax

L on T∗M by

Hmax(αx) = sup {HL(vx ⊕ αx) | vx ∈ TxM} .

It is possible thatHmax
L might take the value +∞ at some or all points in T∗M.

However, let us suppose that L has the property that Hmax
L is well-defined as

a R-valued function. Let us also suppose that Hmax
L is of class C∞. In this

case, we have the following theorem giving a necessary condition for solutions
of Problem 4.37.

Theorem S4.6 (Maximum Principle version of necessary conditions
in calculus of variations). Assume that Hmax

L is a C∞-function that is
well-defined on T∗M. If γ ∈ C2([a, b], xa, xb) solves Problem 4.37, then there
exists a covector field λ along γ such that

(i) HL(γ′(t)⊕ λ(t)) = Hmax
L (λ(t)) and

(ii) λ is an integral curve of the C∞-Hamiltonian vector field XHmax
L

.

Proof. This will follow from the Maximum Principle that we state precisely in
Section S4.2.2. We leave the translation to this special case to the reader. �

Now we adapt the preceding theorem to a control-theoretic setting. It is
convenient in this development to allow a slightly more general class of control
system than the control-affine systems considered in the text.
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Definition S4.7 (Control system). For r ∈ N∪ {∞}∪ {ω}, a Cr-control
system is a triple (M, f, U) where

(i) M is a Cr-manifold,
(ii) f : M× Rm → TM is a map with the following properties:

(a) f(x, u) ∈ TxM for each (x, u) ∈ M× Rm;
(b) f is of class C1;
(c) the map x 7→ f(x, u) is of class Cr for each u ∈ Rm,

and
(iii) U ⊂ Rm. •

Clearly, control-affine systems are examples of control systems as per the
preceding definition. In our statement of the Maximum Principle, the extra
structure afforded by control-affine systems will not be useful, and will simply
complicate the notation. There are generalizations of the notion of a control
system (e.g., [Nijmeijer and van der Schaft 1990, page 16]), but we shall not
find these sorts of generalities illuminating, especially since Definition S4.7
includes control-affine systems.

A control system (M, f, U) gives rise to the control equations

γ′(t) = f(γ(t), u(t)). (S4.5)

A controlled trajectory for a control system Σ = (M, f, U) is a pair (γ, u)
where γ : I → M and u : I → U have the property that u is locally integrable
and γ satisfies (S4.5). Thus γ is locally absolutely continuous. We denote by
Ctraj(Σ) the set of controlled trajectories for Σ. A controlled arc for Σ is
a controlled trajectory defined on a compact interval, i.e., an interval of the
form I = [a, b]. We denote by Carc(Σ) the set of controlled arcs for Σ.

We now suppose that we have a C∞-control system Σ = (M, f, U). Note
then that the admissible velocities at x ∈ M are now parameterized by the
control set U . Therefore, a Lagrangian will now be a function, not on TM,
but on M × U . Thus, for such a Lagrangian and for (γ, u) ∈ Carc(Σ) with u
and γ defined on [a, b], we define

AΣ,L(γ, u) =
∫ b

a

L(u(t), γ(t)) dt.

Let us state a problem related with this setting.

Problem S4.8. Given xa, xb ∈ M, find (γ, u) ∈ Carc(Σ) that minimizes AΣ,L

subject to the constraint that γ(a) = xa and γ(b) = xb. •

We now argue from Theorem S4.6 to a proposed (but imprecisely stated)
solution to Problem S4.8. The objective is to establish a link from the calculus
of variations to optimal control. The control Hamiltonian for Σ and L is
the function on T∗M× U given by

HΣ,L(αx, u) = 〈αx; f(x, u)〉 − L(x, u).
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Where in the calculus of variations we chose the velocity vx to maximize the
Hamiltonian with αx ∈ T∗M fixed, we now fix αx ∈ T∗M and maximize the
control Hamiltonian:

Hmax
Σ,L (αx) = sup {HΣ,L(αx, u) | u ∈ U} .

With Theorem S4.6 in mind, we state the following conjecture.2

Conjecture S4.9 (Näıve, incorrect version of the Maximum Princi-
ple). If (γ, u) ∈ Carc(Σ) solves Problem S4.8, then there exists an LAC
covector field λ along γ such that

(i) HΣ,L(λ(t), u(t)) = Hmax
L (λ(t)) and

(ii) λ is an integral curve of the C∞-Hamiltonian vector field XHmax
Σ,L

.

We devote the next section to stating the correct version of the preceding
conjecture. As we shall see, many of the essential features of the conjecture
are correct, but certain hypotheses are missing. Also, the complete statement
of the Maximum Principle contains slightly more information that our con-
jecture.

S4.2 The Maximum Principle

In this section, we continue the development from the preceding section, but
now we are significantly more precise in our statement of the optimal control
problem, and in our necessary condition, the Maximum Principle, for a solu-
tion to this problem. In keeping with the flavor of the treatment in the text,
we state a geometric version of the Maximum Principle. This differs somewhat
from some standard treatments for which states typically live in an open sub-
set of Euclidean space. It also bears mentioning that the Maximum Principle
on Euclidean space does not imply the Maximum Principle on manifolds as
we state it here. While it is natural to extend the statement of the Maximum
Principle from Euclidean space to manifolds, the proof does not extend so
easily. We rely on the extension of Sussmann [1997] of the Maximum Prin-
ciple to manifolds. However, our framework is significantly less general than
Sussmann’s. We do, however, employ the notion of a control system from
Definition S4.7 which generalizes the notion of a control-affine system.

We begin with a precise statement of the sorts of optimal control problems
we consider.
2 Actually, this is not a conjecture, since we know it to be false. We hope the reader

can forgive the abuse of style.
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S4.2.1 An optimal control problem

We consider a C∞-control system Σ = (M, f, U) as in Definition S4.7, and
additionally consider the added data of a cost function3 for Σ that is de-
fined to be a continuous function F : M × Rm → R for which the function
x 7→ F (x, u) is of class C∞ for u ∈ Rm. Although we are only interested in
the value of F on M×U , it is convenient to suppose F to be the restriction of
a continuous function on M× Rm. Note that the function (t, x) 7→ F (x, u(t))
is an LIC∞-function if (γ, u) ∈ Carc(Σ). We shall say that (γ, u) ∈ Ctraj(Σ)
is F -acceptable if the function t 7→ F (γ(t), u(t)) is locally integrable. We
denote by Ctraj(Σ, F ) the subset of Ctraj(Σ) consisting of F -acceptable con-
trolled trajectories. We similarly denote by Carc(Σ, F ) the subset of Carc(Σ)
consisting of F -acceptable controlled arcs.

For (γ, u) ∈ Carc(Σ, F ) with u and γ defined on [a, b], define

AΣ,F (γ, u) =
∫ b

a

F (γ(t), u(t)) dt.

The map Carc(Σ, F ) 3 (γ, u) 7→ AΣ,F (γ, u) is the objective function . Let
S0 and S1 be disjoint submanifolds of M. We denote by

Carc(Σ, F, S0, S1) = {(γ, u) ∈ Carc(Σ, F )| γ(a) ∈ S0 and γ(b) ∈ S1,
u and γ are defined on [a, b] for some a, b ∈ R}.

In like fashion, for a, b ∈ R with a < b, we define

Carc(Σ, F, S0, S1, [a, b]) = {(γ, u) ∈ Carc(Σ, F )| u and γ
are defined on [a, b] and γ(a) ∈ S0 and γ(b) ∈ S1}.

The problems concerning the optimal path connecting two submanifolds are
stated as follows.

Definition S4.10 (Optimal control problems). Let Σ = (M, f, U) be a
C∞-control system, let F be a cost function for Σ, and let S0 and S1 be
disjoint submanifolds of M.

(i) A controlled arc (γ∗, u∗) ∈ Carc(Σ, F, S0, S1) is a solution of
P(Σ, F, S0, S1) if AΣ,F (γ∗, u∗) ≤ AΣ,F (γ, u) for every (γ, u) ∈
Carc(Σ, F, S0, S1).

(ii) A controlled arc (γ∗, u∗) ∈ Carc(Σ, F, S0, S1, [a, b]) is a solution of
P[a,b](Σ, F, S0, S1) if AΣ,F (γ∗, u∗) ≤ AΣ,F (γ, u) for every (γ, u) ∈
Carc(Σ, F, S0, S1, [a, b]). •

3 Many authors calls such functions Lagrangians. However, since we will be deal-
ing with control systems whose dynamics themselves are sometimes Lagrangian,
we refrain from using this notation as it might lead to one Lagrangian too many.
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A special case of this problem occurs when S0 = {x0} and S1 = {x1} for
two points x0, x1 ∈ M. The problem P(Σ, F, S0, S1) is called a free interval
problem , since the interval of definition of solutions is left unspecified. Sim-
ilarly, the problem P[a,b](Σ, F, S0, S1) is called a fixed interval problem ,
since the interval of definition of solutions is part of the problem statement.

S4.2.2 The Maximum Principle

Now that we have stated clearly the optimal control problems we wish to
investigate, let us state necessary conditions for solutions of this problem.
Key to the necessary conditions of the Maximum Principle is the use of a
Hamiltonian formalism. Let Σ = (M, f, U) be a C∞-control system and let F
be a cost function for Σ. We define the Hamiltonian HΣ,F as a function on
T∗M× Rm by

HΣ,F (αx, u) = αx · f(x, u)− F (x, u).

From this we define the maximum Hamiltonian as the function on T∗M
defined by

Hmax
Σ,F (αx) = sup {HΣ,F (αx, u) | u ∈ U} ,

and we adopt the notation Hmax
Σ,F (αx) = +∞ if, for each C ∈ R, there ex-

ists u ∈ U such that HΣ,F (αx, u) > C. If u ∈ U has the property that
HΣ,F (αx, u) = Hmax

Σ,F (αx), then we say Hmax
Σ,F is realized by u at αx. If

(γ, u) ∈ Carc(Σ, F ), then the function Hu
Σ,F (t, αx) 7→ HΣ,F (αx, u(t)) is LIC∞.

Therefore, corresponding to this function will be an LIC∞-Hamiltonian vector
field XHu

Σ,F
on T∗M.

If (γ, u) ∈ Carc(Σ, F ) with u and γ defined on an interval [a, b], then an
LAC covector field χ : [a, b] → T∗M along γ is maximizing for (Σ, F ) along
u if

HΣ,F (χ(t), u(t)) ≤ Hmax
Σ,F (χ(t))

for almost every t ∈ [a, b].
We now state the Maximum Principle as we shall employ it.

Theorem S4.11 (Maximum Principle). Let Σ = (M, f, U) be a C∞-
control system with F a cost function for Σ, and let S0 and S1 be dis-
joint submanifolds of M. Suppose that (γ, u) ∈ Carc(Σ, F ) is a solution of
P[a,b](Σ, F, S0, S1). Then there exists an LAC covector field χ : [a, b] → T∗M
along γ and a constant χ0 ∈ {0, 1} with the following properties:

(i) χ(a) ∈ ann(Tγ(a)S0) and χ(b) ∈ ann(Tγ(b)S1);
(ii) t 7→ χ(t) is an integral curve of XHu

Σ,χ0F
;

(iii) χ is maximizing for (Σ, χ0F ) along u;
(iv) either χ0 = 1 or χ(a) 6= 0;
(v) there exists a constant C ∈ R such that HΣ,F (χ(t), u(t)) = C a.e.

If (γ, u) is a solution of P(Σ, F, S0, S1), then conditions (i)–(iv) hold, and
condition (v) can be replaced with
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(vi) HΣ,F (χ(t), u(t)) = 0 a.e.

Remarks S4.12. 1. If S0 = {x0}, then χ(a) is unrestricted (modulo require-
ment (iv)). Similarly, if S1 = {x1}, then χ(b) is unrestricted.

2. Since the Hamiltonian vector field XHu
Σ,F

is linear (Remark S1.11–2), the
condition (iv) in the statement of the Maximum Principle asserts that
(χ0, χ(t)) will be non-zero for t ∈ [a, b]. •

Let us write the equations for integral curves of Xu
HΣ,χ0F

in local coordi-
nates (x,p) for T∗M. First of all, the Hamiltonian in local coordinates has the
local representative

(x,p, u) 7→ 〈〈p, f̃(x, u(t))〉〉Rn − χ0F̃ (x, u(t)),

where f̃ and F̃ are the local representatives of f and F , respectively. From
this, using the form (S1.1) for a Hamiltonian vector field on T∗M, we see that
the governing differential equations for XHu

Σ,χ0F
are

ẋi(t) = f̃ i(x(t), u(t)), i ∈ {1, . . . , n},

ṗi(t) = − ∂f̃ j

∂xi
(x(t), u(t))pj(t) + χ0

∂F̃

∂xi
(x(t), u(t)), i ∈ {1, . . . , n}.

The first n of these equations are simply the control equations. The second n of
these equations are frequently called the adjoint equation . A difficulty with
this terminology is that there is no natural coordinate-invariant object associ-
ated to these equations. What is coordinate-invariant are both components of
Hamilton’s equations. To get around this matter, and come up with a version
of the adjoint equation, one must introduce extra structure into the problem.
For example, for systems on open subsets of Euclidean space, and for linear
systems, one has a natural trivialization of the tangent and cotangent bundles
of M, and so Hamilton’s equations naturally decouple into an “x-part” and a
“p-part.” Sussmann [1997] uses the structure of a reference trajectory to talk
about a differential operator on sections of T∗M along the reference trajec-
tory. For those familiar with the concept, this is entirely along the lines of the
so-called “Lie drag” (see [Crampin and Pirani 1986, Section 3.5]). We shall
see in Section S4.4 that the structure of an affine connection gives us a natural
way of extracting a coordinate-invariant version of the adjoint equation from
the vector field XHu

Σ,χ0F
.

S4.2.3 Extremals

In this section we introduce some useful terminology associated to controlled
arcs satisfying the necessary conditions of the Maximum Principle.

Definition S4.13 (Extremal). Let (M, f, U) be a C∞-control system with
a cost function F . Let P be either P(Σ, F, S0, S1) or P[a,b](Σ, F, S0, S1).
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(i) A controlled extremal for P is (γ, u) ∈ Carc(Σ, F ) that satisfies cor-
responding necessary conditions of Theorem S4.11.

(ii) An absolutely continuous curve γ : [a, b] → M is an extremal for P if
there exists a control u such that (γ, u) is a controlled extremal for P.

(iii) A integrable control u : [a, b] → U is an extremal control for P if
there exists a curve γ on M such that (γ, u) is a controlled extremal for
P. •

Of course, controlled extremals need not be solutions of P(Σ, F, S0, S1)
or P[a,b](Σ, F, S0, S1), but the converse is necessarily true.

It is sometimes also useful to give names to the other objects arising from
the conditions in the Maximum Principle.

Definition S4.14 (Adjoint covector field and constant Lagrange mul-
tiplier). Let (M, f, U) be a C∞-control system with a cost function F . Let
(γ, u) be a controlled extremal for one of the problems P(Σ, F, S0, S1) or
P[a,b](Σ, F, S0, S1), with χ a covector field along γ, and χ0 ∈ {0, 1} as in
Theorem S4.11. Then χ is a adjoint covector field and χ0 is an constant
Lagrange multiplier . •

Note that, for a given controlled extremal (γ, u), there may be multiple
adjoint covector fields and constant Lagrange multipliers.

There is a fundamental dichotomy in classes of extremals, depending es-
sentially on whether the constant Lagrange multiplier is zero or one.

Definition S4.15 (Normal and abnormal controlled extremals). Let
(M, f, U) be a C∞-control system with a cost function F . A controlled ex-
tremal (γ, u) for P(Σ, F, S0, S1) or P[a,b](Σ, F, S0, S1), satisfying the neces-
sary conditions of Theorem S4.11 with χ0 = 1, is called normal . A controlled
extremal is abnormal if it satisfies the necessary conditions of Theorem S4.11
only for χ0 = 0.

An extremal γ is normal (resp. abnormal) if there exists a control u
such that (γ, u) is a normal (resp. abnormal) controlled extremal. •

The wording here must be correctly understood. An abnormal controlled
extremal is not one that satisfies the necessary conditions of Theorem S4.11
with χ0 = 0. It is one that satisfies the necessary conditions of Theorem S4.11
with χ0 = 0, but cannot satisfy the necessary conditions of Theorem S4.11
with χ0 = 1. A discussion of abnormality is given in Section S4.3.2, and an
example possessing abnormal controlled extremals is given in Section S4.3.3.
That abnormal controlled extremals can be optimal in the case of sub-
Riemannian geometry4 has been shown by Montgomery [1994] and Liu and
Sussmann [1994].

4 In sub-Riemannian geometry, one studies distributions that possess a smooth
assignment of an inner product to each fiber. One then considers curves whose
tangent vector fields take values in the distribution. For such a curve, one can
define its length in a manner entirely analogous to the Riemannian case. The
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One of the remarkable features of the Maximum Principle is that the
controlled extremal controls can sometimes be explicitly determined from the
condition that the Hamiltonian is maximizing along an extremal. This will
be illustrated in parts of the subsequent development, and in some examples
to follow. However, cases can arise where the condition that the Hamiltonian
be maximized gives no information about the control. This gives rise to the
following definition.

Definition S4.16 (Regular and singular controlled extremals). Let
(M, f, U) be a C∞-control system with a cost function F . Let (γ, u) be a con-
trolled extremal for P(Σ, F, S0, S1) or P[a,b](Σ, F, S0, S1), defined on [a, b],
with χ0 the constant Lagrange multiplier and χ the adjoint covector field.
We say that (γ, u) is singular if, for each t ∈ [a, b], HΣ,χ0F (χ(t), ū) =
Hmax

Σ,χ0F
(χ(t)) for all ū ∈ U . A controlled extremal that is not singular is

regular .
An extremal γ is singular (resp. regular) if there exists a control u such

that (γ, u) is a singular (resp. regular) controlled extremal. •

Thus the definition formalizes the notion that the maximization condition
gives no information about the extremal control. Dunn [1967] proposes a more
refined notion of singularity where one allows for extremals that are singular
in our sense along one part of the extremal, and nonsingular on the rest.
For control-affine systems, the classification of singular controlled extremals
involves Lie brackets. We refer the reader to the book of Bonnard and Chyba
[2003] for a detailed discussion of singular controlled extremals. In the paper of
Chyba, Leonard, and Sontag [2003], it is shown that for mechanical systems,
there can be singular extremals that are optimal.

S4.3 Coming to an understanding of the Maximum
Principle

In Section S4.1 we illustrated the connection between the classical calculus
of variations and the Maximum Principle. In this section we give additional
interpretations of the Maximum Principle, but now in terms of concepts from
control theory.

S4.3.1 The relationship between controllability and optimal
control

There is a not-so-transparent link between optimal control and controllability
that we explore in this section. First let us expose a property of solutions to
optimal control problems.

optimization problem is then to find curves connecting two points with the min-
imum length. We refer to [Montgomery 2002] for a discussion of some aspects of
sub-Riemannian geometry.
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Proposition S4.17 (Subarcs of minimizers are minimizers). Let Σ =
(M, f, U) be a control system with F a cost function for Σ. Let a < b ∈ R and
let x0, x1 ∈ M. The following statements hold.

(i) If (γ, u) ∈ Carc(Σ, F ) solves P(Σ, F, {x0}, {x1}) and is defined on
[a, b], then, for each ã, b̃ ∈ [a, b], ã < b̃, (γ|[ã, b̃], u|[ã, b̃]) solves
P(Σ, F, {γ(ã)}, {γ(b̃)}).

(ii) If (γ, u) ∈ Carc(Σ, F ) solves P[a,b](Σ, F, {x0}, {x1}), then, for each
ã, b̃ ∈ [a, b] with ã < b̃, (γ|[ã, b̃], u|[ã, b̃]) solves
P[ã,b̃](Σ, F, {γ(ã)}, {γ(b̃)}).

Proof. (i) Suppose that (γ|[ã, b̃], u|[ã, b̃]) does not solve
P(Σ, F, {γ(ã)}, {γ(b̃)}). Then there exists (γ̄, ū) ∈ Carc(Σ, F, {γ(ã)}, {γ(b̃)})
such that AΣ,F (γ|[ã, b̃], u|[ã, b̃]) > AΣ,F (γ̄, ū). Suppose that (γ̄, ū) is defined
on [ā, b̄]. Then define a controlled trajectory (γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) where

u1(t) = u(t), t ∈ [a, ã[ ,
u2(t) = ū(t+ ā− ã), t ∈ [ã, ã+ (b̄− ā)],

u3(t) = u(t+ b̃− ã− (b̄− ā)), t ∈ ]ã+ (b̄− ā), b+ (b̄− ā)− (b̃− ã)],

and γ1(0) = x0. Note that (γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) ∈ Carc(Σ, F, {x0}, {x1})
and that

AΣ,F (γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) < AΣ,F (γ, u),

contradicting (γ, u) being a solution to P(Σ, F, {x0}, {x1}). This proves (i).
(ii) Suppose that (γ|[ã, b̃], u|[ã, b̃]) does not solve

P[ã,b̃](Σ, F, {γ(ã)}, {γ(b̃)}). Then there exists (γ̃, ũ) ∈
Carc(Σ, F, {γ(ã)}, {γ(b̃)}, [ã, b̃]) such that AΣ,F (γ|[ã, b̃], u|[ã, b̃]) > AΣ,F (γ̃, ũ).
Then define a controlled trajectory (γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) where
u1 = u|[a, ã[ , u2 = ũ, and u3 = u| ]b̃, b] and γ1(0) = x0. Note that
(γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) ∈ Carc(Σ, F, {x0}, {x1}) and that

AΣ,F (γ1 ∗ γ2 ∗ γ3, u1 ∗ u2 ∗ u3) < AΣ,F (γ, u),

contradicting (γ, u) being a solution to P(Σ, F, {x0}, {x1}). This proves (ii).
�

Suppose that we are in possession of a control system Σ = (M, f, U) and
a cost function F for Σ. Associated with this is a new control system ΣF =
(MF , fF , U) where
1. MF = M× R,
2. fF (x, κ) = (f(x, u), (κ, F (x, u))) ∈ TM× R× R ' TMF , and
3. U = U (abuse of notation).
The equations governing this extended system are

γ′(t) = f(γ(t), u(t)), κ′(t) = F (γ(t), u(t)).
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Since κ(t) =
∫ t
a
F (γ(τ), u(τ)) dτ , the additional state thus keeps a run-

ning tab on the objective function. We consider the fixed time problem
P = P[0,T ](Σ, F, {x0}, {x1}), and we suppose that (γ, u) solves P. The op-
timal value of the objective function is then

Aopt
Σ,F (P) =

∫ T

0

F (γ(t), u(t)) dt.

In MF consider the ray

`x1,T =
{
(x1, t)

∣∣ t < Aopt
Σ,F (P)

}
.

Recall that RΣF
((x0, 0), T ) denotes the set of points reachable from (x0, 0)

by the extended system ΣF in time T . Clearly, we must have (γ(T ) =
x1, A

opt
Σ,F (P)) ∈ RΣF

((x0, 0), T ). One can say more, in fact, about the re-
lationship between the terminal point and the reachable set.

Proposition S4.18 (Minimizing arcs lie on the boundary of
the reachable set I). With the above notation, (x1, A

opt
Σ,F (P)) ∈

bd(RΣF
((x0, 0), T )). Furthermore, RΣF

((x0, 0), T ) ∩ `x1,T = ∅.

Proof. Let us prove the last statement first. Suppose there is a point (x1, κ) ∈
RΣF

((x0, 0), T ) ∩ `x1,T . Since (x1, κ) ∈ RΣF
((x0, 0), T ), there exists a con-

trolled trajectory (γ̃×σ, ũ) for ΣF such that (γ̃(T ), σ(T )) = (x1, κ). However,
this contradicts (γ, u) being a solution to P.

For the first assertion, note that, while (x1, A
opt
Σ,F (P)) ∈ RΣF

((x0, 0), T ),
every neighborhood of (x1, A

opt
Σ,F (P)) contains a point in `x1,T . Thus by

the first part of the proposition, every neighborhood of (x1, A
opt
Σ,F (P)) con-

tains a point not in RΣF
((x0, 0), T ). This means that (x1, A

opt
Σ,F (P)) ∈

bd(RΣF
((x0, 0), T )), as desired. �

Now let us consider the optimal control problem P = P(Σ, F, {x0}, {x1})
with free time interval. We take a solution (γ, u) of P defined on [0, T ], so
that the optimal value of the objective function is

Aopt
Σ,F (P) =

∫ T

0

F (γ(t), u(t)) dt.

The following result is analogous to Proposition S4.18.

Proposition S4.19 (Minimizing arcs lie on the boundary of
the reachable set II). With the above notation, (x1, A

opt
Σ,F (P)) ∈

bd(RΣF
((x0, 0),≤ T )). Furthermore, RΣF

((x0, 0),≤ T ) ∩ `x1,T = ∅.

Proof. Let us prove the last statement first. Suppose there is a point (x1, κ) ∈
RΣF

((x0, 0),≤ T ) ∩ `x1,T . Since (x1, κ) ∈ RΣF
((x0, 0),≤ T ), there exists a

controlled trajectory (γ̃ × σ, ũ) for ΣF such that (γ̃(T̃ ), σ(T̃ )) = (x1, κ) for
some T̃ ∈ ]0, T ]. However, this contradicts (γ, u) being a solution to P.
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For the first assertion, note that, while (x1, A
opt
Σ,F (P)) ∈ RΣF

((x0, 0),≤ T ),
every neighborhood of (x1, A

opt
Σ,F (P)) contains a point in `x1,T . Thus by

the first part of the proposition, every neighborhood of (x1, A
opt
Σ,F (P)) con-

tains a point not in RΣF
((x0, 0), T ). This means that (x1, A

opt
Σ,F (P)) ∈

bd(RΣF
((x0, 0), T )), as desired. �

Combining Propositions S4.17, S4.18 and S4.19, the picture that emerges
for an solution to an optimal control problem is that, at each time t, it should
lie on the boundary of the set of points reachable by ΣF in time t (resp. time
at most t) for fixed interval (resp. free interval) problems. A picture one could
have in mind regarding the proposition is presented in Figure S4.1. In the

x0

x1

`T,x1

RL,T

M

Figure S4.1. The relationship between optimal trajectories and reachable sets for
the extended system ΣF

figure, RF,T represents RΣF
((x0, 0), T ) or RΣF

((x0, 0),≤ T ), depending on
whether we are looking at the fixed or free interval problem, respectively.

In the case of time-optimal control, the relationship between optimal tra-
jectories and reachable sets can be made, not just for the reachable sets of
ΣF , but for those of Σ. Thus we take F (x, u) = 1, and consider the problem
P = P(Σ, F, {x0}, {x1}) of steering from x0 to x1 in minimum time.

Proposition S4.20 (Time-optimal trajectories lie on the boundary of
the reachable set). With the notation of the preceding paragraph, if (γ, u)
solves P and if the minimum time is T , then x1 ∈ bd(RΣ(x0, T )).

Proof. Note that

RΣF
((x0, 0), t) = RΣ(x0, t)× {t}, t ∈ [0, T ].
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If x1 ∈ int(RΣ(x0, T ), then (x1, T ) ∈ int(RΣF
((x0, 0),≤ T ). Now, since every

neighborhood of (x1, T ) ∈ MF contains a point in `x1,T , this means that there
are points in RΣF

((x0, 0),≤ T ) that are also in `x1,T . But this contradicts
Proposition S4.19. �

S4.3.2 An interpretation of the Maximum Principle

The above relationship between solutions to optimal control problems and
reachable sets actually leads to a fairly direct interpretation of the Maxi-
mum Principle. We suppose that (γ, u) is a solution to one of the optimal
control problems P(Σ, F, {x0}, {x1}) or P[a,b](Σ, F, {x0}, {x1}). Let us sim-
ply denote this by P. We suppose that the solution (γ, u) to P is defined
on [0, T ] for concreteness. If P is the free interval problem, then let us de-
note RF,T = RΣF

((x0, 0),≤ T ), and if P is the fixed interval problem, then
let us denote RF,T = RΣF

((x0, 0), T ). Let us similarly denote RF,T as either
RΣ(x0,≤ T ) or RΣ(x0, T ), respectively. Let us denote by (γF , u) the controlled
trajectory of ΣF = (MF , fF , U) corresponding to (γ, u). We know then that
γF (T ) ∈ bd(RF,T ). It turns out (this is nontrivial) that the boundary to the
reachable set RF,T possesses a normal as shown in Figure S4.2. This has to

ξL(0)

ξL(T )

ann(Λ(T ))
Λ(T )

ξL(τ)
Λ(τ)

ann(Λ(τ))

RL,T

RL,τ

Figure S4.2. The reachable set possesses a normal at its boundary

do somehow with the convexity of the reachable set. However, convexity in
a manifold is not so easy to understand; one has to make the notion stand
up using the “tangent space” to the boundary of the reachable set. In any
case, the normal vector, denoted by Λ(T ) in Figure S4.2, should be thought
of as being in T∗γF (T )MF , and coann(Λ(T )) is then a hyperplane in TγF (T )MF
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“tangent” to the boundary. But we know that, not only does γF (T ) lie on the
boundary of RF,T , but, for any τ ∈ [0, T ], we have γF (τ) ∈ bd(RF,τ ). There-
fore, the normal construction at time T can be applied for all τ ∈ [0, T ] (again
see Figure S4.2). Thus we end up with a covector field Λ along γF . Now
consider the reference flow Φfu

t1,t2 defined by the Carathéodory vector field
fF,u : (t, (x, κ)) 7→ fF ((x, κ), u(t)). This flow will generate the extremal from
γF (0) to γF (T ) as in Figure S4.2 (this is the dashed arc in the figure). Since
ΦfF,u

τ,T (RF,τ ) ⊂ RF,T , we can choose Λ(τ) such that T ∗γF (τ)(Φ
fF,u

τ,T )(Λ(τ)) =
Λ(T ). What one can then show is that the act of defining the covector field Λ
such that T ∗γF (τ)(Φ

fF,u

τ,T )(Λ(τ)) = Λ(T ) for each τ ∈ [0, T ] is exactly equivalent
to defining Λ as being an integral curve for the Hamiltonian vector field with
LIC∞ HamiltonianHfF,u

(t, α(x,κ)) = α(x,κ)·fF ((x, κ), u(t)). This comes about
essentially for the following reason. The flow of the tangent lift of fF,u will
have the property that it maps tangent spaces to the reachable set to other
tangent spaces to the reachable. This requires proof, but is certainly believ-
able if one refers to the discussion of the tangent lift in Section S1.2.1. Now,
by understanding the relationship between the tangent lift and the cotangent
lift (see Section S1.2.2), it becomes reasonable that the flow of the cotan-
gent lift should map the coannihilator of a tangent space to the reachable
set to another coannihilator of a tangent space to a reachable set. Now we
note the cotangent lift of fF,u is exactly the Hamiltonian vector field with
LIC∞-Hamiltonian HfF,u

(see Remark S1.11–1).
This relationship between the Maximum Principle and the reachable set

also gives us a means of understanding what happens when we have an ab-
normal controlled extremal (γ, u). It turns out that the covector field Λ above
can be written Λ(τ) = (χ(τ), χ0) ∈ T∗γF (τ)MF ' T∗γ(τ)M × R. (The not-so-
obvious thing here is that χ0 is independent of τ .) If the controlled extremal
(γ, u) has the property that γ′(T ) is tangent to the boundary of RF,T , then
it must be the case that χ0 = 0. From the Maximum Principle, implicit in
this is the fact that, if γ′(T ) is tangent to RF,T , then γ′(τ) is tangent to RF,τ
for each τ ∈ [0, T ]. Thus abnormal controlled extremals can be thought of as
those that are tangent to the boundary of the reachable set for Σ. Note that it
may be possible to choose χ0 = 0 even for normal controlled extremals. What
distinguishes abnormal controlled extremals is that χ0 must be zero.

Now let us briefly consider this relationship between optimal control and
reachable sets as it pertains to the existence of solutions to optimal control
problems. Again, we consider the extended system ΣF with RF,T the corre-
sponding reachable sets, the exact nature of which depends on whether we
are considering the fixed or free interval problem. Since a controlled extremal
(γ, u) defined on [0, T ] and solving an optimal control problem P must satisfy
γF (T ) ∈ bd(RF,T ), this boundary of the reachable set must be nonempty. This
will frequently preclude the existence of solutions in cases where the controls
are not bounded. Certainly in time-optimal control, one very often bounds
the controls in order to ensure that the problem possesses a solution.
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S4.3.3 An example

We take the system Σ = (M, f, U) where
1. M = R2,
2. f((x1, x2), u) = x2 ∂

∂x1 + (−x1 + u) ∂
∂x2 ,

3. U = [−1, 1] ⊂ R.
The cost function we choose is that associated with time-optimization; thus
we take F (x, u) = 1. We consider the problem P(Σ, F, {(x1

0, x
2
0)}, {x1

1, x
2
1}).

The Hamiltonian for this system is

HΣ,F ((x,p), u) = p1x
2 − p2x

1 + p2u− 1.

This gives the equations governing controlled extremals as

ẋ1 = x2, ẋ2 = −x1 + u, ṗ1 = p2, ṗ2 = −p1.

We may solve the equations for the adjoint variables p1 and p2 directly:

p1(t) = A sin(t− φ), p2 = A cos(t− φ) (S4.6)

for some A,φ ∈ R.
The control u for a controlled extremal satisfies

p2(t)u(t) = max {p2(t)ũ | ũ ∈ U} ,

meaning that, when p2(t) < 0, we have u(t) = −1, and when p2(t) > 0 we
have u(t) = +1. Thus u(t) alternates between +1 and −1, depending on the
sign of p2(t). However, given the form of p2(t), this means that u(t) switches
every π seconds.

This shows that controlled extremals will be concatenations of solutions
of the two differential equations
1. ẋ1 = x2, ẋ2 = −x1 + 1 and
2. ẋ1 = x2, ẋ2 = −x1 − 1.
The solutions to the first equation are

x1(t) = B1 sin(t− ψ1) + 1, x2(t) = B1 cos(t− ψ1), (S4.7)

for constants B1, ψ1 ∈ R. These are simply circles in the (x1, x2)-plane cen-
tered at (1, 0). In like manner, the solutions for the other class of optimal arcs
are determined by

x1(t) = B2 sin(t− ψ2)− 1, x2(t) = B2 cos(t− ψ2), (S4.8)

for constants B2, ψ2 ∈ R. These are simply circles in the (x1, x2)-plane cen-
tered at (−1, 0). Thus, to steer from (x1

0, x
2
0) to (x1

1, x
2
1) in a time-optimal
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(−1, 0) (1, 0)

(x1

0, x
2

0)

(x1

1, x
2

1)

Figure S4.3. Two concatenations of circles to form an extremal. The solid line is
the solution to optimal control problem, and the dashed line is another extremal.

manner, one would go from (x1
0, x

2
0) to (x1

1, x
2
1) along a curve consisting of a

concatenation of circles centered at (1, 0) and at (−1, 0) (see Figure S4.3).
The question then arises, “What happens if p2(t) = 0 on an interval so that

we cannot determine u(t) using the condition that the control Hamiltonian be
maximized?” One can easily see that this is the case of a singular extremal.
In such a case, we note that (S4.6) implies that p1(t) is also zero on the same
interval. Since the differential equation for the (p1, p2) is linear, this means
that they must be identically zero along the entire extremal. Furthermore,
condition (vi) of Theorem S4.11 gives χ0 = 0, which violates condition (iv) of
Theorem S4.11. Thus this problem possesses no singular extremals.

Next we look at the abnormal controlled extremals. In this case constancy
(in fact, equality with zero) of the Hamiltonian, as guaranteed by the Maxi-
mum Principle, tells us that we must have

HΣ,0((x,p), u) = p1x
2 − p2x

1 + p2u = 0.

A straightforward calculation, using (S4.6), (S4.7) or (S4.8), and the fact that
u(t) = sign(p2(t)) gives

p1x
2 − p2x

1 + p2u = AB sin(ψ − φ).

Thus a controlled extremal is possibly abnormal if and only if ψ − φ = nπ,
n ∈ Z. Note that, to verify abnormality, one must also verify that there are
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no controlled extremals with χ0 = 1 that give the same controlled extremal,
but this is easily done in this example.

For this problem, there exist time-optimal trajectories that are abnor-
mal controlled extremals. For example, suppose that one wishes to go from
(x1

0, x
2
0) = (0, 0) to (x1

1, x
2
1) = (2, 0). In this case the time-optimal control is

given by u(t) = 1 that is applied for π seconds. The corresponding trajectory
in state space is

x1(t) = − cos t+ 1, x2(t) = sin t.

That this is the time-optimal trajectory is intuitively clear: one pushes as
hard as one can in the direction one wants to go until one gets there. How-
ever, this controlled extremal is abnormal. Let us see how this works. Since the
controlled trajectory (γ, u) just described is minimizing, it must satisfy the
conditions of the Maximum Principle. In particular, the maximization con-
dition on the Hamiltonian must be realized. This means that p2(t) must be
positive for 0 ≤ t ≤ π, except possibly at the endpoints. If p2(t) changes sign
in the interval [0, π], then u must also change sign, but this cannot happen
since u(t) = 1. This implies that p2(t) = A sin t, and so this immediately gives
p1(t) = −A cos t. We see then that we may take φ = π

2 and ψ = π
2 . Given our

characterization of abnormal controlled extremals, this shows that the time-
optimal control we have found is only realizable as an abnormal controlled
extremal.

Let us see if we can provide a geometric interpretation of what is going
on here. In Figure S4.4 we show a collection of concatenated extremals that

-2 -1 1 2

-2

-1

1

2

Figure S4.4. The set of points reachable from (0, 0) in time π

emanate from the origin. From this picture it is believable that the set of
points reachable from (0, 0) in time π is precisely the circle of radius 2 in
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the (x1, x2)-plane. Why are the points (±2, 0) distinguished? (We have only
looked at the point (2, 0), but the same arguments hold for (−2, 0).) Well,
look at how the extremals touch the boundary of the reachable set. Only at
(±2, 0) do the extremals approach the boundary such that they are tangent
to the supporting hyperplane. This is what we talked about at the conclusion
of Section S4.3.2.

S4.4 The Maximum Principle for affine connection
control systems

We now reap the benefits of the work in Supplement 1 to provide a concise
translation of the Maximum Principle for systems whose drift vector field is the
geodesic spray associated with an affine connection, and whose control vector
fields are vertically lifted vector fields. As we shall see, one of the interesting
features of the Maximum Principle for affine connection control systems is
that the equations for the Hamiltonian vector field in the Maximum Principle
decouple into the control equations, along with a separate adjoint equation
for the covector field along the controlled arc. The development of this relies
on the various splittings developed in Section S1.3. These splittings have the
additional feature of simplifying the form of the Hamiltonian function.

We adopt the notation for affine connection control systems from the text.
The only additional concept we require is that of a controlled arc for an affine
connection control system Σ = (Q,∇,Y , U), by which we mean a controlled
trajectory (γ, u) defined on a compact interval i.e., an interval of the form
[a, b]. The set of controlled arcs for Σ is denoted by Carc(Σ). In this section,
it will also be notationally convenient to apply the summation convention
to the linear combinations of the input vector fields. That is to say, we will
abbreviate

∑m
a=1 u

aYa with uaYa when it is convenient to do so.

S4.4.1 Optimal control problems for affine connection control
systems

Of course, since an affine connection control system defines a control-affine
system, and so a control system as per Definition S4.7, one may simply formu-
late an optimal control problem on TQ exactly as was done in Section S4.2.1.
However, we wish to choose a class of cost functions that reflects the fact that
the problem data for an affine connection control system is defined on Q.

Let Σ = (Q,∇,Y , U) be an affine connection control system. An Rm-
dependent (0, r)-tensor field on Q is a map A : Q × Rm → T 0

r (TQ) such
that
1. A is continuous, and
2. q 7→ A(q, u) is a C∞ (0, r)-tensor field for every u ∈ Rm.
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Note that we are really only interested in the value of Rm-dependent tensor
fields when evaluated at points (q, u) ∈ Q × U . However, for simplicity we
suppose them to be defined on all of Q × Rm. We let r ≥ 0 and let A : Q ×
Rm → T 0

r (TQ) be an Rm-dependent symmetric (0, r)-tensor field on Q. We
let f : R → R be a class C∞ function, and let A = (A, f). A cost function
for Σ is a function FA : TQ× Rm → R of the form

FA (vq, u) = f(A(q, u)(vq, . . . , vq)).

Let FA be a cost function for Σ as defined above. We say that (γ, u) ∈
Ctraj(Σ) is FA -acceptable if the function t 7→ FA (γ′(t), u(t)) is locally in-
tegrable. We denote by Ctraj(Σ, FA ) the set of FA -acceptable controlled tra-
jectories. Similarly, Carc(Σ, FA ) denotes the set of FA -acceptable controlled
arcs.

For (γ, u) ∈ Carc(Σ, FA ), where u and γ are defined on [a, b], we define

AΣ,FA (γ, u) =
∫ b

a

FA (γ′(t), u(t)) dt.

For q0, q1 ∈ Q, vq0 ∈ Tq0Q, and vq1 ∈ Tq1Q, we denote

Carc(Σ, FA , vq0 , vq1) = {(γ, u) ∈ Carc(Σ, FA )| γ′(a) = vq0
and γ′(b) = vq1 , where u and γ are defined on [a, b] for some a, b ∈ R}.

For fixed a, b ∈ R with a < b, we define

Carc(Σ, FA , vq0 , vq1 , [a, b]) = {(γ, u) ∈ Carc(Σ, FA )| u and γ
are defined on [a, b] and γ′(a) = vq0 and γ′(b) = vq1}.

The above subsets of controlled arcs correspond to fixing an initial and final
configuration and velocity. For affine connection control systems, it also makes
sense to consider only fixing the initial and final configuration while leaving
the velocities free. Thus we define

Carc(Σ, FA , q0, q1) = {(γ, u) ∈ Carc(Σ, FA )| γ(a) = q0 and γ(b) = q1

where u and γ are defined on [a, b] for some a, b ∈ R},

and, for fixed a, b ∈ R with a < b, we define

Carc(Σ, FA , q0, q1, [a, b]) = {(γ, u) ∈ Carc(Σ, FA )| where u and γ
are defined on [a, b] and γ(a) = q0 and γ(b) = q1}.

Now we define the control problems we consider.

Definition S4.21 (Optimal control problems for affine connection
control systems). Let Σ = (Q,∇,Y , U) be an affine connection control
system, let FA be a cost function for Σ, let q0, q1 ∈ Q, and let vq0 ∈ Tq0Q and
vq1 ∈ Tq1Q.
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(i) A controlled arc (γ∗, u∗) ∈ Carc(Σ, FA , vq0 , vq1) is a solution of
P(Σ, FA , vq0 , vq1) if AΣ,FA (γ∗, u∗) ≤ AΣ,FA (γ, u) for every
(γ, u) ∈ Carc(Σ, FA , vq0 , vq1).

(ii) A controlled arc (γ∗, u∗) ∈ Carc(Σ, FA , vq0 , vq1 , [a, b]) is a solution of
P[a,b](Σ, FA , vq0 , vq1) if AΣ,FA (γ∗, u∗) ≤ AΣ,FA (γ, u) for every
(γ, u) ∈ Carc(Σ, FA , vq0 , vq1 , [a, b]).

(iii) A controlled arc (γ∗, u∗) ∈ Carc(Σ, FA , q0, q1) is a solution of
P(Σ, FA , q0, q1) if AΣ,FA (γ∗, u∗) ≤ AΣ,FA (γ, u) for every
(γ, u) ∈ Carc(Σ, FA , q0, q1).

(iv) A controlled arc (γ∗, u∗) ∈ Carc(Σ, FA , q0, q1, [a, b]) is a solution of
P[a,b](Σ, FA , q0, q1) if AΣ,FA (γ∗, u∗) ≤ AΣ,FA (γ, u) for every (γ, u) ∈
Carc(Σ, FA , q0, q1, [a, b]). •

S4.4.2 Some technical lemmata

In our proof below of the Maximum Principle for affine connection control
systems, we shall need some computations concerning the representation of
various tensors in the splitting of T∗TQ described in Section S1.3.9. We gather
these in this section.

We shall need some notation involving symmetric (0, r)-tensor fields.
Let A be such a tensor field on Q. For v1, . . . , vr−1 ∈ TqQ, we define
Â(v1, . . . , vr−1) ∈ T∗qQ by

〈Â(v1, . . . , vr−1);w〉 = A(w, v1, . . . , vr−1), w ∈ TqQ.

We adopt the convention that, if A is a (0, 0)-tensor field (i.e., A is a function),
then Â = 0. Obviously this notation extends to tensor fields that are Rm-
dependent. The following lemma provides the form of a certain Hamiltonian
vector field that we will encounter.

Lemma S4.22. Let A be a symmetric (0, r)-tensor field on Q, let f : R →
R be of class C∞, and, in the splitting of T∗TQ defined in Section S1.3.9,
consider a function defined by

αvq
⊕ βvq

7→ f(A(vq, . . . , vq)).

The Hamiltonian vector field on T∗TQ generated by this function has the
decomposition

f ′(A(vq, . . . , vq))
(
0⊕ 0⊕

(
−∇A(vq, . . . , vq)

− r
2T

∗(Â(vq, . . . , vq), vq)
)
⊕ (−rÂ(vq, . . . , vq))

)
.

Proof. In natural coordinates for T∗TQ, the Hamiltonian function defined in
the lemma is given by

((q,v), (α,β)) 7→ f(Aj1···jrv
j1 · · · vjr ).
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The corresponding Hamiltonian vector field in natural coordinates is given by

f ′(Aj1···jrv
j1 · · · vjr )

(
−∂Aj1···jr

∂qi
vj1 · · · vjr ∂

∂αi
− rAij2···jrv

j2 · · · vjr ∂

∂βi

)
.

We now express this in a basis adapted to the splitting of TΛvq
T∗TQ to get

f ′(Aj1···jrv
j1 · · · vjr )

(
−

(∂Aj1···jr
∂qi

vj1 · · · vjr

− r

2
(Γ`ik + Γ`ki)v

kA`j2···jrv
j2 · · · vjr

) ∂

∂αi

− rAij2···jrv
j2 · · · vjr

( ∂

∂βi
+

1
2
(Γik` + Γi`k)v

` ∂

∂αk

))
.

From this we see that the representation of the Hamiltonian vector field is

αvq ⊕ βvq 7→ f ′(A(vq, . . . , vq))
(
0⊕ 0

⊕
(
−∇A(vq, . . . , vq)− r

2T
∗(Â(vq . . . , vq), vq)

)
⊕ (−rÂ(vq, . . . , vq))

)
.

This completes the proof. �

The lemma clearly extends to Rm-dependent tensor fields.
This is an appropriate setting in which to present the following lemma,

although it will not be used until Section S4.5. As we talk about symmetric
(0, r)-tensor fields, we may also talk about symmetric (r, 0)-tensor fields. And
we generate for these latter some notation similar to that generated for the
former. Precisely, if B is a symmetric (r, 0)-tensor field and if α1, . . . , αr−1 ∈
T∗qQ, then we define B̂(α1, . . . , αr−1) ∈ TqQ by

〈β; B̂(α1, . . . , αr−1)〉 = B(β, α1, . . . , αr−1), β ∈ T∗qQ.

We now state the lemma.

Lemma S4.23. Let B be a symmetric (r, 0)-tensor field on Q and define a
function on T∗TQ by

αvq
⊕ βvq

7→ B(βvq
, . . . , βvq

).

The Hamiltonian vector field generated by this function has the representation

0⊕ (rB̂(βvq
, . . . , βvq

))⊕
(
∇B(βvq

, . . . , βvq
)− r

2T
∗(βvq

, B̂(βvq
, . . . , βvq

))
)
⊕ 0.

Proof. In natural coordinates for T∗TQ the function in the lemma has the
form

((q,v), (α,β)) 7→ Bj1···jrβj1 · · ·βjr .

Thus the Hamiltonian vector field associated with this function is given in
natural coordinates by
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rBij2···jrβj2 · · ·βjr
∂

∂vi
− ∂Bj1···jr

∂qi
βj1 · · ·βjr

∂

∂αi
.

If we write this in the splitting of TΛvq
T∗TQ, then we obtain the decomposi-

tion of the Hamiltonian vector field as

0⊕ (rB̂(βvq
, . . . , βvq

))⊕
(
∇B(βvq

, . . . , βvq
)− r

2T
∗(βvq

, B̂(βvq
, . . . , βvq

))
)
⊕ 0,

just as we have asserted. �

As a final technical lemma, we prove the form of (vlft(X))T
∗

for a vector
field X on Q. To give this formula, we need some notation. For αq ∈ T∗qQ,
define (∇X)∗(αq) ∈ T∗qQ by

〈(∇X)∗(αq);wq〉 = 〈αq;∇wq
X〉, wq ∈ TqQ.

We now adopt the same notation as used in Proposition S1.36. The proof is
accomplished easily in coordinates using the formula (S1.4).

Lemma S4.24. If X is a vector field on Q, then

(vlft(X))T
∗
(αvq

⊕ βvq
) = 0⊕X(q)⊕

(
1
2T

∗(βvq
, X(q))− (∇X)∗(βvq

)
)
⊕ 0.

Remark S4.25. This representation of (vlft(X))T
∗

has a further geometric
interpretation as follows. LetXT∗ be the cotangent lift ofX to a vector field on
T∗Q. This vector field may then be written with respect to the decomposition
corresponding to the connection on πT∗Q : T∗Q → Q given in Section S1.3.7.
If we do so, then we have

XT∗(αq) = X(q)⊕
(

1
2T

∗(αq, X(q))− (∇X)∗(αq)
)
.

The interested reader will see that this is consistent with our explanation in
Section S1.2.4 of the relationship between (vlft(X))T

∗
and vlft(XT∗). •

S4.4.3 The Maximum Principle for affine connection control
systems

Before stating the Maximum Principle for the systems we are investigating,
let us look at the Hamiltonian for these systems. In doing so, we will use
the splitting of T∗TQ that we presented in Proposition S1.36. Thus we write
Λvq ∈ T∗vq

TQ as αvq ⊕βvq for some appropriately defined αvq , βvq ∈ T∗qQ. The
Hamiltonian for an affine connection control system Σ with cost function
FA is the function on T∗TQ× Rm defined by

HΣ,FA (αvq
⊕ βvq

, u) = αvq
· vq + ua(βvq

· Ya(q))− FA (vq, u).

The maximum Hamiltonian is then defined in the usual manner:

Hmax
Σ,FA

(αvq
⊕ βvq

) = sup
{
HΣ,FA (αvq

⊕ βvq
, u)

∣∣ u ∈ U
}
.
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Let (γ, u) ∈ Carc(Σ, FA ) with u and γ defined on an interval [a, b]. An
LAD covector field λ : [a, b] → T∗Q along γ is maximizing for (Σ, FA )
along u if

HΣ,FA (θ(t)⊕ λ(t)) ≥ Hmax
Σ,FA

(θ(t)⊕ λ(t))

for almost every t ∈ [a, b], and where

θ(t) = 1
2T

∗(λ(t), γ′(t))−∇γ′(t)λ(t)

+ rλ0f
′(A(vq, . . . , vq))Â(γ′(t), . . . , γ′(t)), t ∈ [a, b].

Our main result in this chapter is the following.

Theorem S4.26 (Maximum Principle for affine connection control
systems). Let Σ = (Q,∇,Y , U) be an affine connection control system
with FA a cost function for Σ, where A = (A, f). Suppose that (γ, u) ∈
Carc(Σ, FA ) is a solution of P[a,b](Σ, FA , vq0 , vq1). Then there exists an LAD
covector field λ : [a, b] → T∗Q along γ and a constant λ0 ∈ {0, 1} with the
following properties:

(i) for almost every t ∈ [a, b] we have

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)− T ∗(∇γ′(t)λ(t), γ′(t))

= ua(t)(∇Ya)∗(λ(t))− λ0f
′(A(γ′(t), . . . , γ′(t)))

(
∇A(γ′(t), . . . , γ′(t))

− r(∇γ′(t)Â)(γ′(t), . . . , γ′(t))− r(r− 1)ua(t)Â(Ya(γ(t)), γ′(t), . . . , γ′(t))

+ rT ∗(Â(γ′(t), . . . , γ′(t)), γ′(t))
)

+ rλ0f
′′(A(γ′(t), . . . , γ′(t)))

(
∇A(γ′(t), . . . , γ′(t); γ′(t))

+ rua(t)A(Ya(γ(t)), γ′(t), . . . , γ′(t))
)
Â(γ′(t), . . . , γ′(t));

(ii) λ is maximizing for (Σ, λ0FA ) along u;
(iii) either λ0 = 1 or θ(a)⊕ λ(a) 6= 0;
(iv) there exists a constant C ∈ R such that HΣ,FA (θ(t) ⊕ λ(t), u(t)) = C

a.e.,
with

θ(t) = 1
2T

∗(λ(t), γ′(t))−∇γ′(t)λ(t)

+ rλ0f
′(A(vq, . . . , vq))Â(γ′(t), . . . , γ′(t)), t ∈ [a, b].

If (γ, u) is a solution of P(Σ, FA , vq0 , vq1), then conditions (i)–(iii) hold,
and condition (iv) can be replaced with

(v) HΣ,FA (θ(t)⊕ λ(t)) = 0 a.e.
If (γ, u) is a solution of P[a,b](Σ, FA , q0, q1), then conditions (i)–(iv)

hold and, in addition, λ(a) = 0 and λ(b) = 0. If (γ, u) is a solution
of P(Σ, FA , q0, q1), then conditions(i)–(iii) hold, condition (v) holds, and
λ(a) = 0 and λ(b) = 0.
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Proof. We will show the equivalence of the conditions in the theorem to those
in the general Maximum Principle, stated as Theorem S4.11, in the case when
S0 = {vq0} and S1 = {vq1}. First we relate the covector field λ along γ to the
integral curve χ of the Hamiltonian vector field with Hamiltonian HΣ,FA as
asserted in the Maximum Principle. We claim that the curve

t 7→
(

1
2T

∗(λ(t), γ′(t))−∇γ′(t)λ(t)

+ rλ0f
′(A(vq, . . . , vq))Â(γ′(t), . . . , γ′(t))

)
⊕ λ(t) (S4.9)

exactly represents χ with respect to our splitting of T∗γ′(t)TQ. To show this, we
must show that (S4.9) is an integral curve of the time-dependent Hamiltonian
vector field with Hamiltonian (t, αvq ⊕βvq ) 7→ HΣ,λ0FA (αvq ⊕βvq , u(t)). Note
that HΣ,λ0FA is the sum of three functions: (1) Λvq

7→ Λvq
· S(vq), (2) Λvq

7→
ua(t)(Λvq

·vlft(Ya(q))), and (3) Λvq
7→ −λ0FA (q, u(t)). Thus the Hamiltonian

vector field will be the sum of the three Hamiltonian vector fields correspond-
ing to the three Hamiltonians. Let us write these three Hamiltonian vector
fields in the splitting of TΛvq

T∗TQ. In each case we write, in the usual manner,
Λvq = αvq ⊕ βvq . By Propositions S1.29 and S1.36, the Hamiltonian vector
field for the Hamiltonian (1) has the representation

αvq ⊕ βvq 7→ vq ⊕ 0⊕
(
R∗(βvq , vq)vq + 1

2 (∇vq
T ∗)(βvq

, vq)

− 1
4T

∗(T ∗(βvq
, vq), vq)

)
⊕ (−αvq

).

By Lemma S4.24, the Hamiltonian vector field associated with the Hamilto-
nian (2) has the representation

αvq
⊕ βvq

7→ 0⊕ ua(t)Ya(q)

⊕
(
ua(t) 1

2T
∗(βvq

, Ya(q))− ua(t)(∇Ya)∗(βvq
)
)
⊕ 0.

Now let us compute the representation of the Hamiltonian vector field as-
sociated with the Hamiltonian (3). In this case, we use Lemma S4.22 to see
that the Hamiltonian vector field for the Hamiltonian (3) has the representa-
tion

αvq ⊕ βvq 7→ −λ0f
′(A(vq, . . . , vq))

(
0⊕ 0⊕

(
−∇A(vq, . . . , vq)

− r
2T

∗(Â(vq . . . , vq), vq)
)
⊕ (−rÂ(vq, . . . , vq))

)
.

Here we have suppressed the explicit dependence of A on u, but it should be
regarded as being implicit.

We now collect this all together. We write the integral curve of the Hamil-
tonian vector field as θ(t) ⊕ λ(t), similar to Lemma S1.37. From this lemma
we then have
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∇γ′(t)θ(t) = R∗(λ(t), γ′(t))γ′(t) + 1
2 (∇γ′(t)T

∗)(λ(t), γ′(t))

− 1
4T

∗(T ∗(λ(t), γ′(t)), γ′(t)) + ua(t) 1
2T

∗(λ(t), Ya(t))
− ua(t)(∇Ya)∗(λ(t)) + λ0f

′(A(γ′(t), . . . , γ′(t)))∇A(γ′(t), . . . , γ′(t))

+ r
2λ0f

′(A(γ′(t), . . . , γ′(t)))T ∗(Â(γ′(t), . . . , γ′(t)), γ′(t))

+ 1
2T

∗(θ(t), γ′(t)),

∇γ′(t)λ(t) = −θ(t) + rλ0f
′(A(γ′(t), . . . , γ′(t)))Â(γ′(t), . . . , γ′(t))

+ 1
2T

∗(λ(t), γ′(t)).

Note that the right-hand side of the second equation is LAC since t 7→ θ(t)⊕
λ(t) is the integral curve for an LIC∞-Hamiltonian vector field and since
t 7→ γ′(t) is LAC. Thus λ satisfies a first-order time-dependent differential
equation that is LAC in time. Therefore we may conclude that t 7→ λ(t) is
LAD. Thus we may covariantly differentiate the second of these equations and
substitute the first of the equations into the resulting expression. The result
is

∇2
γ′(t)λ(t) = −R∗(λ(t), γ′(t))γ′(t)+T ∗(∇γ′(t)λ(t), γ′(t))+ua(t)(∇Ya)∗(λ(t))

− λ0f
′(A(γ′(t), . . . , γ′(t)))

(
∇A(γ′(t), . . . , γ′(t))− r(∇γ′(t)Â)(γ′(t), . . . , γ′(t))

− r(r − 1)ua(t)Â(Ya(γ(t)), γ′(t), . . . , γ′(t)) + rT ∗(Â(γ′(t), . . . , γ′(t)), γ′(t))
)

+ rλ0f
′′(A(γ′(t), . . . , γ′(t)))

(
∇A(γ′(t), . . . , γ′(t); γ′(t))

+ rua(t)A(Ya(γ(t)), γ′(t), . . . , γ′(t))
)
Â(γ′(t), . . . , γ′(t)),

which holds a.e. From this we conclude that t 7→ χ(t) as defined by (S4.9)
has the property that χ′(t) = XHu

Σ,λ0FA
a.e. Thus the existence of λ satis-

fying (i) is equivalent to the existence of the integral curve χ as asserted in
Theorem S4.11.

We note that, for u ∈ Rm, the vector field vq 7→ S(vq)+uaYa(q) on TQ has
the form vq 7→ vq ⊕ uaYa(q) in the splitting of TTQ defined in Section S1.3.8.
This shows that the Hamiltonian HΣ,FA has the given form in the splitting
of T∗TQ.

It is then clear that the conditions (ii)–(v) are equivalent to the condi-
tions (iii)–(vi) of Theorem S4.11.

The final assertions regarding solutions of P[a,b](Σ, FA , q0, q1) and
P(Σ, FA , q0, q1) follow from Theorem S4.11 in the case where S0 = Tq0Q
and S1 = Tq1Q. Note that, in the splitting T∗vq0

TQ = T∗q0Q ⊕ T∗q0Q, we have
ann(Tv(Tq0Q)) = T∗q0Q⊕ {0} for v ∈ Tq0Q, and similarly for q1. �

Remarks S4.27. 1. Let us consider the import of the preceding theorem.
Were we to simply apply the Maximum Principle of Theorem S4.11, we
would obtain a first-order differential equation for a covector field along
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trajectories in TQ. Theorem S4.26 provides a second-order differential
equation for a covector field along trajectories in Q. But, more impor-
tantly, the differential equation governing the evolution of this covector
field on Q provides a clear indication of how the geometry of the con-
trol system enters into the optimal control problem. We shall exploit this
knowledge in the next section to formulate an optimal control problem
that clearly utilizes the geometry of the control system through its affine
connection.

2. We call the second-order equation for λ in (i) of Theorem S4.26 the ad-
joint equation for (Σ, FA ). Note that the left-hand side of this equation
is none other than the adjoint Jacobi equation. One of the features of our
constructions here is that we are able to intrinsically provide an equation
for the adjoint covector field that is decoupled from the control system
equations. This is generally not possible when talking about control sys-
tems on manifolds, but is possible here because of the existence of the
myriad Ehresmann connections associated to the affine connection ∇.

3. It is interesting and useful that we may trivially incorporate into Theo-
rem S4.26 systems with potential energy. Let us describe how this may
be done. One has a potential function V on Q and defines a Lagrangian
by L(vq) = 1

2G(vq, vq) − V (q), where G is a Riemannian metric on
Q. The equations of motion for the system with control vector fields
Y = {Y1, . . . , Ym} are then

G

∇γ′(t)γ
′(t) = −gradV (γ(t)) +

m∑
a=1

ua(t)Ya(γ(t)).

Clearly it makes no difference in the general scheme if we replace
G

∇ with
an arbitrary affine connection ∇, and replace gradV with a general vector
field Y0 on Q. The question is how to incorporate the vector field Y0 into our
affine connection control system (Q,∇,Y , U). We do this by defining a new
set Ỹ = {Y0, Y1, . . . , Ym} of control vector fields, and a new control set Ũ =
{1}×U ⊂ R×Rm ' Rm+1. One may now apply verbatim Theorem S4.26
to the new affine connection control system Σ̃aff = (Q,∇, Ỹ , Ũ). •

S4.4.4 Extremals

The language of Section S4.2.3 can be specialized to the affine connection
control system setting. A direct translation would give concepts defined in
terms of objects on TQ. However, since the whole point of this section was to
drop everything to Q, we should be precise and drop the language of extremals
to Q as well. Note that in doing so, we make a slight abuse of terminology,
since we use the same language as was used in Section S4.2.3.

Let us simply give the definitions, referring to Section S4.2.3 for discussion.
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Definition S4.28 (Extremal). Let (Q,∇,Y , U) be a C∞-affine connection
control system with a cost function FA , and let P be one of the four problems
of Definition S4.21.

(i) A controlled extremal for P is (γ, u) ∈ Carc(Σ, FA ) that satisfies
corresponding necessary conditions of Theorem S4.26.

(ii) An absolutely differentiable curve γ : [a, b] → Q is an extremal for P if
there exists a control u such that (γ, u) is a controlled extremal for P.

(iii) An integrable control u : [a, b] → U is an extremal control for P if
there exists a curve γ on Q such that (γ, u) is a controlled extremal for
P. •

Definition S4.29 (Adjoint covector field and constant Lagrange mul-
tiplier). Let (Q,∇,Y , U) be a C∞-affine connection control system with a
cost function FA . Let (γ, u) be a controlled extremal for one of the four prob-
lems of Definition S4.21, with λ a covector field along γ and λ0 ∈ {0, 1} as in
Theorem S4.26. Then λ is a adjoint covector field , and λ0 is a constant
Lagrange multiplier . •

Definition S4.30 (Normal and abnormal controlled extremals). Let
(Q,∇,Y , U) be a C∞-affine connection control system with a cost function
FA . A controlled extremal (γ, u) for one of the four problems of Defini-
tion S4.21, satisfying the necessary conditions of Theorem S4.26 with λ0 = 1,
is called normal . A controlled extremal is abnormal if it satisfies the nec-
essary conditions of Theorem S4.26 only for λ0 = 0.

An extremal γ is normal (resp. abnormal) if there exists a control u
such that (γ, u) is a normal (resp. abnormal) controlled extremal. •

Definition S4.31 (Regular and singular controlled extremals). Let
(Q,∇,Y , U) be a C∞-affine connection control system with a cost function
FA . Let (γ, u) be a controlled extremal for one of the four problems of Defi-
nition S4.21, defined on [a, b], with λ0 the constant Lagrange multiplier and λ
the adjoint covector field. We say that (γ, u) is singular if, for each t ∈ [a, b],
HΣ,λ0F (θ(t)⊕ λ(t), ū) = Hmax

Σ,λ0F
(θ(t)⊕ λ(t)) for all ū ∈ U , where θ is defined

as in Theorem S4.26. A controlled extremal that is not singular is regular .
An extremal γ is singular (resp. regular) if there exists a control u such

that (γ, u) is a singular (resp. regular) controlled extremal. •

In Section S4.7 we will classify all singular extremals for a planar rigid
body example.

S4.5 Force minimizing controls

The version of the Maximum Principle stated in Theorem S4.26 is quite gen-
eral, and much of the complexity in its statement is owed to that generality.
However, when looking at specific classes of optimal problems, the general
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form of the theorem can often be reduced to something more appealing, and
we now demonstrate this by beginning to look at a simple class of cost func-
tion. We consider an interesting special case of an optimal control problem
involving minimizing a function of the inputs. Since the inputs are coefficients
of the input vector fields, and the input vector fields are related to forces in
physical systems, we dub this the force minimization problem. This problem
was considered in the fully actuated case by Noakes, Heinzinger, and Paden
[1989] and Crouch and Silva Leite [1991]. A variant of the underactuated case
is considered by Silva Leite, Camarinha, and Crouch [2000].

S4.5.1 The force minimization problems

We suppose that Q is equipped with a Riemannian metric G. The cost function
we consider is

Fforce(vq, u) = 1
2G(uaYa(q), ubYb(q)). (S4.10)

Here, as in Section S4.4, we apply the summation convention to the expression
uaYa. In the parlance of Section S4.4.1, we use an Rm-dependent (0, 0)-tensor
field and we choose f = idR. We choose for our control set U = Rm.

For the sake of formality, let us define precisely the problem we are solving.

Definition S4.32 (Force minimization problems). Let Σ = (Q,∇,Y , U)
be an affine connection control system with U = Rm and with cost function
Fforce as defined by (S4.10). Let q0, q1 ∈ Q, and let vq0 ∈ Tq0Q and vq1 ∈ Tq1Q.

(i) A controlled arc (γ, u) is a solution of F (Σ, vq0 , vq1) if it is a solution
of P(Σ, Fforce, vq0 , vq1).

(ii) A controlled arc (γ, u) is a solution of F[a,b](Σ, vq0 , vq1) if it is a
solution of P[a,b](Σ, Fforce, vq0 , vq1).

(iii) A controlled arc (γ, u) is a solution of F (Σ, q0, q1) if it is a solution
of P(Σ, Fforce, q0, q1).

(iv) A controlled arc (γ, u) is a solution of F[a,b](Σ, q0, q1) if it is a solu-
tion of P[a,b](Σ, Fforce, q0, q1). •

We shall sometimes find it convenient to refer to the force minimization
problems as “force-optimal control.”

S4.5.2 General affine connections

It will be helpful to make a few straightforward constructions given the
data for the force minimization optimal control problems. We denote by Y

the input distribution on Q generated by Y = {Y1, . . . , Ym}, and we sup-
pose this distribution to have constant rank (but not necessarily rank m).
The map iY : Y → TQ denotes the inclusion. The map PY : TQ → TQ de-
notes the G-orthogonal projection onto the distribution Y, with PYq

being
its restriction to TqQ. We may then define a (0, 2)-tensor field GY on Q by
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GY|TqQ = P ∗Yq
(G|TqQ). That is, GY is the restriction to Y of G. We also have

the associated (2, 0)-tensor field hY defined by

hY(αq, βq) = GY(G](αq),G](βq)).

We define the vector bundle map h]Y : T∗Q → TQ by 〈αq;h]Y(βq)〉 =
hY(αq, βq).

We first look at the case when Σ = (Q,∇,Y , U) is a general affine connec-
tion control system with U = Rm. Thus, in particular,∇ is not the Levi-Civita
connection associated with the Riemannian metric G used to define the cost
function.

The Hamiltonian function on T∗TQ× Rm is given by

HΣ,Fforce(αvq
⊕ βvq

, u) = αvq
· vq + ua(βvq

· Ya(q))− 1
2G(uaYa(q), ubYb(q)).

Let us define Asing(Σ) ⊂ T∗TQ by

Asing(Σ) =
{
αvq ⊕ βvq

∣∣ βvq ∈ ann(Yq
}
).

Thus the restriction of HΣ,0 to Asing(Σ)× Rm is independent of u.
The following result gives the form of the maximum Hamiltonian and the

values of u by which the maxima are realized.

Lemma S4.33. The following statements hold.
(i) The maximum Hamiltonian for the cost function Fforce is given by

Hmax
Σ,Fforce

(αvq
⊕ βvq

) = αvq
· vq + 1

2hY(βvq
, βvq

).

If u ∈ Rm is a point at which Hmax
Σ,Fforce

is realized, then u is determined
by

uaYa(q) = PYq (G](βvq )). (S4.11)

(ii) The maximum Hamiltonian with zero cost function is

Hmax
Σ,0 (αvq ⊕ βvq ) =

{
αvq

· vq, αvq
⊕ βvq

∈ Asing(Σ),
∞, otherwise.

Proof. (i) We fix the state αvq
⊕ βvq

, and determine u so as to maximize
HΣ,Fforce(αvq

⊕ βvq
). We first note that, with the state fixed, we may think

of HΣ,Fforce as being a function on the subspace Yq of TqQ. Let us denote a
typical point in Yq by w and note that HΣ,Fforce , as a function on Yq, is

w 7→ αvq
· vq + βvq

· iYq
(w)− 1

2G(iYq
(w), iYq

(w))

= αvq
· vq + G(G](βvq

), iYq
(w))− 1

2G(iYq
(w), iYq

(w))

= αvq
· vq + G(PYq

(G](βvq
)), iYq

(w))− 1
2G(iYq

(w), iYq
(w)).



S4.5 Force minimizing controls S129

Since this is a negative-definite quadratic function of w, it will have a unique
maximum. DifferentiatingHΣ,Fforce with respect to w, and setting the resulting
expression to 0, shows that the maximum satisfies

iY(wmax) = PYq (G](βvq )).

Controls u that give wmax are thus as specified by (S4.11). This part of the
lemma is then proved by substituting the expression for wmax into HΣ,Fforce .

(ii) For zero cost function, HΣ,0 is an affine function of u. Thus it will be
bounded above if and only if the linear part is zero. This happens if and only
if αvq

⊕ βvq
∈ Asing(Σ). �

Remark S4.34. Note that the controls are uniquely determined by the state
if the vector fields Y1, . . . , Ym are linearly independent. Otherwise, there will
be multiple vectors u that satisfy (S4.11), all of which give rise to the same
maximum Hamiltonian Hmax

Σ,Fforce
. Note that, in using Theorem S4.26, we allow

λ0 = 0 for and only for initial conditions lying in Asing(Σ). We shall have more
to say about this in Section S4.5.5. •

It is possible to determine a simplified form for the controlled extremals
for the force minimization problem. To handle the abnormal case, we need
to define a new tensor. Let L(ann(Y) × Y;T∗Q) denote the vector bundle of
multilinear bundle maps from ann(Y) × Y to T∗Q. To describe the abnormal
controlled extremals, it will be helpful to define BY ∈ Γ∞(L(ann(Y)×Y;T∗Q))
by

〈BY(α, Y );X〉 = 〈α;∇XY 〉 .
That BY(α, Y ) does not depend on the derivative of Y follows since, for a
function f ∈ C∞(Q), we compute

〈BY(α, fY );X〉 = 〈α;∇X(fY )〉
= 〈α; f∇XY 〉+ 〈α; (LXf)Y 〉
= 〈fBY(α, Y );X〉 ,

since Y ∈ Y and λ ∈ ann(Y). We may now state the following theorem.

Theorem S4.35 (Maximum Principle for force minimization prob-
lem). Let Σ = (Q,∇,Y , U) be an affine connection control system with
U = Rm. Suppose that (γ, u) is a controlled extremal for F[a,b](Σ, vq0 , vq1)
or for F (Σ, vq0 , vq1) with u and γ defined on [a, b], and with λ the adjoint
covector field and λ0 the Lagrange multiplier. We have the following two sit-
uations.

(i) λ0 = 1: In this case, it is necessary and sufficient that γ and λ together
satisfy the differential equations

∇γ′(t)γ
′(t) = h]Y(λ(t)),

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)− T ∗(∇γ′(t)λ(t), γ′(t))

= T ∗(λ(t), h]Y(λ(t)))− 1
2∇hY(λ(t), λ(t)).

(S4.12)
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(ii) λ0 = 0: In this case, it is necessary and sufficient that
(a) ∇γ′(t)γ

′(t) = ua(t)Ya(γ(t)),
(b) λ(t) ∈ ann(Yγ(t)) for t ∈ [a, b], and
(c) λ satisfies the equation along γ given by:

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)− T ∗(∇γ′(t)λ(t), γ′(t))

= BY(λ(t), ua(t)Ya(t)).

If (γ, u) is a solution of F[a,b](Σ, q0, q1) or of F (Σ, q0, q1), then we ad-
ditionally have λ(a) = 0 and λ(b) = 0.

Proof. (i) We note that Lemma S4.33 provides for us a maximum Hamilto-
nian that is smooth. We may conclude that Hmax

Σ,Fforce
is constant a.e. along

the solutions. We conclude that, to compute the controlled extremals, it suf-
fices to compute trajectories of the Hamiltonian vector field with Hamiltonian
Hmax

Σ,Fforce
. We thus simply compute the equations corresponding to the Hamil-

tonian vector field with Hamiltonian

Hmax
Σ,Fforce

(αvq
⊕ βvq

) = αvq
· vq + 1

2hY(βvq
, βvq

).

As usual, we use the notation corresponding to the splitting of T∗TQ. We
also write the vector field in the splitting of T(T∗TQ) as we have been doing
all along. Thus the Hamiltonian vector field with Hamiltonian Hmax

Σ,Fforce
is the

sum of two Hamiltonians. By Theorem S1.38, the first Hamiltonian vector
field has the representation

vq ⊕ 0⊕
(
R∗(βvq

, vq)vq + 1
2 (∇vq

T ∗)(βvq
, vq)− 1

4T
∗(T ∗(βvq

, vq), vq)
)
⊕ (−αvq

).

By Lemma S4.23, the Hamiltonian vector field for the Hamiltonian
1
2hY(βvq

, βvq
) is

0⊕ (h]Y(βvq
))⊕

(
1
2∇hY(βvq

, βvq
)− 1

2T
∗(βvq

, h]Y(βvq
))

)
⊕ 0.

This immediately gives

∇γ′(t)γ
′(t) = h]Y(λ(t)),

which is the first of equations (S4.12). Now let θ(t)⊕λ(t) be the integral curve
over γ′ of the Hamiltonian vector field. By Lemma S1.37, we have

∇γ′(t)θ(t) = R∗(λ(t), γ′(t))γ′(t) + 1
2 (∇γ′(t)T

∗)(λ(t), γ′(t))

− 1
4T

∗(T ∗(λ(t), γ′(t))) + 1
2∇hY(λ(t), λ(t))

− 1
2T

∗(λ(t), h]Y(λ(t))) + 1
2T

∗(θ(t), γ′(t)),

∇γ′(t)λ(t) = − θ(t) + 1
2T

∗(λ(t), γ′(t)).

(S4.13)

Covariantly differentiating the second equation along γ gives
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∇2
γ′(t)λ(t) = −∇γ′(t)θ(t) + 1

2 (∇γ′(t)T
∗)(λ(t), γ′(t))

+ 1
2T

∗(∇γ′(t)λ(t), γ′(t)) + 1
2T

∗(λ(t), h]Y(λ(t))).

Substituting the first of equations (S4.13) gives the second of equa-
tions (S4.12), which thus completes the proof of this part of the lemma.

(ii) We first note that λ can be maximizing only if θ(t)⊕ λ(t) ∈ Asing(Σ)
for all t ∈ [a, b]. This means that λ(t) must annihilate Yγ(t). Since λ0 = 0, our
result follows from Theorem S4.26 and the definition of BY. �

Remarks S4.36. 1. The theorem implies that all normal controlled ex-
tremals for the force minimization problem are of class C∞.

2. If one happens to choose vq0 , vq1 ∈ TQ with the property that there is a
geodesic γ : [0, T ] → Q satisfying γ′(0) = vq0 and γ′(T ) = vq1 , then the
optimal control for the problems F (Σ, vq0 , vq1) and F[a,a+T ](Σ, vq0 , vq1),
a ∈ R, is the zero control.

3. The matter of investigating the existence of abnormal controlled extremals
that are also minimizers would appear likely to take on a flavor similar to
that of the sub-Riemannian case [see Liu and Sussmann 1994, Montgomery
1994].

4. If (γ, u) ∈ Carc(Σ), then

∇γ′(t)γ
′(t) = ua(t)Ya(γ(t)) =⇒

G(ua(t)Ya(γ(t)), ub(t)Yb(γ(t))) = G(∇γ′(t)γ
′(t),∇γ′(t)γ

′(t)).

Thus the force minimization problem may be seen as minimizing∫ b

a

G(∇γ′(t)γ
′(t),∇γ′(t)γ

′(t)) dt

over all LAD curves γ : [a, b] → Q subject to certain boundary conditions
(fixed or free velocity), and subject to the constraint that ∇γ′(t)γ

′(t) ∈
Yγ(t) a.e. This may be thought of as a higher-order version of the sub-
Riemannian geodesic problem. Indeed, note that the equations (S4.12) for
the controlled extremals involve only the restriction of G to the distribution
Y. In the fully actuated case (see next section) we have a classical calculus
of variations problem with a Lagrangian depending on first and second
time-derivatives. This is the approach taken in [Crouch and Silva Leite
1991, Noakes, Heinzinger, and Paden 1989, Silva Leite, Camarinha, and
Crouch 2000], for example. •

S4.5.3 The fully actuated case

As mentioned in the introduction, Crouch and Silva Leite [1991] and Noakes,
Heinzinger, and Paden [1989] consider the force minimization problem with
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the Levi-Civita connection and with full actuation. Let us now consider the
general case with full actuation. Thus in this section we let Σ = (Q,∇,Y , U)
be a fully actuated affine connection control system where U = Rm.

Let us first show that all controlled extremals for the fully actuated force
minimization problem are normal.

Proposition S4.37 (Normality of controlled extremals for fully ac-
tuated force minimization problem). Let Σ = (Q,∇,Y , U) be a fully
actuated affine connection control system with (γ, u) a controlled extremal
for one of the four problems of Definition S4.32. The corresponding constant
Lagrange multiplier λ0 is nonzero.

Proof. This follows from the Hamiltonian maximization condition. Since the
Hamiltonian is

HΣ,λ0Fforce(αvq ⊕ βvq , u) = αvq · vq + ua(βvq · Ya(q))−
λ0

2
G(uaYa(q), ubYb(q)),

the only way for the Hamiltonian to be maximum with λ0 = 0 is for βvq
to

be zero. This cannot happen since Theorem S4.26 asserts that both λ0 and λ
cannot be zero along an extremal. �

We may now concentrate on the normal case of Theorem S4.35. The sim-
plification here arises since hY becomes the vector bundle metric G−1 on T∗Q
induced by G. From Theorem S4.35, if (γ, u) is a solution of F (Σ, vq0 , vq1),
then we have

∇γ′(t)γ
′(t) = G](λ(t)),

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)− T ∗(∇γ′(t)λ(t), γ′(t)) = T ∗(λ(t),G](λ(t)))

− 1
2∇G−1(λ(t), λ(t)).

(S4.14)
We immediately see that the adjoint covector field λ is determined alge-
braically from the covariant derivative of γ along itself. This allows us to
eliminate the adjoint covector field from the equations (S4.14) as the follow-
ing result asserts.

Proposition S4.38 (Maximum Principle for fully actuated force min-
imization problem). Let Σ = (Q,∇,Y , U) be a fully actuated affine con-
nection control system with U = Rm, let (γ, u) be a controlled extremal for
one of the four problems of Definition S4.32, with u and γ defined on [a, b],
and let λ : [a, b] → T∗Q be the corresponding adjoint covector field. Then
λ(t) = G[(∇γ′(t)γ

′(t)) for t ∈ [a, b], and γ satisfies the equation
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∇3
γ′(t)γ

′(t) + G](R∗(G[(∇γ′(t)γ
′(t)), γ′(t))γ′(t))

−G](T ∗((∇γ′(t)G[)(∇γ′(t)γ
′(t)), γ′(t)))−G](T ∗(G[(∇2

γ′(t)γ
′(t)), γ′(t)))

−G](T ∗(G[(∇γ′(t)γ
′(t)),∇γ′(t)γ

′(t)))

+ 1
2G](∇G−1(G[(∇γ′(t)γ

′(t)),G[(∇γ′(t)γ
′(t))))

− (∇2
γ′(t)G

])(G[(∇γ′(t)γ
′(t)))− 2(∇γ′(t)G])((∇γ′(t)G[)(∇γ′(t)γ

′(t)))

− 2(∇γ′(t)G])(G[(∇γ′(t)γ
′(t))) = 0.

If (γ, u) is a solution of either F (Σ, q0, q1) or F[a,b](Σ, q0, q1), then we ad-
ditionally must have ∇γ′(a)γ

′(a) = 0 and ∇γ′(b)γ
′(b) = 0.

Proof. If we covariantly differentiate the first of equations (S4.14) along γ,
then we get

∇2
γ′(t)γ

′(t) = (∇γ′(t)G])(λ(t)) + G](∇γ′(t)λ(t)),

and differentiating the same way again gives

∇3
γ′(t)γ

′(t) = (∇2
γ′(t)G

])(λ(t)) + 2(∇γ′(t)G])(∇γ′(t)λ(t)) + G](∇2
γ′(t)λ(t)).

(S4.15)
Differentiating λ(t) = G[(∇γ′(t)γ

′(t)) gives

∇γ′(t)λ(t) = (∇γ′(t)G[)(∇γ′(t)γ
′(t)) + G[(∇2

γ′(t)γ
′(t)). (S4.16)

Combining (S4.15), (S4.16), and the second of equations (S4.14), the result
follows from a tedious computation. �

S4.5.4 The Levi-Civita affine connection

Now we specialize the constructions of the previous sections to the case when

∇ =
G

∇, the Levi-Civita connection determined by the Riemannian metric G
used in the definition of the cost function. In this case, matters simplify some-

what since
G

∇G = 0 and since
G

∇ is torsion-free. Let us state Theorem S4.35
for Levi-Civita connections.

Proposition S4.39 (Maximum Principle for force minimization
problem for Levi-Civita affine connection). Let G be a Riemannian met-

ric on Q, and consider the affine connection control system Σ = (Q,
G

∇,Y , U)
with U = Rm and with cost function Fforce defined using G. Suppose that
(γ, u) is a controlled extremal for F[a,b](Σ, vq0 , vq1) or for F (Σ, vq0 , vq1) with
u and γ defined on [a, b], and with λ the adjoint covector field and λ0 the
Lagrange multiplier. Let w = G] ◦λ. We have the following two situations.

(i) λ0 = 1: In this case, it is necessary and sufficient that γ and w together
satisfy the differential equations
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G

∇γ′(t)γ
′(t) = PY(w(t)),

G

∇2
γ′(t)w(t) +R(w(t), γ′(t))γ′(t) = − 1

2G](
G

∇GY(w(t), w(t))).

(ii) λ0 = 0: In this case, it is necessary and sufficient that
(a) ∇γ′(t)γ

′(t) = ua(t)Ya(γ(t)),
(b) w(t) ∈ Y⊥γ(t)) for t ∈ [a, b], and
(c) w satisfies the equation along γ given by:

∇2
γ′(t)w(t) +R(w(t), γ′(t))γ′(t) = BY(G[ ◦w(t), ua(t)Ya(t)).

If (γ, u) is a solution of F[a,b](Σ, q0, q1) or of F (Σ, q0, q1), then we ad-
ditionally have w(a) = 0 and w(b) = 0.

Proof. (i) Since
G

∇G = 0, we have

G

∇2
γ′(t)w(t) = G](

G

∇2
γ′(t)λ(t)). (S4.17)

A straightforward application of the definitions shows that

PY(w(t)) = G](h]Y(λ(t))).

Thus the first equation in part (i) holds. By equation (S1.22) from the proof
of Proposition S1.40, we have

R(w(t), γ′(t))γ′(t) = G](R∗(λ(t), γ′(t))γ′(t)). (S4.18)

Now let β ∈ Γ∞(T∗Q) and X = G](β) ∈ Γ∞(TQ). From the definition of hY

we have
hY(β(q), β(q)) = GY(X(q), X(q)).

Therefore, for w ∈ TqQ, we have

G

∇whY(β(q), β(q)) + 2hY(
G

∇wβ(q), β(q))

=
G

∇wGY(X(q), X(q)) + 2GY(
G

∇wX(q), X(q)).

Since
G

∇G = 0, we have ∇wβ(q) = G](∇wX(q)), from which we ascertain that

G

∇whY(λ(t), λ(t)) =
G

∇wGY(w(t), w(t)). (S4.19)

Bringing together equations (S4.17), (S4.18), and (S4.19), and the definition
of hY, gives the result by virtue of Theorem S4.35.

(ii) This is just a restatement of part (ii) of Theorem S4.35. �
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Now let us specialize to the fully actuated case. One applies Proposi-
tion S4.38 to show that the fully actuated extremals satisfy

G

∇3
γ′(t)γ

′(t) + G]
(
R∗(G[(

G

∇γ′(t)γ
′(t)), γ′(t))γ′(t)

)
= 0.

Now we recall the equation (S1.22) from the proof of Proposition S1.40 to
prove the following result that agrees with Crouch and Silva Leite [1991]
and Noakes, Heinzinger, and Paden [1989].

Proposition S4.40 (Maximum Principle for fully actuated force min-
imization problem with Levi-Civita affine connection). Let G be a
Riemannian metric on Q and consider the fully actuated affine connection

control system Σ = (Q,
G

∇,Y , U) with cost function Fforce defined using G.
A controlled extremal (γ, u) for one of the four problems of Definition S4.32,
with u and γ defined on [a, b], satisfies the differential equation

G

∇3
γ′(t)γ

′(t) +R(
G

∇γ′(t)γ
′(t), γ′(t))γ′(t) = 0.

If (γ, u) is either a solution of F (Σ, q0, q1) or F[a,b](Σ, q0, q1), then we ad-

ditionally have
G

∇γ′(a)γ
′(a) = 0 and

G

∇γ′(b)γ
′(b) = 0.

S4.5.5 Singular and abnormal extremals

In this section we state a result that brings together some of the statements
made in the preceding section, and gives a clear picture of the nature of the
singular and abnormal extremals for the force minimization problem.

Proposition S4.41 (Singular and abnormal extremals for the force
minimization problem). Let Σ = (Q,∇,Y ,Rm) be a C∞-affine connection
control system, and let (γ, u) be a controlled extremal for one of the four
problems of Definition S4.32, defined on [a, b]. Then the following statements
are equivalent:

(i) (γ, u) is abnormal;
(ii) (γ, u) is singular;

Either of the preceding two conditions implies the following:
(iii) any adjoint covector field λ along γ satisfies λ(t) ∈ ann(Yγ(t)) for each

t ∈ [a, b].
Finally

(iv) if the condition (iii) is satisfied, and if (γ, u) is normal, then
ua(t)Ya(γ(t)) = 0 for t ∈ [a, b].

Proof. Fix a state αvq
⊕ βvq

in T∗TQ, using the splitting of T∗TQ described
in Section S1.3.9. The Hamiltonian for the force minimization problem, with
this state fixed and with u varying, can be thought of as a function on Yq by
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w 7→ αvq
· vq + βvq

· w − 1
2λ0G(w,w).

The definition of the maximum Hamiltonian is achieved by maximizing this
function of w.

(i) =⇒ (ii) If (γ, u) is abnormal, then, for each t ∈ [a, b], u(t) satisfies

ua(t)(λ(t) · Ya(γ(t))) = sup
{
λ(t) · w | w ∈ Yγ(t)

}
,

where λ is an adjoint covector field for (γ, u). Since the function w 7→ λ(t) ·w
is linear, the value of the maximum Hamiltonian can be realized if and only
if this linear function is zero, i.e., if and only if λ(t) ∈ ann(Yγ(t)) for all
t ∈ [a, b]. However, if this is the case, then it is clear that, for each t ∈ [a, b],
HΣ,0(θ(t) ⊕ λ(t), u) = Hmax

Σ,0 (θ(t) ⊕ λ(t)) is satisfied for each u ∈ Rm. Thus
(γ, u) is singular.

(ii) =⇒ (i) If (γ, u) is singular, then, for each t ∈ [a, b], the function

Yγ(t) 3 w 7→ θ(t) · γ′(t) + λ(t) · w − 1
2λ0G(w,w)

is always equal to its maximum. This immediately implies that λ0 = 0, and
so (γ, u) is abnormal.

(i) =⇒ (iii) This was shown above while proving the implication (i) =⇒
(ii).

(iv) This follows directly from the fact that, with the given conditions, the
Hamiltonian maximization condition is

ua(t)(λ(t) · Ya(γ(t))) = sup
{
− 1

2G(w,w)
∣∣ w ∈ Yγ(t)

}
. �

In particular, it follows that any nontrivial (in the sense that the input
force is nonzero) singular extremal must be abnormal, and so must satisfy
condition (iii) of the proposition.

S4.6 Time-optimal control for affine connection control
systems

Next we look at time-optimal control in the setting of affine connection control
systems. Time-optimal control is one of the most basic of problems in optimal
control theory. One reason for this is the intimate connection between con-
trollability and time-optimal control as asserted in Proposition S4.20. Thus,
the studying of the time-optimal control problem will reveal something about
the system itself, as opposed to other sorts of optimal control problems, where
the cost function contributes significantly to the character of solutions to the
optimization problem.
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S4.6.1 The time-optimal problem

We let (Q,∇,Y , U) be an affine connection control system. The cost function
for time-optimal control is Ftime = 1. In the parlance of Section S4.4.1, we
consider the pair A = (A, f), where A is the Rm-dependent (0, 0)-tensor field
A(q, u) = 1 and f = idR. Note then that minimizing∫ T

0

Ftime(γ′(t), u(t)) dt

means precisely minimizing the time along the controlled trajectory.

Definition S4.42 (Time-optimal control problems for affine connec-
tion control systems). Let Σ = (Q,∇,Y , U) be an affine connection control
system, let q1, q2 ∈ Q and let vq1 ∈ Tq1Q and vq2 ∈ Tq2Q.

(i) A controlled arc (γ, u) is a solution of T (Σ, vq0 , vq1) if it is a solution of
P(Σ, Ftime, vq0 , vq1).

(ii) A controlled arc (γ, u) is a solution of T (Σ, q0, q1) if it is a solution of
P(Σ, Ftime, q0, q1). •

It may be possible that solutions to the time-optimal problems do not
exist. To see why this might be so, we consider the case when U = Rm.

Proposition S4.43. For an affine connection control system (Q,∇,Y , U)
with U = Rm, the problem T (Σ, q0, q1) has no solution.

Proof. Let (γ, u) ∈ Ctraj(Σ) be defined on an interval I. For λ > 0, define
Iλ =

{
1
λ t

∣∣ t ∈ I
}
, and define ũ : Iλ → Rm and γ̃ : Iλ → Q by ũ(t) = λ2u(λt)

and γ̃(t) = γ(λt). Then (ũ, γ̃) ∈ Carc(Σ). Indeed, we directly compute

∇γ̃′(t)γ̃
′(t) = λ2∇γ′(λt)γ

′(λt) = λ2u(λt) = ũ(t).

Therefore, if there exists a controlled arc connecting q0 and q1, then this
controlled arc can be followed in arbitrarily small time, thus implying the
lack of existence of a solution to the time minimization problem. �

To ensure well-defined solutions to all time-optimal control problems, we
must place bounds on the controls. For a control-affine system, control bounds
are often specified by requiring that each control take values in a compact
interval, typically symmetric about the origin. However, we shall use bounds
that are elliptical. We do this for two reasons: (1) elliptical control bounds
are more useful for fleshing out the geometry of the system since they do not
rely on a specific choice of basis for the input vector fields, and (2) for the
planar body system we study in Section S4.7, the elliptical control bounds
are consistent with a thruster whose maximum output is independent of the
direction in which it points. In any event, we introduce a Riemannian metric
G on Q and ask that controls satisfy the bound

G(ua(t)Ya(γ(t)), ub(t)Yb(γ(t))) ≤ 1 (S4.20)
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along a controlled trajectory (γ, u). We again use the summation convention
in the expression uaYa. In order to ensure that this defines an affine connec-
tion control system as in our definition, the set of u ∈ Rm that satisfy the
bound should not depend on the point along the controlled trajectory. This is
possible, for example, if the vector fields in Y are G-orthonormal. To simplify
things, we shall make the assumption in the time-optimal problem that Y
is a G-orthonormal family of vector fields. In this case, the control set U is
simply given by

U = {u ∈ Rm | ‖u‖Rm ≤ 1} . (S4.21)

Note that it cannot be expected to be able to choose a global basis of G-
orthonormal input vector fields. Obstructions can arise in two ways. First of
all, the input distribution Y may not have constant rank. In this case, it will
be impossible to choose an G-orthonormal basis of input vector fields on any
set containing singular points for Y. Even if Y does have constant rank, it
may well be the case that one cannot choose a global G-orthonormal basis of
vector fields for Y. However, in this case, one can do this locally.

In summary, in this section, we make the following assumption.

Assumption S4.44. For the affine connection control system (Q,∇,Y , U)
and the Riemannian metric G on Q, the vector fields Y are G-orthogonal. •

S4.6.2 The Maximum Principle for time-optimal control

We have the following Maximum Principle for time-optimal control of affine
connection control systems.

Theorem S4.45 (Maximum Principle for time-optimal control of
affine connection control systems). Let Σ = (Q,∇,Y , U) be an affine
connection control system satisfying Assumption S4.44. Suppose that (γ, u) ∈
Ctraj(Σ) is a solution of T (Σ, vq0 , vq1) with u and γ defined on [0, T ]. Then
there exists an LAD covector field λ : [0, T ] → T∗Q along γ and a constant
λ0 ∈ {0, 1} with the following properties:

(i) for almost every t ∈ [0, T ], we have

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)

− T ∗(∇γ′(t)λ(t), γ′(t)) = ua(t)(∇Ya)∗(λ(t));

(ii) either λ0 = 1 or θ(0)⊕ λ(0) 6= 0;
(iii) for almost every t ∈ [0, T ], we have

ua(t)〈λ(t);Ya(γ(t))〉 = sup { ũa〈λ(t);Ya(γ(t))〉 | ũ ∈ U} ;

(iv) 〈θ(t); γ′(t)〉+ ua(t)〈λ(t);Ya(γ(t))〉 = λ0,
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with
θ(t) = 1

2T
∗(λ(t), γ′(t))−∇γ′(t)λ(t), t ∈ [0, T ].

If (γ, u) is a solution of T (Σ, q0, q1), then the conditions (i)–(iv) hold
and, in addition, λ(0) = 0 and λ(T ) = 0.

Proof. Follows directly from Theorem S4.26. �

One can use part (iii) of Theorem S4.45 to determine the form of the
control for time-optimal problems. This is quite simple to do as it involves
minimizing a linear function of u subject to the constraint that u lie in a ball
of unit radius. To express the result, we recall the notation PY and hY from
Section S4.5.2. One can readily show [see Coombs 2000] that the value of u
that achieves the minimum satisfies

uaYa(γ(t)) = −
h]Y(λ(t))∥∥P ∗Y(λ(t))

∥∥
G
, (S4.22)

where ‖·‖G denotes the norm with respect to the Riemannian metric G. Note
that (S4.22) gives a feedback control that gives the character of the controlled
extremals by integrating the control equations with the equation from part (i)
of Theorem S4.45.

Remark S4.46. It is true that (S4.22) defines the controls even when the set
of input vector fields is not orthonormal with respect to the Riemannian metric
G. Indeed, for Theorem S4.45 to hold, it only needs to be possible to choose an
orthonormal basis of input vector fields. One can then use (S4.22) to define the
controls, even when the vector fields {Y1, . . . , Ym} are not orthonormal. When
it is not possible to choose an orthonormal basis for the input distribution (as,
for example, with fully actuated systems on S2), then one loses condition (iv)
in Theorem S4.45. •

S4.6.3 Singular extremals

In this section we state a simple result that classifies the singular extremals
for the time-optimal problem for affine connection control systems.

Proposition S4.47 (Singular extremals for time-optimal control). Let
Σ = (Q,∇,Y ,Rm) be a C∞-affine connection control system satisfying As-
sumption S4.44, and let (γ, u) be a controlled extremal for one of the problems
of Definition S4.42, defined on [0, T ]. Then the following statements are equiv-
alent:

(i) (γ, u) is singular;
(ii) any adjoint covector field λ along γ satisfies λ(t) ∈ ann(Yγ(t)) for each

t ∈ [0, T ].
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Proof. The Hamiltonian in this case is, using the notation as at the beginning
of the proof of Proposition S4.41,

Yq 3 w 7→ αvq
· vq + βvq

· w − λ0.

Part (ii) is equivalent to the statement that this Hamiltonian be independent
of w along trajectories in T∗TQ. This immediately implies, and is implied by,
the assertion that, for each t ∈ [0, T ], HΣ,λ0F (θ(t)⊕ λ(t), u) = Hmax

Σ,λ0F
(θ(t)⊕

λ(t)) for all u ∈ U , where θ is defined as in Theorem S4.26. The result follows
immediately. �

For the planar rigid body example we look at in Section S4.7, it is possible
to obtain a complete characterization of the singular controlled extremals.

S4.7 Force- and time-optimal control for a planar rigid
body

We consider in this section the planar rigid body example considered in the
text. The modeling for the system was carried out in Chapter 4, and we refer
the reader there for details. The system is depicted in Figure S4.5. We use the

s2

s1
Ospatial

(x, y)

b1

b2

Obody

θ

F

h

Figure S4.5. Coordinates and input forces for the planar rigid body

coordinates (x, y, θ) as indicated in the figure.
This is a left-invariant control system on a Lie group (see Example 5.47).

We shall not take much advantage of this additional structure. However, we
will occasionally make use of the following fact.

Lemma S4.48 (SE(2)-invariance of controlled trajectories). Let (γ, u)
be a controlled trajectory for the planar rigid body through the point q ∈ Q.
If q̄ = Lg(q) for g ∈ SE(2), and if γ̄ = Lg ◦γ, then (γ̄, u) is a controlled
trajectory through the point q̄. •
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S4.7.1 System data

We recall that the Riemannian metric for the system is

G = m(dx⊗ dx+ dy ⊗ dy) + Jdθ ⊗ dθ,

where m is the mass of the body and J is its moment of inertia about the
center of mass, and that the input vector fields are

Y1 =
cos θ
m

∂

∂x
+

sin θ
m

∂

∂y
, Y2 = − sin θ

m

∂

∂x
+

cos θ
m

∂

∂y
− h

J

∂

∂θ
.

With this information, the equations of motion for the system are

ẍ =
cos θ
m

u1 − sin θ
m

u2,

ÿ =
sin θ
m

u1 +
cos θ
m

u2,

θ̈ = − h

J
u2.

(S4.23)

One also computes

G

∇Y1 = − sin θ
m

∂

∂x
⊗ dθ +

cos θ
m

∂

∂y
⊗ dθ,

G

∇Y2 = −cos θ
m

∂

∂x
⊗ dθ − sin θ

m

∂

∂y
⊗ dθ,

We use the Riemannian metric G to define our time-optimal control bounds as
in (S4.20), and to define our force-optimal cost function as in Section S4.5. It
is possible, of course, to use other metrics, but in lieu of further information,
we stick with the one given by the physics of the problem for the sake of nat-
urality. We will need explicit representations for PY and hY. Straightforward
calculations give the matrix representation for PY as

1
J +mh2

R(θ)

J +mh2 0 0
0 J −Jh
0 −mh mh2

R−1(θ),

and the matrix representation for hY as

1
J +mh2

R(θ)

J+mh2

m 0 0
0 J

m −h
0 −h mh2

J

R−1(θ),

where

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
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For force-optimal control, we also need to know
G

∇hY. In fact, we need only

know the value of
G

∇hY when evaluated on a single covector in both arguments.
Another straightforward, but tedious, computation gives

G

∇hY(λ, λ) =
2h(λθ + hλy cos θ − hλx sin θ)(λx cos θ + λy sin θ)

J +mh2
dθ.

S4.7.2 Nonsingular force-optimal control

For force-optimal control, we work with the normal case, that is also the non-
singular case. With Theorem S4.35 and the computations of Section S4.7.1,
the equations governing the motion of the configurations and the adjoint cov-
ector field are readily computed to be

ẍ = − (2J +mh2 +mh2 cos θ)λx + 2mh sin θ(λθ + h cos θλy)
2m(J +mh2)

,

ÿ =
2mh cos θλθ + (−2J −mh2 +mh2 cos 2θ)λy −mh2 sin 2θλx

2m(J +mh2)
,

θ̈ = − h(mhλθ − J cos θλy + J sin θλx)
J(J +mh2)

,

λ̈x = 0,

λ̈y = 0,

λ̈θ = =
h(λθ + hλy cos θ − hλx sin θ)(λx cos θ + λy sin θ)

J +mh2
.

(S4.24)

It is not our intention to give a complete analysis of the equations for con-
trolled extremals. However, we can make some rather prosaic remarks about
some of the more simple extremals. Perhaps the simplest extremals are those
for which we undergo linear motion. To consider such motions, since the sys-
tem is rotationally invariant, it suffices to consider linear motion in the s1-
direction. Similarly, we may as well start at the initial configuration (0, 0, 0).
(Here we are using Lemma S4.48.) If we choose the other initial conditions
such that vy(0), vθ(0), λy(0), λθ(0), λ̇y(0), and λ̇θ(0) are all zero, then one can
readily see from the controlled extremal equations (S4.24) that these quanti-
ties remain zero. The resulting motion is then along the line through (0, 0, 0)
in the s1-direction. One then verifies that the relevant equations governing
these extremals are

ẍ = −λx
m
, λ̈x = 0. (S4.25)

These are readily solved to yield

x(t) = − λ̇x(0)
6m

t3 − λx(0)
2m

t2 + ẋ(0)t+ x(0).
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Figure S4.6. Two linear force-optimal controlled extremals with m = 1. (1) On
the left we take ẋ(0) = 0, x(T ) = 1, and ẋ(T ) = 0. (2) On the right we take
ẋ(0) = 5, x(T ) = 1, and ẋ(T ) = −1. The value of the objective function on the
left is AΣ,Fforce(γ, u) = 3

2
(compared with AΣ,Fforce(γ, u) = 2 for the corresponding

time-optimal controlled extremal from Figure S4.7) and the value of the objective

function on the right is AΣ,Fforce(γ, u) = 3(1604791+926528
√

3)

32(19+11
√

3)
≈ 7.29 (compared with

AΣ,Fforce(γ, u) = 4(
√

3 + 1) ≈ 10.93 for the corresponding time-optimal controlled
extremal from Figure S4.7). In each plot, the top plot is x(t) and the bottom is
u1(t).

To join a state (x(0), ẋ(0)) with a state (x(T ), ẋ(T )), one can readily design the
initial conditions for λx to do the job. In Figure S4.6 we plot force-optimal con-
trolled extremals for two boundary conditions. Note that, with force-optimal
control, we may vary the final time, and we have chosen as final times the
same times that will arise in the time-optimal analysis of Section S4.7.3, so
that more useful comparisons may be made. Note that, in contrast with the
time-optimal problem, for the force-optimal problem we must choose a time
interval. If we do not, then for the situations depicted on the left in Figure S4.6,
by stretching the time interval, we may make the value of the force-optimal
objective function as low as we like. This would render the force-optimal prob-
lem one without a solution.

S4.7.3 Nonsingular time-optimal control

It is a simple matter to write down the equations governing the time-optimal
controlled extremals, at least in the case when the controls may be determined
from condition (ii) of Theorem S4.45. Indeed, one may use (S4.22) to derive
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u1 = −λx cos θ + λy sin θ∥∥P ∗Y(λ)
∥∥

G
,

u2 =
mhλθ + Jλx sin θ − Jλy cos θ

(J +mh2)
∥∥P ∗Y(λ)

∥∥
G

.

(S4.26)

The expression for ‖P ∗Y(λ)‖G is a lengthy one, and we shall not give it here
explicitly.

We may also express the equation of part (i) of Theorem S4.45 as

λ̈x = 0,

λ̈y = 0,

λ̈θ = − sin θ
m

(λxu1 + λyu
2) +

cos θ
m

(λyu1 − λxu
2).

(S4.27)

Given the controls (S4.26), the nonsingular time-optimal controlled extremals
satisfy (S4.27), along with the equations of motion (S4.23).

As with the force-optimal problem, we will not undergo a systematic inves-
tigation of these equations, but will merely look at a special case. We will again
restrict ourselves to the situation where we have motion in the s1-direction
through the initial point (0, 0, 0). As with force-optimal control, if we choose
the other initial conditions such that vy(0), vθ(0), λy(0), λθ(0), λ̇y(0), and
λ̇θ(0) are all zero, then these remain zero along controlled extremals. The re-
sulting motion is then along the line through (0, 0, 0) in the s1-direction, and
the equations governing the resulting controlled extremals are

ẍ =
u1

m
, λ̈x = 0. (S4.28)

The control satisfies the bounds u1 ∈ [−
√
m,
√
m]. One determines [see, for

example, Jurdjevic 1997] that the time-optimal control that takes one from
(0, 0, 0) at rest to (x1, 0, 0) at rest is given by

u1(t) =

{√
m, t ∈ [0, Ts],

−
√
m, t ∈ [Ts, 2Ts]

(S4.29)

where Ts =
√√

mx1. Without loss of generality, we have supposed that x1 >
0. It is possible to explicitly derive the time-optimal controls for nonzero initial
and terminal velocity, but this is an inappropriate degree of generality for
what we wish to accomplish here. In Figure S4.7 we represent two such linear
extremals corresponding to various initial conditions, including one case where
the initial and terminal velocity are nonzero. These motions are quite intuitive,
and are essentially what one might affect by ad hoc methods. Observe that
we see why bounds on control are necessary. For the situation on the left in
Figure S4.7, if we had no control bounds, then by increasing the value of the
control, we could execute the same maneuver in arbitrarily small time, making
the time-optimal problem ill-defined.
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Figure S4.7. Two linear time-optimal controlled extremals with m = 1. (1) On the
left we take ẋ(0) = 0, x(T ) = 1, and ẋ(T ) = 0. (2) On the right we take ẋ(0) = 5,
x(T ) = 1, and ẋ(T ) = −1. The optimal time on the left is T = 2 and on the right
is T = 4(

√
3 + 1). In each plot, the top plot is x(t) and the bottom is u1(t).

S4.7.4 Characterization of the singular controlled extremals

Now we turn to looking at those controlled extremals that are singular for the
planar rigid body system. Based on the characterizations of Propositions S4.41
and S4.47 of singular controlled extremals, we pose the following general prob-
lem as one that allows description of all nontrivial (in the sense that the input
force is nonzero) force-optimal singular controlled extremals, and of all time-
optimal singular extremals.

Problem S4.49. For an affine connection control system (Q,∇,Y , U), find
curves γ : I → Q, u : I → Rm, λ : I → T∗Q with the following properties:

(i) u is locally integrable;
(ii) λ is a covector field along γ that is not identically zero;
(iii) the equations

∇γ′(t)γ
′(t) = ua(t)Ya(γ(t)),

∇2
γ′(t)λ(t) +R∗(λ(t), γ′(t))γ′(t)

− T ∗(∇γ′(t)λ(t), γ′(t)) = ua(t)(∇Ya)∗(λ(t))

hold for a.e. t ∈ I;
(iv) λ(t) ∈ ann(Yγ(t)) for a.e. t ∈ I. •
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Nontrivial force-optimal singular controlled extremals, and time-optimal
singular extremals, will be solutions to Problem S4.49 defined on appropriate
intervals (i.e., intervals of the form [a, b] for the force-optimal problem, and
intervals of the form [0, T ] for the time-optimal problem).

In the analysis for the planar body, we shall encounter the quantity

(λ̇x(0)t+ λx(0))2 + (λ̇y(0)t+ λy(0))2, (S4.30)

and we shall wish for this quantity to be nonzero for all t ∈ R. We shall see
that when this quantity is zero for some t, the singular controlled extremals
reduce to a degenerate form. For now, let us make a statement equivalent to
the expression (S4.30) being nonzero.

Lemma S4.50. The expression (S4.30) is nonzero for all t ∈ R if and only
if λ̇x(0)λy(0) 6= λ̇y(0)λx(0).

Proof. The expression (S4.30) is nonzero for all t ∈ R when and only when
the equation

(λ̇x(0)t+ λx(0))2 + (λ̇y(0)t+ λy(0))2 = 0

has no real roots in t. This is a quadratic equation in t with discriminant
−(λ̇x(0)λy(0) − λ̇yλx(0))2. Therefore, it can have real roots when and only
when λ̇x(0)λy(0)− λ̇yλx(0) = 0. �

Let us now derive the equations governing solutions of Problem S4.49 that
are defined on all of the real line. The condition that λ be in ann(Y) is given
by

λx +
mh

J
sin θλθ = 0, λy −

mh

J
cos θλθ = 0. (S4.31)

This means that λ must satisfy the condition

λ2
θ =

( J

mh

)2

(λ2
x + λ2

y).

Since λx and λy are determined from the controlled extremal equations (S4.24)
(or equivalently from (S4.27)) to be simply

λx(t) = λ̇x(0)t+ λx(0), λy(t) = λ̇y(0)t+ λy(0),

this means that we are able to determine the adjoint covector field explicitly
as a rational function of t. This in turn allows us to determine θ(t) from the
equations (S4.31). From the equations of motion (S4.23), we then have u2(t) =
−J
h θ̈(t). To solve for u1(t), we employ the third of the equations (S4.27), as

the remaining quantities are known as functions of t. Finally, to solve for x(t)
and y(t), we go to the equations of motion (S4.23). The most relevant product
of these computations for us is the resulting form of (x(t), y(t), θ(t)), and these
may be determined to be
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x(t) = − J(λ̇y(0)t+ λy(0))

mh
√

(λ̇y(0)t+ λy(0))2 + (λ̇x(0)t+ λx(0))2
+ C11t+ C10,

y(t) =
J(λ̇x(0)t+ λx(0))

mh
√

(λ̇y(0)t+ λy(0))2 + (λ̇x(0)t+ λx(0))2
+ C21t+ C20,

θ(t) = atan(λ̇y(0)t+ λy(0)),−λ̇x(0)t− λx(0).
(S4.32)

It is possible to determine C11, C10, C21, and C20 using the initial conditions
x(0), ẋ(0), y(0), and ẏ(0). However, as we shall see, it is not advantageous to
do so, so we will leave these constants as they are. A solution of Problem S4.49
is called stationary when it is of the form (S4.32) with C11 = C21 = 0. We
may also explicitly represent the controls as

u1(t) =
(
J(λy(0)λ̇x(0)− λx(0)λ̇y(0))2

)
/
(
h
(
(λ̇y(0)t+ λy(0))2 + (λ̇x(0)t+ λx(0))2

)2)
,

u2(t) = −
(
2J(λy(0)λ̇x(0)− λx(0)λ̇y(0))

(
(λ̇2
x(0) + λ̇2

y(0))t

+ λx(0)λ̇x(0) + λy(0)λ̇y(0)
))
/
(
h
(
(λ̇y(0)t+ λy(0))2

+ (λ̇x(0)t+ λx(0))2
)2)

.

(S4.33)

In writing these equations, we make the assumption that the expres-
sion (S4.30) is nonzero for all t ∈ R. Note that these same expressions
hold, even when the singular controlled extremal does not include 0 in its
domain—in this case, the constants in the expressions for λx(t) and λy(t)
simply lose their interpretation as being values of the functions and their first
derivatives at t = 0.

The above paragraph shows that it is possible to completely determine, as
explicit functions of time, the solutions to Problem S4.49, at least when the
expression (S4.30) is nowhere zero. Let us now investigate the case when the
expression (S4.30) can vanish for some t ∈ R, recalling our characterization
of this situation in Lemma S4.50.

Lemma S4.51. Let (γ, u) be a stationary solution to Problem S4.49 defined
on R. The following conditions are equivalent:

(i) γ′(t0) = 0γ(t0) for some t0 ∈ R;
(ii) γ′(t) = 0γ(t) for all t ∈ R;
(iii) λ̇x(0)λy(0)− λ̇y(0)λx(0) = 0.

Proof. Suppose that (iii) holds, and let t̄ be the time at which the expres-
sion (S4.30) vanishes. First suppose we are at a point where t 6= t̄. Then the
equations (S4.32) are valid in a neighborhood of t, and one computes

θ̇(t) =
λ̇x(0)λy(0)− λ̇y(0)λx(0)

(λ̇y(0)t+ λy(0))2 + (λ̇x(0)t+ λx(0))2
.
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This means that θ̇(t) = 0 for all t 6= t̄. Similarly, one determines that ẋ(t) =
ẏ(t) = 0 for all t 6= t̄. Coupled with the fact that the trajectories in Q must
be differentiable, we see that (iii) implies that γ(t) = γ(t0) as long as t 6= t̄.
When t = t̄, then we have λx(t̄) = λy(t̄) = 0 and so λθ(t̄) is also zero. Since the
equations governing the adjoint covector field are linear in the adjoint covector
field, this implies that the adjoint covector field is identically zero for all t.
This situation is in violation of the conditions on λ in Problem S4.49. The
above arguments show that (iii) implies both (i) and (ii). These arguments are
easily modified to show that (i) and (ii) also imply (iii), and that (i) and (ii)
are equivalent. �

The following result essentially determines the character of the nontrivial
singular controlled extremals.

Lemma S4.52 (Characterization of singular controlled extremals
with nonzero control). Suppose that (γ, u) is a stationary solution of Prob-
lem S4.49 for the planar rigid body system defined on the entire real line with,
for some t0 ∈ R, (x(t0), y(t0)) lying on the circle of radius J

mh with center at
(0, 0) in the (x, y)-plane. If the expression (S4.30) is nowhere zero, then

(i) x2(t) + y2(t) =
(
J
mh

)2 for all t ∈ R,
(ii) θ(t) = π + atan(x(t), y(t)) for all t ∈ R,
(iii) limt→∞(x(t), y(t)) = − limt→−∞(x(t), y(t)), and
(iv) limt→∞ θ(t) = π + limt→−∞ θ(t).

Furthermore, the control u is analytic.

Proof. Choosing C11, C10, C21, and C20 to be zero, it is apparent from (S4.32)
that x2(t) + y2(t) =

(
J
mh

)2, and so (i) holds. It is also clear from (S4.32)
that (ii), (iii), and (iv) hold. Analyticity of u follows from (S4.33). �

In Figure S4.8 we show a typical solution of Problem S4.49 of the form
described in Lemma S4.52. Note that the limiting initial and final angles are
decided by the values of λ̇x(0) and λ̇y(0), as may be ascertained from (S4.32).
It is also clear from the expressions for x(t) and y(t) from (S4.32) that any
solution of Problem S4.49 will be a copy of a solution to Problem S4.49 from
Lemma S4.52, but possibly translated away from (0, 0), and possibly moving
with uniform velocity in the (x, y)-plane. To be succinct in stating the form of
the general solution to Problem S4.49, it is convenient to introduce a equiva-
lence relation on the set of curves on Q by saying that curves γ1 : I1 → Q
and γ2 : I2 → Q are equivalent when I2 = I1 + a for some a ∈ R and
γ2(t) = γ1(t − a) for each t ∈ I2. When curves γ1 and γ2 are equivalent,
we write γ1 ∼ γ2. The following result makes this precise, and summarizes
our description of the solutions to Problem S4.49 for the planar rigid body.

Proposition S4.53 (Characterization of singular controlled ex-
tremals). If (γ, u) is a solution to Problem S4.49 for the planar rigid body
defined on I ⊂ R, then there exists
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Figure S4.8. A solution of Problem S4.49 for the planar rigid body with m = 1,
J = 1, and h = 1

2
. The initial conditions for the adjoint covector field are λx(0) = 1,

λy(0) = 5, λθ(0) = 2
√

26, λ̇x(0) = 1, and λ̇y(0) = 1. The time between plots of the
body’s position on the left is ∆t = 1. On the right, the controls are shown.

(i) a solution (γ̃, ũ) to Problem S4.49 with the property that (γ̃, ũ) ∼ (γ, u)
and

(ii) a solution (γ̄, ū) to Problem S4.49 that is either
(a) of the form described by Lemma S4.51 or
(b) of the form described by Lemma S4.52,

such that
(ii) x̃(t) = x0 + u0t+ x̄(t),
(iii) ỹ(t) = y0 + u0t+ ȳ(t), and
(iv) θ̃(t) = θ̄(t),

for some x0, y0, u0, v0 ∈ R.

A “typical” solution to Problem S4.49 appears on the right in Figure S4.9.
Note that, as per Proposition S4.53, it is a “superposition” of an unforced
solution to Problem S4.49 with a stationary solution to Problem S4.49.

Remarks S4.54. 1. Note that the only unforced controlled extremals for the
planar rigid body consist of linear motions of the center of mass with the
angle θ remaining fixed. Such a motion is shown on the left in Figure S4.9.

2. The controlled extremals that we here name as singular would be “singular
in all controls” for Chyba, Leonard, and Sontag [2003]. Because they use
control bounds that are polyhedral, they also would consider the linear
controlled extremals of Sections S4.7.3 and S4.7.2 to be singular. There
would potentially be more controls that are singular in the sense of Chyba,
Leonard, and Sontag.
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Figure S4.9. (1) On the left is an unforced solution to Problem S4.49 for the
planar rigid body with m = 1, J = 1, and h = 1

2
. (2) On the right is the solution

to Problem S4.49 obtained by superimposing the linear motion on the left with the
solution of Problem S4.49 of Figure S4.8.

3. While Proposition S4.53 does provide a complete description of the sin-
gular controlled extremals for the planar rigid body system, it does not
illuminate the “reason” why these controlled extremals have the form they
do. That is to say, there is in all likelihood a nice geometric description

for these controlled extremals in terms of the affine connection
G

∇ and the
input distribution Y. However, at this point this description is unknown
to the authors. •
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Mathematica® packages

While much of the methodology described in this book may be thought of as
having a fairly sophisticated mathematical basis, much of it is easy to put into
practice. The obstruction is often not conceptual, but rests in the fact that
sometimes even simple examples can produce lengthy symbolic expressions
when one carries out the analysis/design methods we describe. Therefore, in
this chapter we document the use of Mathematica® packages for some of the
more common computations that come up. While we do not presently support
other symbolic manipulation programs, nor do we have any plans to do so, it
is certainly true that, with a little effort, everything we do in Mathematica®

can be done as well with any similarly-spirited program.
Our strategy is to devote one section to each package, and describe all

functions in this package. In each section, a sample Mathematica® session
will be given that illustrates all the functions defined by the package.

The reader is invited to download the software at

http://penelope.mast.queensu.ca/smcs/Mma/

The versions on the website will be updated, so there may be discrepancies
with what is described here. A list of errata and changes will be maintained,
along with a version of this chapter consistent with the software version. We
do not claim to be sophisticated Mathematica® programmers, and we hope
that some ambitious reader(s) will take it upon themselves to improve the
code we have written, and make the improved code freely available.

S5.1 Tensors.m

There are several tensor manipulation packages for Mathematica® available.
However, our needs are pretty limited, so we have made a version that covers
these needs.

In[1]:= << Tensors.m
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\nPackage "Tensors" defines: ChangeBasis, ChangeCoordinates,

EvaluateTensor, InitializeTensor, ITen2Vec, IVec2Ten, LieDerivative,

Ten2Vec, TheJacobian, Vec2Ten.

To get help, type ?command

In[2]:= ?ChangeCoordinates

ChangeCoordinates[A,x,xp,xofxp,Type,Deriv] gives a tensor A of type

Type expressed originally in coordinates x, in coordinates xp. Here

xofxp gives x as a function of xp. If Type="Affine Connection" then

the input should be the Christoffel symbols of an affine connection

in coordinates x, and the result will be the Christoffel symbols in

coordinates xp.

S5.1.1 Tensor basics

Tensors of type (r, s) are stored as lists of depth r + s, with the basic list
element being a component of the tensor. One can initialize a tensor to
have all zero entries. The following command initializes a (0, 2)-tensor in a
2-dimensional vector space.

In[3]:= g = InitializeTensor[{0, 2}, 2]

Out[3]= {{0, 0}, {0, 0}}

Note that a tensor can be thought of as being on a vector space, or on the
tangent space to a manifold. As far as how it is stored, they are the same
thing.

Let us work with a specific tensor, namely the standard Riemannian metric
on R2, first using Cartesian coordinates.

In[4]:= g[[1, 1]] = g[[2, 2]] = 1; g

Out[4]= {{1, 0}, {0, 1}}

A tensor can be evaluated on various of its arguments. For example, the
Riemannian metric above can be evaluated on two vectors.

In[5]:= u = {u1,u2}
Out[5]= {u1,u2}

In[6]:= v = {v1, v2}
Out[6]= {v1, v2}

In[7]:= EvaluateTensor[g, {u, v}, {0, 2}, {{}, {}}]

Out[7]= u1 v1 + u2 v2

The syntax here bears explanation. The first argument is the tensor itself.
The second argument is a list containing the vectors and covectors on which
the tensor will be evaluated. The third argument is the type of the tensor.
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The fourth argument consists of two lists. The first list is the contravariant
(i.e., up) indices that will be left free, and the second is the covariant (i.e.,
down) indices that will be left free.

To see how this works, let us use the same tensor, but now evaluate it on only
one argument. This corresponds in this case to the “flat map.”

In[8]:= EvaluateTensor[g, {u}, {0, 2}, {{}, {1}}]

Out[8]= {u1,u2}

Since the tensor is symmetric, the answer will be the same if the second
covariant index is left free.

In[9]:= EvaluateTensor[g, {u}, {0, 2}, {{}, {2}}]

Out[9]= {u1,u2}

It may be helpful to “flatten” a tensor, by which an (r, s)-tensor on a vector
space of dimension n is converted to a list of length nr+s. There are a few
commands associated with this and related operations. First let us convert a
list to a tensor.

In[10]:= Aten = Vec2Ten[{a11, a12, a21, a22}, {0, 2}, 2]

Out[10]= {{a11, a12}, {a21, a22}}

Now let us convert this back to a list.

In[11]:= Avec = Ten2Vec[Aten, {0, 2}, 2]

Out[11]= {a11, a12, a21, a22}

Specific entries can be grabbed as well. For example, one may want to grab
from a long list the element corresponding to a certain tensor index. The
following manipulations use the Mathematica® Sequence command.

In[12]:= IVec2Ten[3, {0, 2}, 2]

Out[12]= {2, 1}

In[13]:= Aten[[Sequence@@%]]

Out[13]= a21

One can also go the other way.

In[14]:= ITen2Vec[{1, 2}, 2]

Out[14]= 2

In[15]:= Avec[[%]]

Out[15]= a12

In the above commands, the “I” stands for “index,” reflecting the fact that
these commands have to do with manipulation of indices.
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S5.1.2 Lie differentiation

One can Lie differentiate tensors of arbitrary type. The command takes as
arguments, the tensor being Lie differentiated, the vector field with respect
to which differentiation is being done, a list containing the coordinates, and
the type of the tensor.

In[16]:= X = {−y, x}
Out[16]= {−y, x}

In[17]:= q = {x, y}
Out[17]= {x, y}

In[18]:= LXg = LieDerivative[g,X, q, {0, 2}]

Out[18]= {{0, 0}, {0, 0}}

Note that the vector field is Killing.

S5.1.3 Changes of coordinate

Coordinate changes can be done symbolically. First let us do a linear change
of coordinates (i.e., a change of basis). We will work with the existing tensor g.
One requires a change of basis matrix, and this is defined as follows. Suppose
the existing basis is {e1, . . . , en} and the new basis is {f1, . . . , fn}. One may
then write fi = P ji ej (using the summation convention) for some invertible
n × n matrix P . The change of basis matrix in Mathematica® is defined so
that P[[i,j]] is P ij . Thus, for us, if the new basis is

In[19]:= f1 = {1, 1}; f2 = {0, 1};

then we should define

In[20]:= P = Transpose[{f1, f2}]

Out[20]= {{1, 0}, {1, 1}}

We then have

In[21]:= ChangeBasis[g,P, {0, 2}]

Out[21]= {{2, 1}, {1, 1}}

Now let us change coordinates. We already have the coordinates q defined
above. Let us introduce new coordinates which are polar coordinates.

In[22]:= qp = {r, θ}
Out[22]= {r, θ}

What is needed for the change of basis function is the original coordinates
expressed in terms of the new coordinates.

In[23]:= qofqp = {r Cos[θ], r Sin[θ]}
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Out[23]= {r cos[θ], r sin[θ]}

Now we may make the change of coordinates by providing all of the above
data, along with the type of the tensor. For example, for the vector field we
have

In[24]:= Xp = Simplify[ChangeCoordinates[X, q, qp, qofqp, {1, 0}]]

Out[24]= {0, 1}

Also the metric.

In[25]:= gp = Simplify[ChangeCoordinates[g, q, qp, qofqp, {0, 2}]]

Out[25]= {{1, 0}, {0, r2}}

The concept of a Killing vector field is coordinate invariant.

In[26]:= LieDerivative[gp,Xp, qp, {0, 2}]

Out[26]= {{0, 0}, {0, 0}}

One can also change coordinates for the Christoffel symbols of an affine con-
nection. We shall do this for the Levi-Civita connection for the Riemannian
metric g used above, noting that its Christoffel symbols are zero in Cartesian
coordinates.

In[27]:= conn = Table[0, {i, 2}, {j, 2}, {k, 2}]

Out[27]= {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}

In[28]:= Simplify[ChangeCoordinates[conn, q, qp, qofqp,

Affine Connection]]

Out[28]=
˘
{{0, 0}, {0,−r}},

˘˘
0,

1

r

¯
,
˘1

r
, 0

¯¯¯
One may recognize these as the Christoffel symbols for the standard metric
in polar coordinates.

There is also a Jacobian function included. The Mathematica® Jacobian ma-
nipulations require too much setup to use conveniently.

In[29]:= TheJacobian[qofqp, qp]

Out[29]= {{cos[θ],−r sin[θ]}, {sin[θ], r cos[θ]}}

S5.2 Affine.m

The package Affine.m deals with things related to affine connections.

In[1]:= << Affine.m

\nPackage "Tensors" defines: ChangeBasis, ChangeCoordinates,

EvaluateTensor, InitializeTensor, ITen2Vec, IVec2Ten, LieDerivative,

Ten2Vec, TheJacobian, Vec2Ten.
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\nPackage "Affine" defines: AlongCurve, CovariantDerivative,

CovariantDifferential, CurvatureTensor, Grad, LeviCivita,

RicciCurvature, RiemannFlat, RiemannSharp, ScalarCurvature,

SectionalCurvature, Spray, SymmetricProduct, TorsionTensor.

Note that the package Tensors.m is loaded. Please see the documentation for
that package to use its features. To get help, type ?command

In[2]:= ?AlongCurve

AlongCurve[A,Conn,c,t,Type,Deriv] returns the covariant derivative

of the tensor field A of type Type along the curve c. t is the time

parameter which c must depend upon.

S5.2.1 Riemannian geometry specifics

The metric can be used to convert vector fields to covector fields, and vice
versa, in the usual manner. The rule is “Sharp raises the index (i.e., converts
a covector field to a vector field) and flat lowers the index (i.e., converts a
vector field to a covector field).”

In[3]:= g = {{1, 0}, {0, rˆ2}}
Out[3]= {{1, 0}, {0, r2}}

In[4]:= {{1, 0}, {0, r2}}
Out[4]= {{1, 0}, {0, r2}}

In[5]:= α = {0, 1}
Out[5]= {0, 1}

In[6]:= X = RiemannSharp[α, g]

Out[6]=
˘
0,

1

r2
¯

In[7]:= RiemannFlat[X, g]

Out[7]= {0, 1}

A special instance of the flat map is the gradient, and there is a special purpose
function for it.

In[8]:= f = r Cos[θ]

Out[8]= r cos[θ]

In[9]:= q = {r, θ}
Out[9]= {r, θ}

In[10]:= Grad[f , g, q]

Out[10]=
˘

cos[θ],− sin[θ]

r

¯
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The Levi-Civita Christoffel symbols can be computed using a set of coordi-
nates and the components of the Riemannian metric.

In[11]:= conn = LeviCivita[g, q]

Out[11]=
˘
{{0, 0}, {0,−r}},

˘˘
0,

1

r

¯
,
˘1

r
, 0

¯¯¯

S5.2.2 Affine differential geometry basics

The standard covariant derivative of vector fields is computed as follows.

In[12]:= X = {Cos[θ], rˆ2}
Out[12]= {cos[θ], r2}

In[13]:= Y = {Sin[θ], 1/r}

Out[13]=
˘

sin[θ],
1

r

¯
Then one computes the covariant derivative of Y with respect to X, using the
Christoffel symbols for the connection.

In[14]:= CovariantDerivative[X,Y, conn, q]

Out[14]=
˘−r3 − sin[θ]

r
,
cos[θ]

r2
+ 3 r sin[θ]

¯
The symmetric product is a useful operation for dealing with simple mechani-
cal control systems, and its function works much like the covariant derivative.

In[15]:= SymmetricProduct[X,Y, conn, q]

Out[15]=
˘
r2 (−1 + cos[θ]) +

−r3 − sin[θ]

r
,
cos[θ]

r2
+ 4 r sin[θ]

¯
The covariant derivative of a general tensor can also be computed. See the
documentation for Tensors.m to see how tensors can be defined, and how they
are stored by our packages. One should specify the tensor one is covariantly
differentiating, the Christoffel symbols of the connection, the coordinates, and
the type of the tensor.

In[16]:= nablag = CovariantDifferential[g, conn, q, {0, 2}]

Out[16]= {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}

Note that, if the tensor is of type (r, s), then what comes out is a tensor of type
(r, s+ 1). To produce the covariant derivative of the tensor with respect to a
vector field (i.e., a tensor field of type (r, s)), one can use the EvaluateTensor
function that is part of the Tensors.m package.

In[17]:= EvaluateTensor[nablag, {X}, {1, 2}, {{}, {1, 2}}]

Out[17]= {{0, 0}, {0, 0}}

In like manner one can compute the covariant derivative of a tensor field
along a curve. This requires specifying the coordinate functions of time that
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define the curve. The variable parameterizing time is an argument, so can be
whatever is desired.

In[18]:= γ = {r[t], θ[t]}
Out[18]= {r[t], θ[t]}

In[19]:= Upsilon = D[γ, t]

Out[19]= {r′[t], θ′[t]}

In[20]:= AlongCurve[Upsilon, conn, γ, t, {1, 0}]

Out[20]=
˘
− r θ′[t]

2
+ r′′[t],

2 r′[t] θ′[t]

r
+ θ′′[t]

¯
Note that the result in this case has been contrived to be the components of
the geodesic equations in second-order form.

The geodesic spray can be computed by using velocity coordinates.

In[21]:= v = D[γ, t]

Out[21]= {r′[t], θ′[t]}

In[22]:= Z = Spray[conn, γ, v]

Out[22]=
˘
r′[t], θ′[t], r θ′[t]

2
,−2 r′[t] θ′[t]

r

¯
Note that what is returned are the components of a vector field on the tangent
bundle in natural coordinates.

S5.2.3 Torsion and curvature

These commands are all pretty basic. Some of them reflect mathematical
constructions not defined in the text. We refer the reader to [Kobayashi and
Nomizu 1963] for discussions of undefined terms.

In[23]:= TorsionTensor[conn, q]

Out[23]= {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}

In[24]:= CurvatureTensor[conn, q]

Out[24]= {{{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}, {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}}

In[25]:= RicciCurvature[conn, q]

Out[25]= {{0, 0}, {0, 0}}

Scalar and sectional curvature are defined only for Levi-Civita connections.

In[26]:= ScalarCurvature[g, q]

Out[26]= 0

The sectional curvature requires the specification of two orthonormal tangent
vectors to prescribe a two-dimensional subspace.

In[27]:= e1 = {1, 0}
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Out[27]= {1, 0}

In[28]:= e2 = {0, 1/r}

Out[28]=
˘
0,

1

r

¯
In[29]:= SectionalCurvature[e1, e2, g, q]

Out[29]= 0

S5.3 SMCS.m

The package SMCS.m deals with the modeling of simple mechanical control
systems, and provides tools to perform the steps outlined in Chapter 4 for the
modeling of kinetic energy, forces, and constraints. To illustrate the use of the
package, we shall consider the rolling disk system described in Chapter 4, and
depicted in Figure S5.1. The objective will be to systematically go through

s3

s2

s1

(x, y)

φρ

θ

τφ

τθ

Figure S5.1. Rolling disk

all of the modeling steps to arrive at all the components in the rolling disk
model. The final step is a simulation of the resulting equations of motion.

In[1]:= << SMCS.m

\nPackage "Tensors" defines: ChangeBasis, ChangeCoordinates,

EvaluateTensor, InitializeTensor, ITen2Vec, IVec2Ten, LieDerivative,

Ten2Vec, TheJacobian, Vec2Ten.

\nPackage "Affine" defines: AlongCurve, CovariantDerivative,

CovariantDifferential, CurvatureTensor, Grad, LeviCivita,

RicciCurvature, RiemannFlat, RiemannSharp, ScalarCurvature,

SectionalCurvature, Spray, SymmetricProduct, TorsionTensor.
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\nPackage "SMCS" defines: ACCSequations, ACCSsimulate,

BodyAngularVelocity, ConstrainedConnection, Force,

GeneralizedCovariantDerivative, GetState, Hat, Hessian, KErot, KEtrans,

OrthogonalChristoffelSymbols, OrthogonalForce, OrthogonalProjection,

SetEqual, SMCSequations, SMCSsimulate, SpatialAngularVelocity, Unhat.

Note that the packages Tensors.m and Affine.m are loaded. We refer the reader
to their documentation for instructions on using commands from these pack-
ages.

To get help, type ?command

In[2]:= ?OrthogonalChristoffelSymbols

OrthogonalChristoffelSymbols[X,g,conn,x] computes the generalized

Christoffel symbols for the orthogonal vector fields contained in the

columns of X. Here g is the matrix for the Riemannian metric, conn are

the Christoffel symbols of the Levi-Civita connection, and x are the

coordinates.

S5.3.1 Rigid body modeling

The rolling disk is comprised of a single body. Let us first define the inertia
tensor of the body.

In[3]:= Iten = {{Jspin, 0, 0}, {0, Jspin, 0}, {0, 0, Jroll}}
Out[3]= {{Jspin, 0, 0}, {0, Jspin, 0}, {0, 0, Jroll}}

Now we define the forward kinematic map for the body by defining the position
of the center of mass from the spatial origin, and by defining the orientation of
the body frame relative to the spatial frame. Thus this step amounts to defin-
ing a vector in R3 and a matrix in SO(3). In specific examples, Mathematica®

can be useful in obtaining these expressions. For the rolling disk, the deriva-
tion of the orientation matrix is not entirely trivial, and we refer the reader to
Example 4.5 for details. First we define the configuration space coordinates
and their velocities.

In[4]:= conf = {x[t], y[t], θ[t], φ[t]}
Out[4]= {x[t], y[t], θ[t], φ[t]}

In[5]:= vel = D[conf , t]

Out[5]= {x′[t], y′[t], θ′[t], φ′[t]}

We define the coordinates as “functions of time” in Mathematica®. We shall
see that having the coordinates as functions is essential to using some of the
macros defined in SMCS.m.

Now for the forward kinematic map.
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In[6]:= r = {x[t], y[t], ρ}
Out[6]= {x[t], y[t], ρ}

In[7]:= R = {{Cos[φ[t]] Cos[θ[t]],Sin[φ[t]] Cos[θ[t]],Sin[θ[t]]},
{Cos[φ[t]] Sin[θ[t]],Sin[φ[t]] Sin[θ[t]],

− Cos[θ[t]]}, {− Sin[φ[t]],Cos[φ[t]], 0}}
Out[7]= {{cos[φ[t]] cos[θ[t]], cos[θ[t]] sin[φ[t]], sin[θ[t]]},

{cos[φ[t]] sin[θ[t]], sin[φ[t]] sin[θ[t]],− cos[θ[t]]},
{− sin[φ[t]], cos[φ[t]], 0}}

It is now possible to compute a multitude of things, since, as we emphasize in
the text, the forward kinematic maps are key to much of our modeling. For
example, one can compute body and spatial angular velocities.

In[8]:= Simplify[BodyAngularVelocity[R, conf , t]]

Out[8]= {− sin[φ[t]] θ′[t], cos[φ[t]] θ′[t],−φ′[t]}

In[9]:= Simplify[SpatialAngularVelocity[R, conf , t]]

Out[9]= {− sin[θ[t]] φ′[t], cos[θ[t]] φ′[t], θ′[t]}

Note that we do require the coordinates to be functions of time here, since
time is one of the arguments of the angular velocity commands.

S5.3.2 Kinetic energy and the kinetic energy metric

Now we compute the kinetic energy, translational and rotational, for the body.
Again, the forward kinematic map is key, and again, we do require the con-
figuration space coordinates to be functions of time.

In[10]:= ketran = KEtrans[r, conf ,m, t]

Out[10]=
1

2
m (x′[t]

2
+ y′[t]

2
)

In[11]:= kerot = Simplify[KErot[R, conf , Iten, t]]

Out[11]=
1

2
(Jroll φ′[t]

2
+ Jspin θ′[t]

2
)

Note that, in the above computations, the argument “m” is the mass. We can
now obtain the total kinetic energy.

In[12]:= KE = Simplify[ketran + kerot]

Out[12]=
1

2
(Jroll φ′[t]

2
+ Jspin θ′[t]

2
+m (x′[t]

2
+ y′[t]

2
))

Now we can compute the components of the kinetric energy metric.

In[13]:= metric = Simplify[KE2Metric[KE, vel]]

Out[13]= {{m, 0, 0, 0}, {0,m, 0, 0}, {0, 0, Jspin, 0}, {0, 0, 0, Jroll}}

We can also compute the Christoffel symbols for the associated Levi-Civita
affine connection, although these are trivial in this case.
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In[14]:= lcgamma = LeviCivita[metric, conf]

Out[14]= {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}}

S5.3.3 Force modeling

Now we consider the modeling of forces using the approach in the text. This
is simple given the forward kinematic map. For the rolling disk, there are only
control forces, and there are two of these. First we consider the force that
spins the disk. The Newtonian force and torque are first defined.

In[15]:= force1 = {{0, 0, 0}}
Out[15]= {{0, 0, 0}}

We now do the same for torques.

In[16]:= torque1 = {{0, 0, 1}}
Out[16]= {{0, 0, 1}}

Note that the Newtonian force and torque are a list of vectors in R3. The
length of the list is the number of bodies the force and torque act on, with
each entry in the list corresponding to the force and torque exerted on a single
one of the bodies. In this case, there is just one body, so the list has length
one. See Section S5.4 for an example with multiple bodies.

Next we create the Lagrangian force.

In[17]:= F1 = Simplify[Force[torque1, force1, {R}, {r}, conf , t]]

Out[17]= {0, 0, 1, 0}

Note that the first four arguments are lists whose length is the number of
bodies the Newtonian force and torque interact with. Let us do the same for
the other control force that moves the wheels.

In[18]:= force2 = {{0, 0, 0}}
Out[18]= {{0, 0, 0}}

In[19]:= torque2 = {{− Sin[θ[t]],Cos[θ[t]], 0}}
Out[19]= {{− sin[θ[t]], cos[θ[t]], 0}}

In[20]:= F2 = Simplify[Force[torque2, force2, {R}, {r}, conf , t]]

Out[20]= {0, 0, 0, 1}
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S5.3.4 Nonholonomic constraint modeling I

Next we turn to the modeling of nonholonomic constraints as described in
the text. There are many ways one can do this. For example, one can use the
constrained connection by computing its Christoffel symbols. Let us illustrate
the steps. The first step is to compute an orthogonal basis of vector fields for
which the first vector fields in the list are a basis for the constraint distribution.
For the rolling disk, it turns out that there is a global orthogonal basis for
D. This is generally not the case. For example, it might be the case that the
constraint distribution does not have constant rank. And, if the constraint
distribution does have constant rank, there still might not be a global basis.
However, since we are in luck here, we can proceed without misadventure. First
we provide a set of covector fields that annihilate the constraint distribution.

In[21]:= omega1 = {1, 0, 0,−ρ Cos[θ[t]]}
Out[21]= {1, 0, 0,−ρ cos[θ[t]]}

In[22]:= omega2 = {0, 1, 0,−ρ Sin[θ[t]]}
Out[22]= {0, 1, 0,−ρ sin[θ[t]]}

By “sharping” these relative to the kinetic energy metric, we get two vector
fields that are G-orthogonal to the constraint distribution. Then we need to
ensure that these are G-orthogonal.

In[23]:= X3 = RiemannSharp[omega1,metric]

Out[23]=
˘ 1

m
, 0, 0,−ρ cos[θ[t]]

Jroll

¯
In[24]:= X4t = RiemannSharp[omega2,metric]

Out[24]=
˘
0,

1

m
, 0,−ρ sin[θ[t]]

Jroll

¯
The next formula is the Gram–Schmidt Procedure to get an orthogonal basis.

In[25]:= X4 = Simplify[X4t − (X3.metric.X4t)X3/(X3.metric.X3)]

Out[25]=
˘
− ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2 cos[θ[t]]2
,

1

m
, 0,− ρ sin[θ[t]]

Jroll +m ρ2 cos[θ[t]]2
¯

Note that we will not actually do much with X3 and X4, but we produce them
anyway, just to show how one does these orthogonal basis computations.

Now we use the two vector fields defined in the text as being a G-orthogonal
basis for the constraint distribution.

In[26]:= X1 = {ρ Cos[θ[t]], ρ Sin[θ[t]], 0, 1}
Out[26]= {ρ cos[θ[t]], ρ sin[θ[t]], 0, 1}

In[27]:= X2 = {0, 0, 1, 0}
Out[27]= {0, 0, 1, 0}

In[28]:= X = {X1,X2,X3,X4}
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Out[28]=
˘
{ρ cos[θ[t]], ρ sin[θ[t]], 0, 1}, {0, 0, 1, 0},

˘ 1

m
, 0, 0,−ρ cos[θ[t]]

Jroll

¯
,˘

− ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2 cos[θ[t]]2
,

1

m
, 0,− ρ sin[θ[t]]

Jroll +m ρ2 cos[θ[t]]2
¯¯

One can check that these vector fields are indeed orthogonal.

In[29]:= Simplify[

Table[(X[[i]].metric.X[[j]])/(X[[i]].metric.X[[i]]), {i, 4}, {j, 4}]]

Out[29]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

One can now determine the components of the orthogonal projection onto D⊥.
To do this, it is less cumbersome if we compute the orthogonal projection onto
D first. Note that this only requires the basis for D, and that this basis needs
to be orthonormal for the macro OrthogonalProjection.

In[30]:= P = Simplify[OrthogonalProjection[

{X1/Sqrt[X1.metric.X1],X2/Sqrt[X2.metric.X2]},metric]]

Out[30]=
˘˘m ρ2 cos[θ[t]]2

Jroll +m ρ2
,
m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
, 0,

Jroll ρ cos[θ[t]]

Jroll +m ρ2

¯
,
˘m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
,

m ρ2 sin[θ[t]]2

Jroll +m ρ2
, 0,

Jroll ρ sin[θ[t]]

Jroll +m ρ2

¯
, {0, 0, 1, 0},

˘m ρ cos[θ[t]]

Jroll +m ρ2
,
m ρ sin[θ[t]]

Jroll +m ρ2
, 0,

Jroll

Jroll +m ρ2

¯¯
Let us at least verify that this is actually the G-orthogonal projection onto
D.

In[31]:= Table[Simplify[P.X[[i]] − X[[i]]], {i, 2}]

Out[31]= {{0, 0, 0, 0}, {0, 0, 0, 0}}

In[32]:= Table[Simplify[P.X[[i]]], {i, 3, 4}]

Out[32]= {{0, 0, 0, 0}, {0, 0, 0, 0}}

Now we define the projection onto D⊥.

In[33]:= Pperp = Simplify[IdentityMatrix[4] − P]

Out[33]=
˘˘

1− m ρ2 cos[θ[t]]2

Jroll +m ρ2
,−m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
, 0,−Jroll ρ cos[θ[t]]

Jroll +m ρ2

¯
,

˘
− m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
, 1− m ρ2 sin[θ[t]]2

Jroll +m ρ2
,

0,−Jroll ρ sin[θ[t]]

Jroll +m ρ2

¯
, {0, 0, 0, 0},

˘
− m ρ cos[θ[t]]

Jroll +m ρ2
,−m ρ sin[θ[t]]

Jroll +m ρ2
, 0,

m ρ2

Jroll +m ρ2

¯¯
Let us record the orthogonal basis for D for future use.
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In[34]:= Ddim = 2

Out[34]= 2

In[35]:= Dbasis = Table[X[[i]], {i,Ddim}]

Out[35]= {{ρ cos[θ[t]], ρ sin[θ[t]], 0, 1}, {0, 0, 1, 0}}

Now we compute the Christoffel symbols for the constrained connection. The
identity matrix in the second argument seems to be out of place here. The
meaning of this second argument, along with an example of how it is used,
can be found in Section S5.4.

In[36]:= cgamma = ConstrainedConnection[

lcgamma, IdentityMatrix[4],Pperp, conf]

Out[36]=
˘˘˘

0, 0,
2m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
, 0

¯
,

˘
0, 0,−m ρ2 cos[θ[t]]2

Jroll +m ρ2
+
m ρ2 sin[θ[t]]2

Jroll +m ρ2
, 0

¯
,

{0, 0, 0, 0},
˘
0, 0,

Jroll ρ sin[θ[t]]

Jroll +m ρ2
, 0

¯¯
,

˘˘
0, 0,−m ρ2 cos[θ[t]]2

Jroll +m ρ2
+
m ρ2 sin[θ[t]]2

Jroll +m ρ2
, 0

¯
,

˘
0, 0,−2m ρ2 cos[θ[t]] sin[θ[t]]

Jroll +m ρ2
, 0

¯
,

{0, 0, 0, 0},
˘
0, 0,−Jroll ρ cos[θ[t]]

Jroll +m ρ2
, 0

¯¯
,

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},˘˘
0, 0,

m ρ sin[θ[t]]

Jroll +m ρ2
, 0

¯
,

˘
0, 0,−m ρ cos[θ[t]]

Jroll +m ρ2
, 0

¯
, {0, 0, 0, 0}, {0, 0, 0, 0}

¯¯

S5.3.5 Nonholonomic constraint modeling II

In this section we illustrate the method for handling nonholonomic constraints
that normally works best in practice, namely using the orthogonal Poincaré
representation. Here we only compute the minimum number of Christoffel
symbols. Fortunately, we have already done much of the work, namely the
computation of a G-orthogonal basis for the constraint distribution. There-
fore, we can directly compute the 23 Christoffel symbols that appear in the
orthogonal Poincaré representation.

In[37]:= ogamma = OrthogonalChristoffelSymbols[

Dbasis,metric, lcgamma, conf]

Out[37]= {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}}
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It is possible to covariantly differentiate vector fields taking values in the
constraint distribution using the orthogonal Christoffel symbols. In fact, the
command for doing this will work even if the vector fields forming the basis
for the constraint distribution are not orthogonal. To execute the command,
one needs to represent vector fields with values in the constraint distribution.
This is done by giving their components relative to the basis vector fields. Let
us define two such vector fields in general form.

In[38]:= U = Table[Ucomp[i][x[t], x[y], θ[t], φ[t]], {i,Ddim}]

Out[38]= {Ucomp[1][x[t], x[y], θ[t], φ[t]],Ucomp[2][x[t], x[y], θ[t], φ[t]]}

In[39]:= V = Table[Vcomp[i][x[t], x[y], θ[t], φ[t]], {i,Ddim}]

Out[39]= {Vcomp[1][x[t], x[y], θ[t], φ[t]],Vcomp[2][x[t], x[y], θ[t], φ[t]]}

Now we covariantly differentiate V with respect to U.

In[40]:= GeneralizedCovariantDerivative[U,V,Dbasis, ogamma, conf]

Out[40]= {Ucomp[2][x[t], x[y], θ[t], φ[t]] Vcomp[1](0,0,1,0)[x[t], x[y], θ[t], φ[t]]+

Ucomp[1][x[t], x[y], θ[t], φ[t]] (Vcomp[1](0,0,0,1)[x[t], x[y], θ[t], φ[t]]+

ρ cos[θ[t]] Vcomp[1](1,0,0,0)[x[t], x[y], θ[t], φ[t]]),

Ucomp[2][x[t], x[y], θ[t], φ[t]] Vcomp[2](0,0,1,0)[x[t], x[y], θ[t], φ[t]]+

Ucomp[1][x[t], x[y], θ[t], φ[t]] (Vcomp[2](0,0,0,1)[x[t], x[y], θ[t], φ[t]]+

ρ cos[θ[t]] Vcomp[2](1,0,0,0)[x[t], x[y], θ[t], φ[t]])}

It is possible to use the generalized covariant derivative to perform controlla-
bility computations. An example of this is given in Section S5.4.

We also need to model the forces in the framework of pseudo-velocities. Two
things must be done to do this. First, the vector forces need to be projected
onto the constraint distribution. Then the resulting vector forces need to be
represented in terms of the (not necessarily G-orthogonal) basis for the con-
straint distribution. In the case when the basis for D is G-orthogonal, there
is a command for this.

In[41]:= Y1o = OrthogonalForce[F1,Dbasis,metric]

Out[41]=
˘
0,

1

Jspin

¯
In[42]:= Y2o = Simplify[OrthogonalForce[F2,Dbasis,metric]]

Out[42]=
˘ 1

Jroll +m ρ2
, 0

¯

S5.3.6 Equations of motion I

We will compute equations of motion in two different ways. First we use
the Christoffel symbols for the constrained connection as above, and just
produce the full geodesic equations. First we need to give the input vector
fields, properly projected onto the constraint distribution.
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In[43]:= Y1c = P.RiemannSharp[F1,metric]

Out[43]=
˘
0, 0,

1

Jspin
, 0

¯
In[44]:= Y2c = P.RiemannSharp[F2,metric]

Out[44]=
˘ ρ cos[θ[t]]

Jroll +m ρ2
,
ρ sin[θ[t]]

Jroll +m ρ2
, 0,

1

Jroll +m ρ2

¯
The total input is a linear combination of the two inputs, with the coefficients
being the controls. Let us leave the controls as general for the moment.

In[45]:= Yc = u1 Y1c + u2 Y2c

Out[45]=
˘ρ u2 cos[θ[t]]

Jroll +m ρ2
,
ρ u2 sin[θ[t]]

Jroll +m ρ2
,

u1

Jspin
,

u2

Jroll +m ρ2

¯
Now we can produce the equations of motion.

In[46]:= eqmot1 = Simplify[ACCSequations[cgamma,Yc, conf , t]]

Out[46]=
˘ 1

Jroll +m ρ2
(−ρ u2 cos[θ[t]] + Jroll ρ sin[θ[t]] φ′[t] θ′[t]+

m ρ2 θ′[t] (sin[2 θ[t]] x′[t]− cos[2 θ[t]] y′[t])+

Jroll x′′[t] +m ρ2 x′′[t]) == 0, 0 ==
1

Jroll +m ρ2

(ρ u2 sin[θ[t]] + Jroll ρ cos[θ[t]] φ′[t] θ′[t]+

m ρ2 θ′[t] (cos[2 θ[t]] x′[t] + sin[2 θ[t]] y′[t])−

(Jroll +m ρ2) y′′[t]), θ′′[t] ==
u1

Jspin
,

1

Jroll +m ρ2

(−u2 +m ρ θ′[t] (sin[θ[t]] x′[t]− cos[θ[t]] y′[t])+

(Jroll +m ρ2) φ′′[t]) == 0
¯

S5.3.7 Equations of motion II

Now we provide another means of producing the equations of motion, using
the Poincaré representation. Since this representation, in principle, captures
all possibilities, one must allow for both constrained and unconstrained cases.
One of the differences will be that, in the unconstrained case with the natural
Christoffel symbols, the dependent variables will be the configuration coordi-
nates, and all equations will be second-order. For systems with constraints,
and using generalized Christoffel symbols, there will be pseudo-velocities, and
the equations will be first-order. Things are further complicated by the fact
that, in some examples, some of the pseudo-velocities will be actual veloci-
ties. Thus the resulting equations of motion will be a mixture of first- and
second-order equations. The difficulty is then to determine the correct state,
taking into account that some pseudo-velocities are actual velocities. There
is a command for this, whose usage we now illustrate. First one defines the
“full” set of pseudo-velocities. In this case there are two.

In[47]:= pv = {pv1[t],pv2[t]}
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Out[47]= {pv1[t],pv2[t]}

Then one extracts the state for the equations, properly taking into account
that some of the pseudo-velocities are velocities. The following command does
not require a G-orthogonal basis for D.

In[48]:= state = GetState[Dbasis,pv, conf , t]

Out[48]= {x[t], y[t], θ[t], φ[t]}

Note that, in the rolling disk, all pseudo-velocities are actual velocities, re-
flected by the fact that no pseudo-velocities appear in the list of states.

If the system were unconstrained and one wished to use the natural represen-
tation, then one would proceed as follows.

In[49]:= GetState[IdentityMatrix[4],

{pv1[t],pv2[t],pv3[t],pv4[t]}, conf , t]
Out[49]= {x[t], y[t], θ[t], φ[t]}

The first argument being the identity matrix corresponds to the fact that the
pssudo-velocities are all real velocities. Then the state is correctly returned
as simply the configuration coordinates. In such cases one may want to not
bother with listing the pseudo-velocities, in which case an empty list will
guarantee the correct result.

In[50]:= GetState[IdentityMatrix[4], {}, conf , t]

Out[50]= {x[t], y[t], θ[t], φ[t]}

A second difficulty arises with the treatment of forces. In unconstrained sys-
tems, one simply wants to use the natural representation of the force. For
constrained systems using pseudo-velocities, one must properly represent vec-
tor forces as above. Therefore, the user is required to define a vector force
being applied to the system by giving its components in the basis for D. In
this case, we have already done this.

In[51]:= Yo = u1 Y1o + u2 Y2o

Out[51]=
˘ u2

Jroll +m ρ2
,

u1

Jspin

¯
In the unconstrained case when using the natural representation, one would
simply use the list comprised on the components of the vector force.

Now we can formulate the equations of motion. Note that one uses all pseudo-
velocities. The program sorts out the state along the lines of the GetState
command above. For an unconstrained system, an empty list of pseudo-
velocities will give the desired result. Note that, for the following command,
the basis for D need not be G-orthogonal.

In[52]:= eqmot2 = SMCSequations[ogamma,Yo,Dbasis,pv, conf , t]

Out[52]=
˘
x′[t] == ρ cos[θ[t]] φ′[t], y′[t] == ρ sin[θ[t]] φ′[t],

φ′′[t] ==
u2

Jroll +m ρ2
, θ′′[t] ==

u1

Jspin

¯
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S5.3.8 Simulation

Once one has the equations of motion, one would like to be able to numerically
solve the equations. In Mathematica® this is done using NDSolve, but an
interface has been provided that simplifies certain things. First let us give
numerical values for the parameters.

In[53]:= params = {Jspin → 2, Jroll → 1,m → 1/2, ρ → 1}

Out[53]=
˘
Jspin → 2, Jroll → 1,m→ 1

2
, ρ→ 1

¯
Now define specific controls.

In[54]:= u1 = 2Sin[3t]

Out[54]= 2 sin[3 t]

In[55]:= u2 = 2Sin[2t]

Out[55]= 2 sin[2 t]

Next define the initial and final times for the simulation.

In[56]:= Ti = 0

Out[56]= 0

In[57]:= Tf = 3π

Out[57]= 3 π

Now the initial conditions.

In[58]:= qinit = vinit = {0, 0, 0, 0}
Out[58]= {0, 0, 0, 0}

It is assumed that the initial velocity satisfies the constraint.

Now simulate.

In[59]:= sol1 = ACCSsimulate[(eqmot1/.params),

conf , qinit, vinit, t,Ti,Tf]

Out[59]= {{x[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

y[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

θ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

φ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t]}}

In[60]:= Plot[x[t]/.sol1, {t,Ti,Tf}]
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2 4 6 8

0.5

1

1.5

2

Out[60]= -Graphics-

Now we simulate the system as a Poincaré representation. The initial condition
is given as initial configuration, plus a complete list of initial pseudo-velocities.
The program converts this into a state initial condition.

In[61]:= pvinit = Table[vinit.metric.X[[i]]/(X[[i]].metric.X[[i]]),

{i,Ddim}]

Out[61]= {0, 0}

Now simulate.

In[62]:= sol2 = SMCSsimulate[(eqmot2/.params),

Dbasis, conf ,pv, qinit,pvinit, t,Ti,Tf]

Out[62]= {{x[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

y[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

θ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

φ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t]}}

In[63]:= Plot[x[t]/.sol2, {t,Ti,Tf}]



S5.3 SMCS.m S171

2 4 6 8

0.5

1

1.5

2

Out[63]= -Graphics-

The two solution methods give the same solutions to the differential equation,
as expected.

S5.3.9 Other useful macros

The primary components of SMCS.m are illustrated above. But there are a
few other macros that are implemented that might be useful. Let us indicate
what these are and what they do.

There are macros that manage the isomorphism between so(3) and R3.

In[64]:= omegahat = Hat[{w1,w2,w3}]

Out[64]= {{0,−w3,w2}, {w3, 0,−w1}, {−w2,w1, 0}}

In[65]:= ω = Unhat[omegahat]

Out[65]= {w1,w2,w3}

There is also an implementation of the Hessian. The implementation supposes
that the function is being evaluated at a critical point, where the matrix
representative of the Hessian is simply the matrix of second partial derivatives.

In[66]:= Hessian[f[x[t], y[t], θ[t], φ[t]], conf]
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Out[66]= {{f (2,0,0,0)[x[t], y[t], θ[t], φ[t]], f (1,1,0,0)[x[t], y[t], θ[t], φ[t]],

f (1,0,1,0)[x[t], y[t], θ[t], φ[t]], f (1,0,0,1)[x[t], y[t], θ[t], φ[t]]},
{f (1,1,0,0)[x[t], y[t], θ[t], φ[t]], f (0,2,0,0)[x[t], y[t], θ[t], φ[t]],

f (0,1,1,0)[x[t], y[t], θ[t], φ[t]], f (0,1,0,1)[x[t], y[t], θ[t], φ[t]]},
{f (1,0,1,0)[x[t], y[t], θ[t], φ[t]], f (0,1,1,0)[x[t], y[t], θ[t], φ[t]],

f (0,0,2,0)[x[t], y[t], θ[t], φ[t]], f (0,0,1,1)[x[t], y[t], θ[t], φ[t]]},
{f (1,0,0,1)[x[t], y[t], θ[t], φ[t]], f (0,1,0,1)[x[t], y[t], θ[t], φ[t]],

f (0,0,1,1)[x[t], y[t], θ[t], φ[t]], f (0,0,0,2)[x[t], y[t], θ[t], φ[t]]}}

A generally useful macro is SetEqual, which is used to set the components
of two lists equal to one another in the form of an equation.

In[67]:= list1 = Table[l1[i], {i, 3}]

Out[67]= {l1[1], l1[2], l1[3]}

In[68]:= list2 = Table[l2[i], {i, 3}]

Out[68]= {l2[1], l2[2], l2[3]}

In[69]:= SetEqual[list1, list2]

Out[69]= {l1[1] == l2[1], l1[2] == l2[2], l1[3] == l2[3]}

S5.4 Snakeboard modeling using Mathematica®

In this section we illustrate the modeling of the snakeboard using our
Mathematica® macros. The snakeboard is considered in Section 13.4 in the
text. The snakeboard is a quite complicated example, so this section pro-
vides a good test for one’s understanding of how to use the Mathematica®

packages. For reference, we illustrate the model we use for the snakeboard in
Figure S5.2.

In[1]:= << SMCS.m

\nPackage "Tensors" defines: ChangeBasis, ChangeCoordinates,

EvaluateTensor, InitializeTensor, ITen2Vec, IVec2Ten, LieDerivative,

Ten2Vec, TheJacobian, Vec2Ten.

\nPackage "Affine" defines: AlongCurve, CovariantDerivative,

CovariantDifferential, CurvatureTensor, Grad, LeviCivita,

RicciCurvature, RiemannFlat, RiemannSharp, ScalarCurvature,

SectionalCurvature, Spray, SymmetricProduct, TorsionTensor.

\nPackage "SMCS" defines: ACCSequations, ACCSsimulate,

BodyAngularVelocity, ConstrainedConnection, Force,

GeneralizedCovariantDerivative, GetState, Hat, Hessian, KErot, KEtrans,

OrthogonalChristoffelSymbols, OrthogonalForce, OrthogonalProjection,

SetEqual, SMCSequations, SMCSsimulate, SpatialAngularVelocity, Unhat.
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Figure S5.2. Model for the snakeboard

S5.4.1 Inertia tensors

The snakeboard is comprised of four components, the coupler, the rotor, the
“back” wheels, and the “front” wheels. These will be denoted with the suffixes
“c,” “r,” “f,” and “b,” respectively. In all cases, the frames we consider will
be those described in the text. Let us first define the inertia tensors for the
four bodies.

In[2]:= Ic = {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jc}}
Out[2]= {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jc}}

In[3]:= Ir = {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jr}}
Out[3]= {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jr}}

In[4]:= Ib = If1 = {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jw}}
Out[4]= {{a11, a12, 0}, {a12, a22, 0}, {0, 0, Jw}}

Note that we are forced to use “If1” since “If” is an internal Mathematica®

symbol. Also note that the parameters a11, a12, and a22 are dummies, and
should not show up in the final expressions by virtue of the way in which the
frames are defined.
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S5.4.2 Forward kinematic maps

Now we define the forward kinematic maps for the four bodies by defining
the positions of the centers of mass from the spatial origin, and by defining
the orientation of the body frames relative to the spatial frame. Thus this
step amounts to defining four vectors in R3 and four matrices in SO(3). First
we need coordinates and their velocities. We use the ones from the text, of
course.

In[5]:= conf = {x[t], y[t], θ[t], ψ[t], φ[t]}
Out[5]= {x[t], y[t], θ[t], ψ[t], φ[t]}

In[6]:= vel = D[conf , t]

Out[6]= {x′[t], y′[t], θ′[t], ψ′[t], φ′[t]}

Now for the forward kinematic maps. The lowercase r is for the center of mass
position, and the uppercase R is for the orientation matrices.

In[7]:= rc = {x[t], y[t], 0}
Out[7]= {x[t], y[t], 0}

In[8]:= rr = {x[t], y[t], 0}
Out[8]= {x[t], y[t], 0}

In[9]:= rb = {x[t] − l Cos[θ[t]], y[t] − l Sin[θ[t]], 0}
Out[9]= {−l cos[θ[t]] + x[t],−l sin[θ[t]] + y[t], 0}

In[10]:= rf = {x[t] + l Cos[θ[t]], y[t] + l Sin[θ[t]], 0}
Out[10]= {l cos[θ[t]] + x[t], l sin[θ[t]] + y[t], 0}

In[11]:= Rc = {{Cos[θ[t]],− Sin[θ[t]], 0},
{Sin[θ[t]],Cos[θ[t]], 0}, {0, 0, 1}}

Out[11]= {{cos[θ[t]],− sin[θ[t]], 0}, {sin[θ[t]], cos[θ[t]], 0}, {0, 0, 1}}

In[12]:= Rr = {{Cos[θ[t] + ψ[t]],− Sin[θ[t] + ψ[t]], 0},
{Sin[θ[t] + ψ[t]],Cos[θ[t] + ψ[t]], 0}, {0, 0, 1}}

Out[12]= {{cos[ψ[t] + θ[t]],− sin[ψ[t] + θ[t]], 0},
{sin[ψ[t] + θ[t]], cos[ψ[t] + θ[t]], 0}, {0, 0, 1}}

In[13]:= Rb = {{Cos[θ[t] + φ[t]],− Sin[θ[t] + φ[t]], 0},
{Sin[θ[t] + φ[t]],Cos[θ[t] + φ[t]], 0}, {0, 0, 1}}

Out[13]= {{cos[φ[t] + θ[t]],− sin[φ[t] + θ[t]], 0},
{sin[φ[t] + θ[t]], cos[φ[t] + θ[t]], 0}, {0, 0, 1}}

In[14]:= Rf = {{Cos[θ[t] − φ[t]],− Sin[θ[t] − φ[t]], 0},
{Sin[θ[t] − φ[t]],Cos[θ[t] − φ[t]], 0}, {0, 0, 1}}

Out[14]= {{cos[φ[t]− θ[t]], sin[φ[t]− θ[t]], 0},
{− sin[φ[t]− θ[t]], cos[φ[t]− θ[t]], 0}, {0, 0, 1}}
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S5.4.3 Kinetic energy and the kinetic energy metric

Now we compute the kinetic energies, translational and rotational, for all of
the bodies.

In[15]:= ketranc = KEtrans[rc, conf ,mc, t]

Out[15]=
1

2
mc (x′[t]

2
+ y′[t]

2
)

In[16]:= kerotc = Simplify[KErot[Rc, conf , Ic, t]]

Out[16]=
1

2
Jc θ′[t]

2

In[17]:= ketranr = KEtrans[rr, conf ,mr, t]

Out[17]=
1

2
mr (x′[t]

2
+ y′[t]

2
)

In[18]:= kerotr = Simplify[KErot[Rr, conf , Ir, t]]

Out[18]=
1

2
Jr (ψ′[t] + θ′[t])

2

In[19]:= ketranb = KEtrans[rb, conf ,mw, t]

Out[19]=
1

2
mw ((l sin[θ[t]] θ′[t] + x′[t])

2
+ (−l cos[θ[t]] θ′[t] + y′[t])

2
)

In[20]:= kerotb = Simplify[KErot[Rb, conf , Ib, t]]

Out[20]=
1

2
Jw (φ′[t] + θ′[t])

2

In[21]:= ketranf = KEtrans[rf , conf ,mw, t]

Out[21]=
1

2
mw ((−l sin[θ[t]] θ′[t] + x′[t])

2
+ (l cos[θ[t]] θ′[t] + y′[t])

2
)

In[22]:= kerotf = Simplify[KErot[Rf , conf , If1, t]]

Out[22]=
1

2
Jw (φ′[t]− θ′[t])

2

Note that, in the above computations, the arguments “mc,” “mr,” and “mw”
are masses. We can now obtain the total kinetic energy.

In[23]:= KE = Simplify[ketranc + kerotc + ketranr + kerotr

+ ketranb + kerotb + ketranf + kerotf]

Out[23]=
1

2
(2 Jw φ′[t]

2
+ Jr ψ′[t]

2
+ 2 Jr ψ′[t] θ′[t] + Jc θ′[t]

2
+

Jr θ′[t]
2

+ 2 Jw θ′[t]
2

+ 2 l2 mw θ′[t]
2

+ mc x′[t]
2
+

mr x′[t]
2

+ 2 mw x′[t]
2

+ mc y′[t]
2

+ mr y′[t]
2

+ 2 mw y′[t]
2
)

We can compute the components to the kinetric energy metric.

In[24]:= metric = Simplify[KE2Metric[KE, vel]]

Out[24]= {{mc + mr + 2 mw, 0, 0, 0, 0}, {0,mc + mr + 2 mw, 0, 0, 0},
{0, 0, Jc + Jr + 2 (Jw + l2 mw), Jr, 0}, {0, 0, Jr, Jr, 0}, {0, 0, 0, 0, 2 Jw}}

We can also compute the Christoffel symbols for the associated Levi-Civita
affine connection.
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In[25]:= lcgamma = LeviCivita[metric, conf]

Out[25]= {{{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}}, {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}},

{{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}}, {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}}

S5.4.4 Forces

For the snakeboard there are only control forces, and there are two of these.
First we consider the force that spins the rotor. The corresponding Newtonian
force is applied to the rotor and the coupler, and so the Lagrangian force will
be a sum of these two Newtonian contributions. First we make a list of the
Newtonian forces. In this case, there are two of these (one each for the coupler
and the rotor), and they are both zero.

In[26]:= force1 = {{0, 0, 0}, {0, 0, 0}}
Out[26]= {{0, 0, 0}, {0, 0, 0}}

We now do the same for torques.

In[27]:= torque1 = {{0, 0,−1}, {0, 0, 1}}
Out[27]= {{0, 0,−1}, {0, 0, 1}}

Next we create the Lagrangian force.

In[28]:= F1 = Simplify[Force[torque1, force1, {Rc,Rr}, {rc, rr}, conf , t]]

Out[28]= {0, 0, 0, 1, 0}

Let us do the same for the other control force that moves the wheels.

In[29]:= force2 = {{0, 0, 0}, {0, 0, 0}}
Out[29]= {{0, 0, 0}, {0, 0, 0}}

In[30]:= torque2 = {{0, 0, 1/2}, {0, 0,−1/2}}

Out[30]=
˘˘

0, 0,
1

2

¯
,
˘
0, 0,−1

2

¯¯
In[31]:= F2 = Simplify[Force[torque2, force2, {Rb,Rf}, {rb, rf}, conf , t]]

Out[31]= {0, 0, 0, 0, 1}
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S5.4.5 The constrained connection

The explicit expressions here are a little outrageous, so we suppress much of
the output. The first step is to compute an orthogonal basis of vector fields
for which the first vector fields in the list are a basis for the constraint dis-
tribution. This is generally not possible. For example, for the snakeboard,
the constraint distribution does not have constant rank. Even when the con-
straint distribution does have constant rank, it is not always possible to find
a global basis. We refer to the text for details surround such discussions. Here
we merely note that, provided one omits consideration of the configurations
where the constraint distribution gains rank, it is possible to find a global ba-
sis of vector fields for the snakeboard constraint distribution. First we provide
a set of covector fields that annihilate the constraint distribution.

In[32]:= omega1 =

{− Sin[φ[t] + θ[t]],Cos[φ[t] + θ[t]],−l Cos[φ[t]], 0, 0}
Out[32]= {− sin[φ[t] + θ[t]], cos[φ[t] + θ[t]],−l cos[φ[t]], 0, 0}

In[33]:= omega2 =

{Sin[φ[t] − θ[t]],Cos[φ[t] − θ[t]], l Cos[φ[t]], 0, 0}
Out[33]= {sin[φ[t]− θ[t]], cos[φ[t]− θ[t]], l cos[φ[t]], 0, 0}

By “sharping” these relative to the kinetic energy metric, we get two vector
fields that are G-orthogonal to the constraint distribution. Then we need to
ensure that these are G-orthogonal.

In[34]:= X4 = RiemannSharp[omega1,metric];

In[35]:= X5t = RiemannSharp[omega2,metric];

The next equation is just the Gram–Schmidt Procedure.

In[36]:= X5 = X5t − (X4.metric.X5t)X4/(X4.metric.X4);

Now we define the three vector fields used in the text as a G-orthogonal basis
for the constraint distribution.

In[37]:= V1 = {Cos[θ[t]],Sin[θ[t]], 0, 0, 0}
Out[37]= {cos[θ[t]], sin[θ[t]], 0, 0, 0}

In[38]:= X1 = l Cos[φ[t]] V1 − Sin[φ[t]] {0, 0, 1, 0, 0}
Out[38]= {l cos[φ[t]] cos[θ[t]], l cos[φ[t]] sin[θ[t]],− sin[φ[t]], 0, 0}

In[39]:= X2t = {0, 0, 0, 1, 0}
Out[39]= {0, 0, 0, 1, 0}

In[40]:= X2 = Simplify[((X1.metric.X1)X2t

−(X1.metric.X2t)X1)/((mc + mr + 2mw)lˆ2

Cos[φ[t]]ˆ2 + (Jc + Jr + 2(Jw + mw lˆ2)) Sin[φ[t]]ˆ2)];

In[41]:= X3 = {0, 0, 0, 0, 1}
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Out[41]= {0, 0, 0, 0, 1}

In[42]:= X = {X1,X2,X3,X4,X5};

Let us save the basis for D for later use.

In[43]:= Ddim = 3;

In[44]:= Dbasis = Table[X[[i]], {i,Ddim}];

One can check that these vector fields are indeed G-orthogonal.

In[45]:= Simplify[

Table[(X[[i]].metric.X[[j]])/(X[[i]].metric.X[[i]]), {i, 5}, {j, 5}]]

Out[45]= {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}}

One can now determine the components of the orthogonal projection onto
D⊥. To do this, we first compute the orthogonal projection onto D.

In[46]:= P = OrthogonalProjection[{X1/Sqrt[X1.metric.X1],

X2/Sqrt[X2.metric.X2],X3/Sqrt[X3.metric.X3]},metric];

Since we have suppressed the somewhat lengthy explicit expression, let us at
least verify that it is what it is supposed to be.

In[47]:= Table[Simplify[P.X[[i]] − X[[i]]], {i, 3}]

Out[47]= {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}

In[48]:= Table[Simplify[P.X[[i]]], {i, 4, 5}]

Out[48]= {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}

Now we define the projection onto D⊥.

In[49]:= Pperp = IdentityMatrix[5] − P;

Were one to examine the components of PD, one would find that each of them
has as a denominator the following expression:

In[50]:= den = (Jc + Jr + 2Jw + lˆ2 mc + lˆ2 mr + 4lˆ2 mw−
(Jc + Jr + 2Jw − lˆ2 mc − lˆ2 mr) Cos[2φ[t]])ˆ2

(Jc + 2 Jw + lˆ2mc + lˆ2 mr + 4lˆ2 mw+

(−Jc − 2Jw + lˆ2(mc + mr)) Cos[2φ[t]])

Out[50]= (Jc + Jr + 2 Jw + l2 mc + l2 mr + 4 l2 mw

−(Jc + Jr + 2 Jw − l2 mc− l2 mr) cos[2 φ[t]])ˆ2

(Jc + 2 Jw + l2 mc + l2 mr + 4 l2 mw

+(−Jc− 2 Jw + l2 (mc + mr)) cos[2 φ[t]])

Since we will be covariantly differentiating P⊥D , the computations would sim-
plify if we could get rid of this denominator (no messy quotient rule compu-
tations). It is not obvious how this can be done. The key is the following fact.
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If A is an arbitrary invertible (1, 1)-tensor field, then we may define the affine

connection
A

∇ on Q by

A

∇XY =
G

∇XY +A−1(
G

∇X(AP⊥D))(Y ).

It is easy to verify that this affine connection restricts to D, and that its

restriction to D agrees with
D

∇ (see [Lewis 2000]). We apply this formula with A
being the identity tensor multiplied by the denominator. Since one covariantly

differentiates A ◦P⊥D when computing
A

∇, the denominator disappears, and the
differentiations simplify.

In[51]:= cgamma = ConstrainedConnection[

lcgamma,den IdentityMatrix[5],Pperp, conf];

Now, having computed the Christoffel symbols for the constrained connection,
we will do nothing with them symbolically. They are just too unwieldy.

S5.4.6 The data for the orthogonal Poincaré representation

In this section we illustrate the use of the orthogonal Poincaré representation.
Fortunately, we have already done much of the work, namely the computation
of a G-orthogonal basis for the constraint distribution. Therefore, we can
directly compute the 33 Christoffel symbols that appear in the orthogonal
Poincaré representation.

In[52]:= ogamma = Simplify[OrthogonalChristoffelSymbols[

Dbasis,metric, lcgamma, conf]];

While we suppress the output of Mathematica® here, the explicit expressions
are not that bad, and indeed are produced in the text in Section 13.4.1.

It is possible to use the generalized covariant derivative to perform controlla-
bility computations. Let us, for example, check that the snakeboard is STLC
from points with zero initial velocity. In the text it is shown that the system
is KC, and therefore STLCC. To show that the system is STLC, we need only
show that Sym(1)(Y) = D (cf. Theorem 8.9). First we need the components
of the vector forces relative to the G-orthogonal basis.

In[53]:= Y1o = OrthogonalForce[F1,Dbasis,metric];

In[54]:= Y2o = OrthogonalForce[F2,Dbasis,metric]

Out[54]=
˘
0, 0,

1

2 Jw

¯
Now we compute the symmetric products.

In[55]:= Y1symY1o = 2Simplify[GeneralizedCovariantDerivative[

Y1o,Y1o,Dbasis, ogamma, conf]]
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Out[55]= {0, 0, 0}

In[56]:= Y2symY2o = 2Simplify[GeneralizedCovariantDerivative[

Y2o,Y2o,Dbasis, ogamma, conf]]

Out[56]= {0, 0, 0}

In[57]:= Y1symY2o = GeneralizedCovariantDerivative[

Y1o,Y2o,Dbasis, ogamma, conf]

+ GeneralizedCovariantDerivative[

Y2o,Y1o,Dbasis, ogamma, conf];

The vanishing of 〈Y1 : Y1〉 and 〈Y2 : Y2〉 gives the kinematic controllability of
the system, as described in the text.

We now see that {Y1, Y2, 〈Y1 : Y2〉} generate D at all points where
{X1, X2, X3} generate the constraint distribution (i.e., at points where cosφ 6=
0).

In[58]:= Simplify[Det[{Y1o,Y2o,Y1symY2o}]]

Out[58]= (l2 (mc + mr + 2 mw) cos[φ[t]])‹`
Jr Jw2 (Jc + 2 Jw + l2 mc + l2 mr + 4 l2 mw

−(Jc + 2 Jw − l2 (mc + mr)) cos[2 φ[t]])2
´

S5.4.7 Affine connection control system equations

We will compute equations of motion in two different ways. First we use
the Christoffel symbols for the constrained connection as above, and just
produce the full geodesic equations. First we need to give the input vector
fields, properly projected onto the constraint distribution.

In[59]:= Y1c = P.RiemannSharp[F1,metric];

In[60]:= Y2c = P.RiemannSharp[F2,metric]

Out[60]=
˘
0, 0, 0, 0,

1

2 Jw

¯
The total input is a linear combination of the two inputs, with the coefficients
being the controls. Let us leave the controls as general for the moment.

In[61]:= Yc = u1 Y1c + u2 Y2c;

Now we can produce the equations of motion.

In[62]:= eqmot1 = ACCSequations[cgamma,Yc, conf , t];
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S5.4.8 Poincaré equations

First one defines the “full” set of pseudo-velocities. In this case there are three.

In[63]:= pv = {pv1[t],pv2[t],pv3[t]}
Out[63]= {pv1[t],pv2[t],pv3[t]}

Then one extracts the state for the equations, properly taking into account
that some of the pseudo-velocities are velocities.

In[64]:= state = GetState[Dbasis,pv, conf , t]

Out[64]= {x[t], y[t], θ[t], ψ[t], φ[t],pv1[t]}

Note that the second and third pseudo-velocities are actual velocities, and so
do not appear in the list of states.

Next we give the vector force.

In[65]:= Yo = u1 Y1o + u2 Y2o;

Now we can formulate the equations of motion.

In[66]:= eqmot2 = SMCSequations[ogamma,Yo,Dbasis,pv, conf , t];

S5.4.9 Simulation

First let us give numerical values to the parameters.

In[67]:= params = {Jc → 1/2, Jw → 1/8, Jr → 3/4,

mc → 1/2,mr → 3/4,mw → 1/4, l → 1/2}

Out[67]=
˘
Jc → 1

2
, Jw → 1

8
, Jr → 3

4
,mc → 1

2
,mr → 3

4
,mw → 1

4
, l→ 1

2

¯
Now define specific controls.

In[68]:= u1 = 2Sin[3t]

Out[68]= 2 sin[3 t]

In[69]:= u2 = 2Sin[2t]

Out[69]= 2 sin[2 t]

Next define the initial and final times for the simulation.

In[70]:= Ti = 0

Out[70]= 0

In[71]:= Tf = 3π

Out[71]= 3 π

Now the initial conditions.

In[72]:= qinit = vinit = {0, 0, 0, 0, 0}
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Out[72]= {0, 0, 0, 0, 0}

Now simulate.

In[73]:= sol1 = ACCSsimulate[(eqmot1/.params),

conf , qinit, vinit, t,Ti,Tf]

Out[73]= {{x[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

y[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

θ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

ψ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

φ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t]}}

In[74]:= Plot[x[t]/.sol1, {t,Ti,Tf}]
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Out[74]= -Graphics-

Now we simulate the system as a Poincaré representation. First we need to
compute the initial pseudo-velocities.

In[75]:= pvinit = Table[vinit.metric.X[[i]]/(X[[i]].metric.X[[i]]),

{i,Ddim}]
Out[75]= {0, 0, 0}

Now simulate.

In[76]:= sol2 = SMCSsimulate[(eqmot2/.params),

Dbasis, conf ,pv, qinit,pvinit, t,Ti,Tf]

Out[76]= {{x[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

y[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

θ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

ψ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

φ[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t],

pv1[t] → InterpolatingFunction[{{0., 9.42478}}, <>][t]}}

In[77]:= Plot[x[t]/.sol2, {t,Ti,Tf}]
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Out[77]= -Graphics-

The two solution methods give the same solutions to the differential equation,
as expected.
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Stuttgart, ISBN 0-8176-3917-9.

Wonham, W. M. [1985] Linear Multivariable Control: A Geometric Approach, third
edition, number 10 in Applications of Mathematics, Springer-Verlag, New York–
Heidelberg–Berlin, ISBN 0-387-96071-6.

Woolsey, C. A. and Leonard, N. E. [2004] Stabilizing underwater vehicle motion
using internal rotors, Automatica. The Journal of IFAC, 38(12), 2053–2062.

Yano, K. and Ishihara, S. [1973] Tangent and Cotangent Bundles, number 16 in Pure
and Applied Mathematics, Dekker Marcel Dekker, New York, ISBN 0-8247-6071-
9.

Zenkov, D. V., Bloch, A. M., and Marsden, J. E. [2002] The Lyapunov-Malkin theo-
rem and stabilization of the unicycle with rider, Systems & Control Letters, 45(4),



References S189

293–302.





Symbol index

Symbol : Description and page(s) when applicable

f∗E : pull-back of vector bundle E by f , S15
f∗π : projection for pull-back of π : E → M by f , S16
Y ∗ : dual of linear vector field Y , S19
αvq ⊕ βvq : representation of typical point in T∗TQ using Ehresmann

connection defined by an affine connection, S30
uvq

⊕ wvq
: representation of typical point in TTQ using Ehresmann

connection defined by an affine connection, S27
〈· : ·〉g : symmetric product on Lie algebra, S46

∇T : tangent lift of the affine connection ∇, S25
∇k
X : kth-order covariant derivative, S14

α ∧ β : wedge product of α and β, S2
αB : covector field associated with linearization along relative

equilibrium, S65
AG : mechanical connection, S49
AB : tensor field associated with linearization along relative

equilibrium, S65
Acl : closed-loop (0, 2)-tensor field for linear derivative control

law, S85
Alt : projection onto skew-symmetric tensors, S2
AΣ(γ0, u0) : differential operator associated to the linearization of an

affine connection control system, S60
AΣ(b0) : part of reduced linearization along a relative equilibrium,

S66
AΣ,F : objective function for system Σ and with cost function

F , S104
AΣ,FA : objective function for system Σ and with cost function

FA , S118
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Asing : singular set for force-optimal control, S128
aB : vector field associated with linearization along relative

equilibrium, S65
BG : curvature of mechanical connection, S50
BΣ(b0) : part of reduced linearization along a relative equilibrium,

S66
BΣ,2(b0) : part of reduced linearization along a relative equilibrium,

S66
BΣ,3(b0) : part of reduced linearization along a relative equilibrium,

S66
BY : tensor field for force-optimal control problem, S129
B(Sym0(η′)) : set of products used in forming obstructions, S41
Bw

0 (Sym0(η′)) : set w-obstructions, S41
bΣ,a(γ0, u0) : input vector fields for linearization of a control-affine or

affine connection control system, S58, S60
Carc(Σ) : controlled arcs, S102, S117
Ctraj(Σ, F ) : F -acceptable controlled arcs, S104
Carc(Σ, F, S0, S1) : F -acceptable controlled arcs connecting S0 and S1, S104
Carc(Σ, F, S0, S1, [a, b]) :

F -acceptable controlled arcs connecting S0 and S1 and
defined on [a, b], S104

Ctraj(Σ, FA ) : F -acceptable controlled arcs, S118
Carc(Σ, FA , q0, q1) :

FA -acceptable controlled arcs connecting q0 and q1, S118
Carc(Σ, FA , q0, q1, [a, b]) :

FA -acceptable controlled arcs connecting q0 and q1 and
defined on [a, b], S118

Carc(Σ, FA , vq0 , vq1) :
FA -acceptable controlled arcs connecting vq0 and vq1 ,
S118

Carc(Σ, FA , vq0 , vq1 , [a, b]) :
FA -acceptable controlled arcs connecting vq0 and vq1 and
defined on [a, b], S118

C
(k)
hor(Y , Y ) : distributions associated with forced affine connection

control system with basic external force Y , S36

C
(∞)
hor (Y , Y ) : smallest distribution containing C

(k)
hor(Y , Y ), k ∈ N, S37

C ′
Σ : control-affine system associated to mechanical control

system Σ, but with external force as extra input, S37

C
(k)
ver(Y , Y ) : distributions associated with forced affine connection

control system with basic external force Y , S36

C
(∞)
ver (Y , Y ) : smallest distribution containing C

(k)
ver(Y , Y ), k ∈ N, S37



Symbol index S193

Ctraj(Σ) : controlled trajectories, S102
Ctraj(Σ, F ) : F -acceptable controlled trajectories, S104
Ctraj(Σ, FA ) : F -acceptable controlled trajectories, S118
deg : degree of bracket or product, S43
dα : exterior derivative of differential form α, S4
Eχ : linearized effective energy, S72
Ered
χ : reduced linearized effective energy, S73

Ered
X : reduced effective energy, S72

Fcl : closed-loop force, S79
FA : cost function for affine connection control system, S118
FB : linear map on reduced space defined by control forces,

S82
FB : input codistribution on reduced space, S91
Fforce : cost function for force-optimal control, S127
FL : fiber derivative of L, S96
F (Σ, q0, q1) : free interval force-optimal control problem with position

boundary conditions, S127
F[a,b](Σ, q0, q1) : fixed interval force-optimal control problem with position

boundary conditions, S127
F (Σ, vq0 , vq1) : free interval force-optimal control problem with velocity

boundary conditions, S127
F[a,b](Σ, vq0 , vq1) : fixed interval force-optimal control problem with velocity

boundary conditions, S127
FB : covector fields on B, S48
Ftime : cost function for time-optimal control, S137
faB : function of reduced space defined by control forces, S82
GB : projected metric, S48
GL : symmetric (0, 2)-tensor on VTQ associated with L, S97
GY : G restricted to Y, S127
HL : Hamiltonian associated with L, S98
Hmax
L : maximum Hamiltonian for HL, S101

HΣ,F : Hamiltonian for system Σ and cost function F , S105
HΣ,FA : Hamiltonian for system Σ and cost function FA , S121
Hmax

Σ,FA
: maximum Hamiltonian for system Σ and cost function
FA , S121

Hmax
Σ,F : maximum Hamiltonian for system Σ and cost function

F , S105
HE∗ : dual of linear Ehresmann connection HE, S20
HM : horizontal bundle for a principle fiber bundle or an Ehres-

mann connection, S17, S48
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H(T∗Q) : typically, the Ehresmann connection defined by an affine
connection, S25

HTQ : typically, the Ehresmann connection defined by an affine
connection, S21

HT∗Q : typically, the Ehresmann connection defined by an affine
connection, S23

H(TTQ) : typically, the Ehresmann connection defined by an affine
connection, S24

HTQX : restriction of VTQ to image(X), S69
hlft : horizontal lift, S17
hlft∗ : horizontal lift for H(T∗Q), S23
hlftT : horizontal lift for H(TTQ), S24

hlftT
∗

: horizontal lift for H(T∗TQ), S26
hor : horizontal projection, S17
hY : (2, 0)-tensor field for force-optimal control problem, S128
ιB : vector bundle man from HTQ⊕VTQ to (TB×R)⊕(TB×

R)⊕ RB×R, S70
ιB,X : restriction of ιB to image(X), S70
IQ : canonical involution of TTQ, S12
JM : canonical endomorphism of TM, S13
k(B′) : number of summands appearing in EvCΣ

0q0
(L(B′)), S41∧

k(V) : exterior k-forms on V, S2, S3
LΣ(γ0, u0) : differential operator associated with linearization of a

control-affine system, S57
LX,γ : differential operator along γ defined by X, S57
(MF , fF , U) : extension of control system Σ with cost function F , S109
(M, f, U) : control system, S102
φB : vector bundle map from TQ to TB× R, S69
φB,X : restriction of φB to image(X), S69
ΠB : projection onto the set of XT -orbits, S69
ψB : vector bundle map from TTQ to T(TB× R), S69
ψB,X : restriction of ψB to image(X), S69
P(Σ, F, S0, S1) : free interval optimal control problem, S104
P[a,b](Σ, F, S0, S1) :

fixed interval optimal control problem, S104
P(Σ, FA , q0, q1) : free interval optimal control problem with position

boundary conditions, S119
P[a,b](Σ, FA , q0, q1) :

fixed interval optimal control problem with position
boundary conditions, S119
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P(Σ, FA , vq0 , vq1) : free interval optimal control problem with velocity
boundary conditions, S119

P[a,b](Σ, FA , vq0 , vq1) :
fixed interval optimal control problem with velocity
boundary conditions, S119

Pj(B′) : summand appearing in EvCΣ
0q0

(L(B′)), S41
PY : orthogonal projection onto Y, S127
R∗ : related to the curvature tensor R, S29
Σ2((Rm)∗)X(q) : set of compatible gain matrices, S83
Σred : reduced system, S80
σX : vector bundle isomorphism from TTQX to HTQX ⊕

VTQX , S69
S(B) : collection of brackets in Br(ξ′) arising from B ∈ Br(ξ),

S38
Su0 : reference vector field for linearization of an affine con-

nection control system, S58
Sw
m : permutations fixing w, S41

Sym0(η′) : subset of Sym(η′), S41
Sym0(η′) : span of Sym0(η′), S41
ΣB : projected mechanical control system, S49
symY (q0) : linear map on Tq0Q associated with vector field Y , S42
θ0 : canonical one-form on T∗M, S5
T (Σ, q0, q1) : time-optimal control problem with position boundary

conditions, S137
T (Σ, vq0 , vq1) : time-optimal control problem with velocity boundary

conditions, S137
T ∗ : related to the torsion tensor T , S29
TkM : kth tangent bundle of M, S25
GT : Sasaki metric, S33
XT : tangent lift, S7
XT∗ : cotangent lift, S8
TTQX : restriction of TTQ to image(X), S69
νX : projection onto X, S69
VB : projected potential function, S49
V

w,k
Y ′ : elements in Sym0(η′) whose w-weight does not exceed

k, S41
Vw

Y ′(q0) : set of tangent vectors w-neutralized at q0, S42
Vcl : closed-loop potential for linear proportional control law,

S85
VM : vertical bundle for a principle fiber bundle, S17
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VQ : vertical bundle for a principle fiber bundle, S48
VTQX : restriction of VTQ to image(X), S69
ver : vertical projection, S17
vlft : vertical lift, S18
vlft∗ : vertical lift for V(T∗Q), S23
vlftT : vertical lift for H(TTQ), S24

vlftT
∗

: vertical lift for H(T∗TQ), S26
ΩHM : curvature form for Ehresmann connection HM, S18
ΩHTQ : curvature form for Ehresmann connection defined by an

affine connection, S21
ω0 : canonical symplectic form on T∗M, S5
ω0 : differential two-form on TM⊕ T∗M, S98
ωHM : connection form for Ehresmann connection HM, S18
ωHTQ : connection form for Ehresmann connection defined by an

affine connection, S21
WL : Weierstrass excess function, S97
wgt(η′) : admissible weights for η′, S41
χ : typically, a relative equilibrium, S53
XH : Hamiltonian vector field with Hamiltonian H, S6
ξ : indeterminates {ξ0, ξ1, . . . , ξm}, S37
ξ′ : indeterminates {ξ0, ξ1, . . . , ξm, ξm+1}, S37
YB,u : total reduced vector force defined by control u, S54
Yu : total vector force defined by control u, S54
Y 0 : basic vector force used in linearization of affine connec-

tion control system, S58
Y 1 : linear vector force used in linearization of affine connec-

tion control system, S58
YB : vector fields projected to B, S48
η′ : indeterminates {η1, . . . , ηm, ηm+1}, S40
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abnormal controlled extremal, see
controlled extremal

abnormal extremal, see extremal
accessibility, S37, S44, S47, S49

configuration, S37, S44, S47, S49
adjoint covector field, S112, S126

maximizing, S105, S121
adjoint equation, S106, S125
adjoint Jacobi equation, S125, see

Jacobi equation
adjoint vector field, S107
admissible weight

in a free symmetric algebra, S40
affine connection

Levi-Civita, S133, S134
affine connection control system, S117

forced, S35
on a Lie group, S46

associated isomorphisms ] and [, S4, S6

basis
for the set of exterior k-forms, S2

canonical endomorphism of TM, S13,
S20

canonical involution, S12, S23
chart

fiber bundle, S15
closed differential form, see differential

form
closed-loop system

for relative equilibria, S78, S84
codistribution

totally regular, S91

compatible control vector, S83, S84,
see also stabilization

compatible gain matrix, S83, S84, S86,
see also stabilization

components

of an exterior form, S2

connection coefficients, see Ehresmann
connection

connection form, see Ehresmann
connection

constant Lagrange multiplier, S107,
S126

control Hamiltonian, see Hamiltonian

control system, S101

Cr, S101

control-affine system

time-dependent, S55

Cr, S55

controllability

and stabilization, S89

small-time local configuration
controllability, S42, S43, S47, S49,
S50

small-time local controllability, S42,
S43, S47, S49, S50

controlled arc

for a control system, S102

for a mechanical system, S117

controlled extremal, S106, S126

abnormal, S113, S115, S116, S126,
S129, S133, S135

normal, S107, S126, S129, S132, S133

regular, S108, S126
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singular, S108, S114, S126, S135,
S139, S144

controlled relative equilibrium, S78
controlled trajectory

for a control system, S102
F -acceptable, S103

for a mechanical system
FA -acceptable, S118

for linearization, S60
coordinates

fiber bundle, S15
cost function

for a control system, S103
for a mechanical system, S117

cotangent lift, S8, S9, S10
relationship with tangent lift, S9,

S10, S31
covariant derivative
kth-order, S14

curvature form, see Ehresmann
connection

curvature tensor, S14, S21, S29, S61,
S64, S65

degree
of a product in a free symmetric

algebra, S43
diffeomorphism

symplectic, S5
differential, S4
differential form, S3

bundle-valued, S17
closed, S4

differential operator along a curve, S56,
S57, S60, S74

distribution
constructions involving the Lie

bracket, S35, S40
constructions involving the symmetric

product, S35
Dynamic Programming, S95

effective energy, S71
Hessian of, S71
linearized, S72
reduced, S72, S73

Hessian of, S72
reduced linearized, S72, S73, S77

effective potential, S61, S64, S65, S76,
S77

Ehresmann connection, S17
associated to a second-order vector

field, S20
associated to an affine connection,

20–S23, 25–S30, S58, S69, S71,
S119, S121

curvature form, S21
connection coefficients, S17
connection form, S18
curvature form, S18
flat, S18
linear, S18

dual, S20
equations of motion

Euler–Lagrange equations, S96, S98,
S99

Euler–Lagrange equations, see
equations of motion

examples and exercises
planar rigid body, S47, S140
robotic leg, S50

exterior derivative, S4
and Lie differentiation, S4
and pull-pack, S4
and wedge product, S4

exterior form, S2, S3
nondegenerate two-form, S4

extremal, S106, S126
abnormal, S107, S126
normal, S107, S126
regular, S108, S126
singular, S108, S126

extremal control, S107, S126

F -acceptable controlled arc, see
controlled arc

feedback
dissipative, S88
state

almost Cr, S79
Cr, S79
X-invariant, S78

fiber bundle, S7, S15, S17
principal, S47, S49

fiber derivative, S97
fixed interval optimal control problem,

see optimal control problem
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flat map, S4
force

basic, S35
dissipative, S44
external, S61
gyroscopic, S78, S89

force-optimal control problem, see
optimal control problem

free interval optimal control problem,
see optimal control problem

fully actuated system, S132, S134

geodesic invariance, S48
geodesic spray, S13, S20

cotangent lift of, S13, S14, S26,
29–S31

tangent lift of, S13, S14, S23, 25–S28,
S31

gyroscopic tensor, S61, S64, S65

Hamilton’s equations, S6, S98, S99
Hamilton’s Principle, S96
Hamiltonian, S6, S97

for control problem, S102, S105,
S121, S128

maximum, S101, S105, S121, S128
realization of, S105

Hamiltonian mechanics, S1, S101
Hamiltonian vector field, see vector

field
homogeneity

in a free symmetric algebra, S41
horizontal, see horizontal subbundle
horizontal lift, S17, S21, S22, S24
horizontal subbundle, S17, S17, S47,

see also horizontal distribution

involution, S12
isometry

infinitesimal, S69

Jacobi equation, S14, S14, S28
adjoint, S29, S30, S32

LAC, see locally absolutely continuous
LAD, see locally absolutely differen-

tiable
Legendre’s Condition, S97, S99
LICr, see locally integrally class Cr

Lie algebra
free, S38

Lie bracket, S57
Lie derivative

and exterior derivative, S4
Lie drag, S57
linear Ehresmann connection, see

Ehresmann connection
linear vector field, see vector field
linearization

of a control-affine system
along a reference trajectory, S54,

S56, S57
of a mechanical system

along a reference trajectory, S58,
S60

along a relative equilibrium, S61,
S64, S65, S68, S73

of a vector field, S8
linearized effective energy, see effective

energy

maximizing adjoint covector field, see
adjoint covector field

maximum Hamiltonian, see Hamilto-
nian

Maximum Principle, S95, S101, S103,
S105

for mechanical systems, S122, S129,
S132, S138

Maximum Principle for mechanical
systems, S133, S134

mechanical connection, S49
curvature for, S49

momentum map, S47

near identity diffeomorphism, S90
neutralization

in a free symmetric algebra, S41
nondegenerate two-form, see exterior

form
normal controlled extremal, see

controlled extremal
normal extremal, see extremal

objective function, S104, S109
obstruction

in a free symmetric algebra, S41
optimal control problem, S102, S104

fixed interval, S104, S118, S127
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for mechanical systems, S118, S127
force-optimal control, S127, S128,

S129, 132–S135, S142
free interval, S104, S118, S127
properties of solution, S108
relation to reachable set, S110, S111
time-optimal control, S111, S113,

137–S139, S143

product
in a free symmetric algebra

bad, S43
good, S43

π-projectable, S7
proportional control law

linear, S84
for relative equilibrium, S84, S84

nonlinear, S91
for relative equilibrium, S91

proportional-derivative control law
linear, S84

for relative equilibrium, S84, S84
nonlinear, S91

for relative equilibrium, S91
pull-back

and exterior derivative, S4
of a tensor field, S4

pull-back vector bundle, see vector
bundle

RbigrealnX, S83
reachable set, 110–S113
reduced effective energy, see effective

energy
reduced linearized effective energy, see

effective energy
reduction

using symmetry, S48
reference vector field, see vector field
regular controlled extremal, see

controlled extremal
regular extremal, see extremal
f -related, S7
Riemannian manifold, S69
Rm-dependent tensor field, see tensor

field

Sasaki metric, S33

second-order vector field, see vector
field

sharp map, S4
simple mechanical control system

forced, S35
singular controlled extremal, see

controlled extremal
singular extremal, see extremal
stability

for mechanical systems
using linearization, 76–S78

for relative equilibria, 76–S78
linear asymptotic base stability,

74–S77
linear asymptotic fiber stability,

74–S77
linear base stability, 74–S77
linear fiber stability, 74–S77

Lyapunov Stability Criterion, S77
stabilization

and controllability, S89
of relative equilibria, S89

asymptotic, SS79, 80
reduced compared to unreduced,

S81
using linearization, S81, S86
using proportional control, S86,
S86, 90–S92

using proportional-derivative
control, S86, S86, 90–S92

using state feedback, S79
using time-dependent state

feedback, S79, S79, S80
stabilization of relative equilibria

using linearization, S90
stationary singular extremal, S147
sub-Riemannian geometry, S107, S131
symmetric algebra

free, S40
symmetric product

on a Lie algebra, S46
symplectic diffeomorphism, see

symplectic
symplectic form, S5

on T∗M, S5, S6, S11, S98
symplectic manifold, S5, S11

tangent lift, S7, S9, S57
of an affine connection, S25, S28
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relationship with cotangent lift, S9,
S10, S31

tensor
skew-symmetric, S1

tensor field
Rm-dependent, S117

tensor product, S2
time-optimal control problem, see

optimal control problem
torsion tensor, S14, S21, S29

variation, S8
variational principles, 96–S99, S101
vector bundle

pull-back, S15, S16, S18
vector bundle structure

for tensor bundles, S3
vector field

Hamiltonian, S6, S9

linear, S8, S9, S19, S56

dual, S10, S19

reference, S55

second-order, S20, S24

vector force, S58

basic, S58

vertical, see vertical subbundle

vertical lift, S10, S18

vertical subbundle, S17, S17, S47,
see also vertical distribution

wedge product, S2

and exterior derivative, S4

Weierstrass excess function, S97

Weierstrass Side Condition, S97, S99

weight

of a product in a free symmetric
algebra, S41


