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Abstract— In this paper we present decentralized algorithms
for motion coordination of a group of autonomous vehicles,
aimed at minimizing the expected waiting time to service
stochastically-generated targets. The vehicles move within a
convex environment with bounded velocity, and target gen-
eration is modeled by a spatio-temporal Poisson process. The
general problem is known as the m-vehicle Dynamic Traveling
Repairperson Problem (m-DTRP); the best previously known
control algorithms rely on centralized a-priori task assignment
and locational optimization, and are of limited applicability in
scenarios involving ad-hoc networks of autonomous vehicles.
In this paper, we present a new class of algorithms for the
m-DTRP problem that: (i) are spatially distributed, scalable
to large networks, and adaptive to network changes, (ii)
are provably locally optimal in the light load case, and (iii)
achieve the same performance as the best known centralized
algorithms in the heavy-load, single-vehicle case. Simulation
results are presented and discussed.

I. INTRODUCTION

Advances in computer technology, wireless communi-
cations, and miniaturization of electromechanical systems,
coupled with new perceived critical needs of our society,
motivate the rapidly increasing interest in the design and
deployment of large networks of mobile devices capable
of sensing spatially distributed phenomena, and/or of in-
teracting directly with the environment [1]. As the size,
complexity, and pervasiveness of such networks increase,
the emphasis is shifting from operator-mediated or operator-
initiated actions to completely autonomous operations, in
which the network interacts directly, with minimal or no
human supervision, with the physical environment.

For example, sensing abilities of the most disparate
forms are at the core of the rapidly growing interest in
sensor networks [2]; in many cases of interest, effective
usage of sensors is enabled by mobile platforms, physically
carrying sensors to the vicinity of events of interest. In a
prototypical mission in a military or security setting, teams
of Unmanned Aerial Vehicles (UAVs) can be used for wide-
area surveillance, by detecting, locating, and identifying
assets or threats in a region of interest. Similar consideration
can be made for networks of ground or underwater vehicles.

In a surveillance mission, the UAVs must ensure con-
tinued coverage of a certain area; as events occur, i.e., as
new targets are detected by on-board sensors or other assets
(e.g., intelligence, high-altitude or orbiting platforms, etc.),
UAVs must proceed to the location of the new event and

provide close-range information about the target. Variations
of problems falling in this class have been studied in a
number of papers in the recent past, e.g., [3], [4], [5],
[6], [7]. In these papers, the problem is set up in such
a way that the location of targets is fixed and known a
priori; a strategy is computed that attempts to optimize the
cost of servicing the known targets. In the present work,
we wish to address the case in which new targets are
generated continuously by a stochastic process: we will
provide algorithms for minimizing the expected waiting
time between the appearance of a target and the time it
is serviced by one of the vehicles.

In this paper, we present a new class of algorithms for
the m-DTRP problem that: (i) are spatially distributed,
scalable to large networks, and adaptive to network changes,
(ii) are provably locally optimal in the light load case,
and (iii) achieve the same performance as the best known
centralized algorithms in the heavy-load, single-vehicle
case. Here, by network changes we mean changes in the
number of vehicles, in the environment boundaries, and in
the characterization of the target generation process. Our
receding horizon control policies combine algorithms for
the Euclidean Traveling Salesperson Problem and for the
continuous multi-median problem. We establish asymptotic
performance results for our policies in the light load and
heavy load regimes. Simulation results are presented and
discussed.

The paper is structured as follows. In Section II we
introduce some notation and formulate the problem we wish
to address. In Section III we provide some background
on the Euclidean Traveling Salesman Problem and on
the continuous multi-median problem. In Section IV we
consider the vehicle routing problem in stochastic, time-
varying environments: we review known policies and we
design novel decentralized ones. In Section V we present
results from numerical experiments, and finally, in Section
VI we draw some conclusions and discuss some directions
for future work.

II. NOTATION AND PROBLEM FORMULATION

The basic version of the problem we wish to study in
this paper is known as the Dynamic Traveling Repairperson
Problem (DTRP), and was introduced by Bertsimas and van
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Ryzin in [8]. The m-vehicle version of the problem, m-
DTRP, was first studied by the same authors in [9]. In this
section, we define the problem and its components.

Let the environment Q ⊂ R
d be a convex, compact set

with unit volume, and let ‖ · ‖ denote the Euclidean norm
in R

d. For simplicity, in this paper we will consider mainly
the planar case, i.e., d = 2, with the understanding that
extensions to higher dimensions are possible.

Consider m omnidirectional vehicles, modeled as point
masses, and let

p(t) = (p1(t), . . . , pm(t)) ∈ Qm

describe the locations of the vehicles at time t. The vehicles
are free to move, with bounded velocity, within the environ-
ment Q; without loss of generality, we will assume that the
maximum velocity magnitude is unitary, i.e., ‖ṗi(t)‖ ≤ 1,
i ∈ {1, . . . , m}, where the dot represents differentiation
with respect to time. The vehicles are identical, and have
unlimited fuel and target-servicing capacity.

Information on outstanding targets—the demand—at time
t is summarized as a finite set of target positions D(t) ⊂
Q, with n(t) := card(D(t)). Targets are generated, and
inserted into D, according to a homogeneous (i.e., time-
invariant) spatio-temporal Poisson process, with time inten-
sity λ, and spatial density ϕ : Q → R+. In other words,
given a set S ⊆ Q, the expected number of targets generated
in S within the time interval [t, t + ∆t] is

E [card(D(t + ∆t) ∩ S) − card(D(t) ∩ S)] = ϕ(S)λ∆t,

where ϕ(S) :=
∫
S ϕ(q) dq. The spatial density ϕ is

assumed normalized so that ϕ(Q) = 1.
Servicing of a target ej ∈ D, and its removal from the

set D, is achieved when one of the vehicles moves to the
target location and spends an additional on-site servicing
time sj ≥ 0; the on-site servicing times are independently
and identically distributed, with E [si] = s̄, E

[
s2

i

]
= s̄2.

A static feedback control policy for the system is a map
π : Qm × 2Q → R

d×m, assigning a commanded velocity
to each of the m vehicles, as a function the current state of
the system: ṗ(t) = π(p(t), D(t)). The policy π is stable if,
under its action,

nπ := lim
t→+∞E [n(t)|ṗ = π(p, D)] < +∞,

that is, if the vehicles are able to service targets at a rate that
is—on average—at least as fast as the rate at which new
targets are generated. For a stable system, the product ρ =
λs̄ represents the average time spent on on-site servicing.

Let Tj be the time that the j-th target spends within the
set D, i.e., the time elapsed from the time ej is generated
to the time it is serviced. If the system is stable, then we
can write the balance equation (known as Little’s formula
[10])

nπ = λTπ,

where Tπ := limj→+∞ E [Tj ] is the steady-state system
time under the policy π. The objective of the m-DTRP is

to minimize the steady-state system time, over all possible
static feedback control policies, i.e.,

T ∗ = inf
π

Tπ.

In the following, we are interested in designing control
policies that provide constant-factor approximations of the
optimal achievable performance; a policy π is said to
provide a constant-factor approximation of κ if Tπ ≤
κT ∗. Moreover, we are interested in decentralized, scalable,
adaptive control policies, that rely only on local exchange
of information between neighboring vehicles, and do not
require explicit knowledge of the global structure of the
network.

III. THE CONTINUOUS MULTI-MEDIAN AND THE

TRAVELING SALESPERSON PROBLEMS

The Traveling Salesperson Problem (TSP), the multi-
median problem, and their variations are some of the most
widely known combinatorial and geometric optimization
problems. While extensively studied in the literature, these
problems continue to attract great interest from a wide range
of fields, including Operations Research, Mathematics and
Computer Science.

A. The continuous multi-median problem

Given a set Q ⊂ R
d and a vector P = (p1, . . . , pm)

of m distinct points in Q, the expected distance between a
random point q, generated according to a probability density
function ϕ, and the closest point in P is given by

Hm(P,Q) := E
[

min
i∈{1,...,m}

‖pi − q‖
]

=
m∑

i=1

∫
Vi(P,Q)

‖pi − q‖ϕ(q)dq,

where V(P,Q) = (V1(P,Q), . . . ,Vm(P,Q) is the Voronoi
partition of the set Q generated by the points P . In other
words, q ∈ Vi(P,Q) if ‖q − pi‖ ≤ ‖q − pk‖, for all
k ∈ {1, . . . , m}. The set Vi is referred to as the Voronoi
cell of the generator pi. The function Hm is known in the
locational optimization literature as the continuous Weber
function or the continuous multi-median function; see [11],
[12] and references therein.

The m-median of the set Q, with respect to the measure
induced by ϕ, is the global minimizer

P ∗
m(Q) = argmin

P∈Qm

Hm(P,Q).

We let H∗
m(Q) = Hm(P ∗

m(Q),Q) be the global mini-
mum of Hm. It is straightforward to show that the map
P 
→ H1(P,Q) is differentiable and strictly convex on
Q. Therefore, it is a simple computational task to compute
P ∗

1 (Q). It is convenient to refer to P ∗
1 (Q) as the median

of Q. On the other hand, the map P 
→ Hm(P,Q) is
differentiable (whenever (p1, . . . , pm) are distinct) but not
convex, thus making the solution of the continuous m-
median problem hard in the general case. It is known [11],
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[13] that the discrete version of the m-median problem is
NP-hard for d ≥ 2. Gradient algorithms for the continuous
m-median problems can be designed [14] by means of the
equality

∂Hm(P,Q)
∂pi

=
∫
Vi(P,Q)

pi − q

‖pi − q‖ ϕ(q)dq. (1)

The set of critical points of Hm contains all configurations
(p1, . . . , pm) with the property that each vehicle pi is the
generator of the Voronoi cell Vi(P,Q) as well as the median
of Vi(P,Q). Finally, let ZHm

denote the set of local minima
of Hm and define

H∗
m,local(Q) = sup

P∈ZHm

Hm(P,Q).

B. The Euclidean Traveling Salesperson Problem

The Euclidean TSP is formulated as follows: given a set
D of n points in Rd, find the minimum-length tour of D.
Let TSP(D) denote the minimum length of a tour through
all the points in D; by convention, TSP(∅) = 0.

The asymptotic behavior of stochastic TSP problems for
large n exhibits the following interesting property. Assume
that the locations of the n target are independent random
variables, uniformly distributed in a compact set Q; in [15]
it is shown that there exists a constant βTSP,2 such that,
almost surely,

lim
n→+∞

TSP(D)√
n

= βTSP,2. (2)

In other words, the optimal cost of stochastic TSP tours
approaches a deterministic limit, and grows as the square
root of the number of points in D; the current best estimate
of the constant in (2) is βTSP,2 = 0.7120±0.0002, see [16],
[17], [18]. Similar results hold in higher dimensions, and
for non-uniform point distributions: from [19], the limit (2)
takes the general form

lim
n→+∞

TSP(D)
n1−1/d

= βTSP,d

∫
Q

ϕ̄(q)1−1/d dq a.s., (3)

where ϕ̄ is the density of the absolutely continuous part
of the distribution ϕ. Notice that the bound (3) holds for
all compact sets: the shape of the set only affects the
convergence rate to the limit. According to [10], if Q is
a “fairly compact and fairly convex” set in the plane, (2)
provides an adequate estimate of the optimal TSP tour
length for values of n as low as 15. Remarkably, the
asymptotic cost of the stochastic TSP for uniform point
distributions is an upper bound on the asymptotic cost for
general point distributions, i.e.,

lim
n→+∞

TSP(D)
n1−1/d

≤ βTSP,d.

This follows directly from an application of Jensen’s in-
equality for concave functions to the right hand side of (3):

∫
Q

ϕ̄(q)1−
1
d dq ≤

(∫
Q

ϕ̄(q) dq

)1− 1
d

≤ ϕ(Q)1−
1
d = 1.

C. Tools for solving TSPs

The TSP is known to be NP-complete, which suggests
that there is no general algorithm capable of finding the
optimum tour in an amount of time polynomial in the size
of the input. Even though the exact optimal solutions of a
large TSP can be very hard to compute, several exact and
heuristic algorithms and software tools are available for the
numerical solution of Euclidean TSPs.

The most advanced TSP solver to date is arguably
concorde [20]. Heuristic polynomial-time algorithms are
available for constant-factor approximations of TSP so-
lutions, among which we mention Christofides’ [21]. On
a more theoretical side, Arora proved the existence of
polynomial-time approximation schemes, providing a (1+ε)
constant-factor approximation for any ε > 0 [22].

A modified version of the Lin-Kernighan heuristic [23]
is implemented in linkern; this powerful solver yields
approximations in the order of 5% of the optimal tour
cost very quickly for many instances. For example, in our
numerical experiments on a 2.4 GHz Pentium machine,
approximations of random TSPs with 1,000 points typically
required about two seconds of CPU time.1

In the following, we will present algorithms that require
on-line solutions of large TSPs. Practical implementations
of the algorithms will rely on heuristics, such as Lin-
Kernighan’s or Christofides’. If a constant-factor approx-
imation algorithm is used, the effect on the asymptotic
performance guarantees of our algorithms can be simply
modeled as a scaling of the constant βTSP,d.

IV. ALGORITHMS FOR THE m-DTRP

In this section, we will discuss and analyze algorithms
for the solution of the single- and multiple-vehicle DTRP.
We will first present the key existing results, and discuss
the best available control policies. Then, we will introduce
our proposed policies and analyze their performance.

A. Existing results

The main reference on dynamic vehicle routing problems
to date is the work of Bertsimas and van Ryzin [8], [9]. As
discussed in these works, a key idea about this problem
is its formulation as a minimization of waiting time—as
opposed to travel cost. In [8], lower bounds are derived
for the optimal system time in the single-vehicle DTRP,
both in the light load case (i.e., λ → 0+), and in the
heavy load case (i.e., λ → +∞ ). Subsequently, policies
are designed for the two cases, and their performance is
compared to the lower bounds. A similar approach is taken
in [9] to extend the single-vehicle results to the multiple-
vehicle case. These results are obtained through techniques
drawn from combinatorial optimization, queueing theory,
and geometrical probability. In what follows we consider
the d = 2 case, and use the shorthand β = βTSP,2.

1Both concorde and linkern are written in ANSI
C and are freely available for academic research use at
http://www.math.princeton.edu/tsp/concorde.html.

3359



1) Lower bounds: In the light load case, the lower bound
on the m-DTRP system time is strongly related to the
solution of the m-median problem:

T ∗ ≥ H∗
m(Q) + s̄, as λ → 0+. (4)

This bound is tight and we present asymptotically optimal
policies for the light load case below.

For the heavy load case, the lower bound takes the form

T ∗ ≥ γ2λ

m2(1 − ρ)2
+

2ρ − 1
2λ

, as λ → (1/s̄)−, ρ → 1−,

with γ = 2
3
√

2π
≈ 0.266. The bound is not known to be

tight.
2) An optimal policy for the light-load case: In the light

load case, some policies are known to achieve the lower
bound (4) and, hence, to be optimal. Such an optimal policy
was introduced in [8] for a single vehicle, and extended to
the multiple-vehicle case in [9].

Stochastic Queue Median (SQM) policy —
Place one vehicle at each of the m-median loca-
tions of the region Q. When targets arise, assign
them to the nearest median location, and the
corresponding vehicle. Each vehicle services its
assigned targets in a First Come–First Served
(FCFS) order, returning to its median after each
service is completed.

Under the SQM policy, the system time approaches the
established light-load lower bound (4), i.e., TSQM → T ∗

as λ → 0+. On the other hand, the SQM policy is not able
to stabilize the system as the load increases.

3) A good policy for the heavy-load case: The lower
bound for the heavy load case is not known to be tight, and
the best known policy for this case provably achieves only a
constant-factor approximation. The best known heavy-load
policy was introduced in [9]:

The Modified G/G/m policy — For some fixed
integer k > 1, divide Q into k subregions of
equal measure, e.g., using radial cuts centered at
a common depot. Within each region, form sets
of targets of size l/k and, as sets are formed,
deposit them in a queue. Service the queue in a
FCFS order with the first available vehicle, by
following optimal TSP tours, starting and ending
at the depot. Optimize over l.

The modified G/G/m policy (so called because of the
connection to queueing systems with general inter-arrival
and service times, and m servers [10]) achieves the best
known constant-factor approximation for the system time
in heavy load, in the sense that

TmodG/G/m ≤ β2
TSP,2

2γ2
T ∗, as λ → +∞

The number k of subregions must be very large for the
bound to hold. In [24] it is conjectured that the upper bound
is in fact tight, and the policy is asymptotically optimal;

this conjecture is strengthened by the recent work in [25],
where the conjecture is proved true under certain additional
assumptions.

The policies outlined in this section rely on the cen-
tralized a priori computation of the m-median of Q and
of a partition of Q into regions of equal measure. As a
consequence, these policies are not scalable to very large
networks of vehicles, and are not adaptive to changes in the
environment and in the network composition, e.g., due to
failures or to the addition of new resources. In the following
sections, we introduce novel policies for vehicle routing,
which are decentralized and spatially distributed.

B. A novel policy for the single-vehicle DTRP

In this section, we propose a new policy for the single-
vehicle DTRP, which achieves the same performance as
the best known policies in the heavy load case, while
maintaining optimal performance in the light load case. In
what follows, given a tour T of D, a fragment of T is a
connected subgraph of T . We now introduce our first policy.

Single-Vehicle Receding Horizon Median/TSP
(sRH) policy — While the set of targets D
is empty, move at unit speed toward P ∗

1 (Q) if
p �= P ∗

1 (Q), otherwise stop. While D is not
empty, do the following: (i) for a given η ∈ (0, 1],
find a path that maximizes the number of targets
reached within τ = max{diam(Q), η TSP(D)}
time units; (ii) service from the current location
this optimal fragment. Repeat.

In other words, if D �= ∅, the vehicle looks for a
maximum-reward path starting from the current vehicle
position and with an appropriate duration τ . After this path
is completed, the algorithm is repeated taking into account
the targets that have appeared during the execution of the
previous step. In general, the performance of the system will
depend on the choice of the horizon length η, which can be
seen as a trade-off between computation requirements and
achievable service rate. Note that the time horizon is not
fixed, but is adjusted according to the cost of the outstanding
demand. The following two results describe the asymptotic
performance of the sRH policy.

Theorem 4.1: The sRH policy is asymptotically optimal
in the light load case, that is,

TsRH → T ∗, as λ → 0+.
Proof: Consider a generic initial condition for the

vehicle’s position in Q and for the outstanding target
positions D(0), with n0 = card(D(0)). An upper bound
to the time needed to service all of the initial targets is
n0(diam(Q) + smax), where smax is the maximum time
for on-site servicing of targets in D(0). When there are no
targets outstanding in the target set D, the vehicle moves
at unit speed toward the median point P ∗

1 (Q). The vehicle
reaches P ∗

1 (Q) in at most diam(Q) units of time.
The time needed to service the initial targets and go to

the median is hence bounded by tini ≤ (n0 +1) diam(Q)+
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n0smax. The probability that at the end of this initial phase
the number of targets is reduced to zero is

P [n(tini) = 0] = exp(−λtini)
≥ exp(−λ((n0 + 1) diam(Q) + n0smax),

that is, P [n(tini) = 0] → 1− as λ → 0+. As a consequence,
after an initial transient, all targets will be generated with
the vehicle at the median, and an empty demand queue.

After the initial transient, when the next target arises,
say the jth target at location ej , will then require Tj =
‖ej − p∗‖ + sj . The system time can be computed as

TsRH = lim
j→+∞

E [Tj ] = H∗
1 (Q) + s̄.

This time equals the lower bound (4), thus establishing the
optimality of the policy.

Theorem 4.2: An upper bound on the system time of the
sRH policy in heavy load is

TsRH ≤ β2
TSP,2

(2 − η)γ2
T ∗, as λ → +∞.

We refer the reader to the appendix for the proof of
Theorem 4.2.

C. A decentralized policy for the multiple-vehicle DTRP

Here we design a decentralized policy for the DTRP
problem applicable to multiple-vehicle systems. Our design
combines the sRH policy discussed in the previous section
with distributed algorithms for locational optimization dis-
cussed in [14]. Here we refer to the sRH policy defined
for a single vehicle in the environment Q as the sRH(Q)
policy.

We shall assume that each vehicle has sufficient infor-
mation available to determine: (1) its Voronoi cell, and (2)
the locations of all outstanding events in its Voronoi cell.
Any control policy that relies on information (1) and (2), is
spatially distributed in the sense that the behavior of each
vehicle depends only on the location of all other vehicles
with contiguous Voronoi cells. A spatially distributed algo-
rithm for the local computation and maintenance of Voronoi
cells is provided in [14].

Multi-Vehicle Receding Horizon Median/TSP
(mRH) policy — For all i ∈ {1, . . . , m}, the
i-th vehicle computes its Voronoi cell Vi(P,Q)
and executes the sRH(Vi(P,Q)) policy with the
single following modification. While the vehicle
is servicing targets in an optimal fragment of
D ∩ Vi(P,Q), it will shortcut all targets already
serviced by other vehicles.

In what follows we characterize the asymptotic properties
of this policy in light load via the following theorem and
provide simulation results for its behavior in heavy load.

Theorem 4.3: The mRH policy is locally asymptotically
optimal in the light load case, that is,

TmRH → H∗
m,local(Q) + s̄, as λ → 0+.

Proof: The proof follows the same line as that of
Theorem 4.1 on the performance of the sRH policy in light
load. However, after the initial transient period, the vehicles
follow a gradient flow for a non-convex cost function and
therefore they will only reach the set of critical points of
Hm. Because the targets are generated randomly, almost
surely the vehicles will converge to the set of local minima
of Hm (as opposed to the set of critical points of Hm).

We conclude this section by comparing, in terms of their
asymptotic performance, our decentralized policies with
the centralized policies proposed by Bertsimas and van
Ryzin [8], [9]. In the light load limit for a single vehicle,
the performance of the sRH policy is optimal and identical
to the performance of the SQM policy. In the light load
limit for a multi-vehicle network, the mRH policy is locally
optimal, whereas the SQM policy is optimal (provided a
global minimum for the continuous multi-median problem
can be computed). In the heavy load limit for a single
vehicle, the performances of the sRH and of the modified
G/G/1 policies are identical; simulation results suggest that
the mRH policy achieves the same performance of the
modified G/G/m policy. No analytic results are available
yet on the mRH policy in the heavy load limit.

V. SIMULATION RESULTS

In this section we present the results of a numerical
experimentation of the sRH and mRH policies. All numer-
ical experiments were conducted on a 2.4GHz Pentium-
class machine, running RedHat R©Linux 9. The algorithms
described in the paper were implemented in Matlab R©6.1,
with external calls to the program linkern. Because we
use a heuristic TSP solver as opposed to an exact one,
we expect about 5% cost errors in the computation of
the TSP solution. In Figure 1 we present a summary of
numerical results of sample simulations of the sRH policy.
The experimental results match well with the theoretical
prediction for the asymptotic upper bound on the cost. In
Figure 2 we show snapshots of a simulation experiment for
the mRH policy in the heavy load case. We refer to [14]
for simulations of the mRH policy in the light load regime.

VI. CONCLUSIONS

In this paper we presented some initial results on the
design of decentralized algorithms for vehicle routing in a
stochastic time-varying environment. Our control policies
are spatially distributed in the sense that the behavior of
each vehicle depends only on the location of all other
vehicles with contiguous Voronoi cells.

We conclude by mentioning some limitations of our
approach. In our analysis, we considered omni-directional
vehicles with first order dynamics: non-holonomic con-
straints will have to be taken into account for practical
application to UAVs or other systems. In this paper, all
targets have the same value and are removed from the
demand queue only upon service; in some scenarios, targets
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Fig. 1. Numerical experiment results: System time as a function of the
parameter η using the sRH policy, for several values of λ. The results
are averages over 1000 runs per point. The solid line is the theoretical
asymptotic upper bound on the system time; since an exact TSP solver was
not used, in favor of a fast heuristic program, we also report a correction
to the upper bound allowing for a 5% sub-optimality in the TSP solution
(dotted line).

might have different values and disappear before being
serviced. These issues are under current investigation.
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[20] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of
traveling salesman problems. In Documenta Mathematica, Journal
der Deutschen Mathematiker-Vereinigung, pages 645–656, Berlin,
Germany, August 1998. Proceedings of the International Congress
of Mathematicians, Extra Volume ICM III.

[21] N. Christofides. Bounds for the travelling-salesman problem. Oper-
ations Research, 20:1044–1056, 1972.

[22] S. Arora. Nearly linear time approximation scheme for Euclidean
TSP and other geometric problems. In Proc. 38th IEEE Annual
Symposium on Foundations of Computer Science, pages 554–563,
Miami Beach, FL, October 1997.

[23] S. Lin and B. W. Kernighan. An effective heuristic algorithm for

3362



the traveling-salesman problem. Operations Research, 21:498–516,
1973.

[24] D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic ve-
hicle routing with general interarrival and service time distributions.
Advances in Applied Probability, 25:947–978, 1993.

[25] X. Lu, A. Regan, and S. Irani. An asymptotically optimal algorithm
for dynamic traveling repair problem. In Proc. of the 81st Meeting
of the Transportation Research Board, January 2002.

[26] W. Feller. An Introduction to Probability Theory and Its Applications.
Wiley, New York, NY, 1968.

APPENDIX

Proof of Theorem 4.2 Due to space limitations, we limit
the proof to the basic case in which targets are generated
according to a spatially-uniform Poisson point process, and
no on-site servicing is required, i.e., ϕ(q) = 1, and si = 0,
for all i ∈ N.

First of all, we establish a connection between the cost
C(ti) to service outstanding targets at the i-th decision time
ti and the system time TsRH. Indicate with C̄ an upper bound
on the steady-state value of the cost C(ti), i.e.,

lim
i→+∞

C(ti) ≤ C̄,

and assume that C̄ is finite. A newly-generated target waits
on average at most ηC̄/2 before the next decision time, at
which it will be first considered for service. At each decision
time occurring after its generation, it has a probability at
least η to be included in the set of targets to be serviced;
each time it is not selected for service, its service time
increases by at most ηC̄. Once it is selected for service, it
has to wait on average at most ηC̄/2 before being actually
serviced. Summarizing,

TsRH ≤ η
C̄

2
+

+∞∑
k=1

[
(1 − η)kηC̄

]
+ η

C̄

2
= C̄. (5)

In other words, in the sRH policy, if the cost of servicing
outstanding targets is eventually bounded by a constant C̄,
the system time is upper bounded by the same constant.

Now, we proceed to study of the sequence C(ti), formed
by the costs of servicing all targets in queue at the decision
times. In the sRH policy, and in heavy load conditions, at
each decision time ti a path is computed that services at
least ηn(ti) points in ηC(ti) time. We want to compute an
estimate of the cost C(ti+1), based on the knowledge of
the cost C(ti), and on the properties of the sRH policy.

The targets in D(ti) are sampled from a time-varying
distribution with p.d.f. ϕ̃(q, ti), possibly different from
the function ϕ, and in general unknown. (It depends on
the target-servicing choices made at the previous decision
times.)

In the heavy-load limit, we can write

lim
λ→+∞

C(ti)
λ

= lim
λ→+∞

C(ti)∫
Q

√
n(ti)ϕ̃(q, ti) dq

·
∫
Q

√
n(ti)ϕ̃(q, ti) dq

λ

= β lim
λ→+∞

∫
Q

√
n(ti)ϕ̃(q, ti) dq

λ
, a.s.

The set of targets in queue at time ti+1 can be partitioned
into a set of “old” targets, i.e., targets already in queue at
time ti, and “new” targets, i.e., targets generated in the time
interval [ti, ti+1). Since new targets are generated according
to ϕ, the point distribution at time ti+1 is described by a
p.d.f. such that:

n(ti+1)ϕ̃(q, ti+1) = nold(ti+1)ϕ̃old(q, ti+1)+nnew(ti+1)ϕ(q),

for some unknown function ϕ̃old. The cost of servicing
“old” targets is by the definition of the sRH policy, equal
to (1 − η) times the cost at the previous decision time. As
a consequence,

lim
λ→+∞

√
nold(ti+1)ϕ̃old(q, ti+1)

λ
= lim

λ→+∞
(1 − η)C(ti)

βλ
, a.s.

Using the strong law of large numbers [26], it can be
shown that the number of new targets generated within the
time interval [ti, ti+1), of duration ηC(ti), satisfies

lim
λ→+∞

nnew(ti+1)
λ

= ηC(ti), a.s.

Hence, if the point-generation process is spatially uniform
(i.e., ϕ(q) = 1), we can write:

lim
λ→+∞

C(ti+1)
λ

=

√
(1 − η)2C(ti)2

λ2
+ β2η

C(ti)
λ

, a.s.

(6)
The above equation describes a discrete-time, nonlinear
system, that converges from all positive initial conditions
to the stable equilibrium:

lim
λ,i→+∞

C(ti)
λ

=
β2

2 − η
, a.s..

In this case we can conclude that in the heavy-load limit,

C̄ =
β2λ

2 − η
. (7)

From (5) and (7) we get the stated result.
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