| CRA 2004, To appear

Nonsmooth analysis and sonar-based implementation of
distributed coordination algorithms

Craig L. Robinsoh, Daniel Block, Sean Brennan Francesco Bullh and Jorge Cogés

IGeneral Engineering and Coordinated Science Laboratory,esify of Illinois at Urbana-Champaign
{cl robnsn, d-bl ock, bul | 0, j cortes}@i uc. edu

2Department of Mechanical Engineering, The Pennsylvania Staieeksity
sbrennan@me. psu. edu

Abstract— This paper investigates the behavior of a group this collection of techniques is well-suited to study a nemb

of autonomous robots evolving in a polygonal environment of coordination problems. The reader is referred to [4] far t
according to a “move away from the closest neighbor” heuristic. comprehensive mathematical treatment.

We demonstrate that this distributed coordination algorithm op-
g'.miz.gs ar aggrer?ate EOSI f.““‘ﬁic?“ that measuresohow U?]"Qm?'y The second objective of this paper is to investigate the
asg)rrlo;t:i t?ezgetd eOLO r?ct)sn_?mtogtlrr] e;:]/g&r;?swer;tr.ld Légr;e;;:utr;tcignal practical issues thgt arise in the implementation of_th.dgm»a
geometry unveils a sphere-packing problem. The algorithm is fithms. A decentralized sensor based testbed consistisgvef
implemented in a testbed of indoor mobile robots equipped with eral mobile DSP platforms (discussed in Section Ill) eqaipp
sonar. We develop novel approaches for improving single point with rotating sonar sensors is used. Successful implerienta
ﬁgcgriﬁchgvggrfg&%ﬂﬁs rTeZ%TSti g{!g‘;r"qtg‘”;?)eaerg itgegis?r?gxtlg dto of the algorithms is largely dependent on the properties and
environments as comparéd to other scanning methods. limitations of the meXpenSIVe W'de_angle sonar .sensom'gs
These problems are reviewed in Section IV which combined
with the implementation limitations in Section IV-A prowd
I. INTRODUCTION the impetus to develop improved methods for single point
sonar scan resolution and reliability. Hence, the final obje
One fundamental capability of future mobile and tunabléve of this paper is contained in Sections IV-C and IV-E
networks of robots will be the ability to perform spatially-where two new algorithms called tidax Fi | t er andMax
distributed sensing tasks including coverage, survaidaex- Resol ver as well as an extension of tHeERUF method
ploration, target detection, and search. These futurearksy Py Borenstein and Korne [5] are described. These methods
of autonomous vehicles will be able to adapt to changirffove to be very effective at improving sonar reading reliigh
environments and dynamic situations. They will providerguaand resolution within the context of this investigation in a
anteed quality of service in the presence of failures, arld wgnvironment with large amounts of interference. FinallgcS
operate via limited-bandwidth ad-hoc communication link&ion V discusses the combined implementation of the sensing
The algorithms required to achieve these desirable capebil and coordination algorithms, as well as the modifications,
must be amenable to implementation in a cooperative settig§laptations and tradeoffs of the final implementation.
i.e., they are required to baistributed, asynchronous, adap-
tive, and verifiably correctSample references on coordination Il. INTERACTION ALGORITHMS

problems for multi-vehicle networks include [1], [2], [3].
] . . A. Preliminaries
The premise of this paper is based on a class of coverage

and deployment problems for networks of mobile robots. OnceLet || - | denote the Euclidean distance function and let
the optimal sensor coverage is formalized as an aggregatew denote the scalar product of the vectersy € RY.
performance metric via methods from geometric optimizatioThroughout the papesersus(v) will denote the unit vector

a class of cooperative control algorithms can be designed ibythe direction ofv # 0, i.e., versus(v) = v/||v||. Recall that
generalizing the classic Lloyd algorithm from quantizatioa setS ¢ RY is said to beconvexif \z + (1 — \)y € S, for
theory. The resulting control laws are interaction protscoall A € [0,1] and allz, y € S. Given S C R”, the convex
between the mobile sensors and include behaviors such ragdl of S, co(S), is defined as

“move away from your closest neighbor,” and, “move toward

the geometric center of your sensing region.” co(S) = {Z ERY [z=Az+(1- Ny

The first objective of this paper is the study of the “move for someA € [0,1] andz, y € S} .

away from your closest neighbor” algorithm in group of rabotObviously, if S is convex, thenS = co(S). In general,S C
and is developed in Section Il. Tools from nonsmooth anglysto(S). If S is a convex set ilRY, let projq: RY — S denote
stability and convergence analysis via a LaSalle Invaganthe orthogonal projection ont§ and letDgs: RY — R denote
Principle and geometric optimization concepts such asrsphethe distance function t&. Also, let Ln(S) denote the least-
packing and disk-covering functions are used. It turns bat t norm vector inS (see Figure 1).



C. The distributed coordination algorithms
V4
Here we design two coordination algorithms with the prop-

erty that the corresponding closed-loop systems are gigsm@n
to monotonically increase the value of the performance mea-
sure’H. Leti € {1,...,n}. At a configurationP € Q", the
vy following set describes the distances of the genenatéo the

rest of generators and to the boundarychf

U5 U3

Vo

WP = {3y = pill 15 € (1o (1)

Fig. 1. The convex hull of the se&& = {v1,v2,v3,v4,v5} is shown in U {De(pL) ‘ ec Ed(Q)} :

grey. The vectomw is the least-norm element itv(.S). Let R,(P) denote the minimum olZ;(P). Note thatH(P) —
min;eqy,.. ) Ri(P). Consider the sef;(P) defined by

Let Q be a convex polygon iR2. Denote byint Q its
interior set and byEd(Q) = {e1,...,en} its set of edges.
Given an edge: € Ed(Q), we letn, denote the unit normal ne € Si(P) < De(p;) = Ri(P).

to e pointing toward theint(Q). Let P = (p1,...,pn) € Q™ . . )
denote the location of. ge(ne)rators (or r(oliots) in {he spacé\mte that ',f there is a single element (ggnerator or edge of
Q. The Voronoi partition V(P) = (Vi(P),...,V,(P)) of Q Q) which is nearest tg;, the setS;(P) is formed by a

1
versus(p; — p;) € Si(P) & §Hpj —pill = Ri(P),

enerated by the pointgy,....p,) € Q" is defined b single _vector. If several elements are equidista_npil;othen
g y poiniy, Pn) €€ y S;(P) is composed of several vectors (see Figure 2). For
VitP) ={q e Q| llg—pill < llg—pjll, Vi #i}. implementation purposes, it is also worth noticing thatriten

to computeS;(P), we need to comparg||p; —p;|| with D.(p;)

For simplicity, we refer toV;(P) asV;. If V; andV; share an (see Remark 2.1).

edge, i.e.V; N'V; is neither empty nor a singleton, thenis
called aneighborof p; (and vice-versa). Given a polytop&
in RY, its incenter set, denoted A¢’(W), is the set of the P2
centers of maximum-radius spheres containetlin \<

B. The geometric optimization problem Kp p>\
p3 P4

Consider the optimization problem consisting of maximiz-
ing the following aggregate cost function

Pe

Fig. 2. lllustration of the vector field (2a). At this configtion, the first

H(P)= min  {3lpi —p;l,De(pi)} generator is the only one such tHat(co(S1(P))) = 0.
i,5€{1,...,n} - \Di
i#j, ec€Bd(Q) Now, consider the following dynamical systems describing
= min { min ||¢ p,||} the evolution of the generatois= {1,...,n},
| ! ie.{ltwn% o - pi = Ln(co(S;(P))). (2a)
This geometric optimization problem corresponds to theesit by € IC(Vi(PY). (o

tion where we are interested in maximizing the coverage®f th ] ) ] o )

polygon @ in such a way that the radius of the robots do ndthe first system mearest—nelghbor—d|str|bute.d_1 the sense
overlap (in order not to interfere with each other) or leawe t that Ln(co(S;(P))) depends only by the position ¢f, and
environment. Following [4], this problem can be restated &§ nearest neighbors. The second systelbi®noi-neighbor-

a sphere-packing problenhow to maximize the coverage ofdistributedin the sense thatC(V;(P)) depends only by the
a region with non-overlapping disks (contained in the rayioPosition of p; and its Voronoi neighbors. Note also that the

of minimum radius. The problem reads: solution to both systems must be understood in the Filippov
- sense [6]. Classical notions in differential equationshsuc
max{R | Ujeq1,..ny B(pi, R) € Q, as existence and uniqueness of solutions, invariant sets an

B(pi, R)N B(p;, R) =0}, (1) stability analysis can also be extended to dynamical syst#m
v 7 ’ this type. In particular, we need the notion of weakly inaati
where B(p,R) = {qeR?|[l¢—pll<R} and where set to state the next result: a set is saidweakly invariant

B(p, R) is its closure. if for eachxzy € M, M contains a maximal solution of the

corresponding dynamical system in (2).
Remark 2.1:In the definition of H we employ al/2 ponding dy ! y in 2)

correction factor in comparing the pairwise robot distance Theorem 2.2:For the dynamical systems (2a) and (2b), the
llp: — I, with the distances to the wallB).(p;). This factor generators’ location® = (p1,...,p,) cOnverges asymptoti-
is necessary to establish the equivalence between mimgizcally to the largest weakly invariant set contained in tleesate

‘H and solving the sphere-packing problem (1). of A(Q)={P € Q"| R;(P) =H;(P) = p;, € IC(V;)}.



The configurations® € A(Q) C Q" have the property that accurate updated map. The occupancy grid methods described
all the robots with the smallest value &;(P) are located at by [7], [8] do account for a changing environment but several

the incenter of their Voronoi regions. readings are required to remove an object from the map if
it has moved. This is not acceptable in this implementation.
I1l. | NDOOR MULTI-ROBOT TESTBED Decisions concerning the environment surrounding the trobo

must be made from onlgnehorizon of sonar readings ahe

A group of 5 mobile robots was developedlocation. This was the main stimulus to improve single point
in the UIUC  Control Systems Laboratory.resolution in sonar scans.
The robots are based on
a 150MHz  32bit floating B. Sonar advantages and disadvantages
point Texas Instruments DSP
6711 mounted on a TI DSP
development board. A daughter
card was built in house to
provide an interface point for a
BX24 Micro controller, PWM
output, encoder input, A/D
and D/A converters and serial

The Daventech SRF04 Ultrasonic range sensor has several
distinct advantages over the Polaroid 6500 sensors whioh ha
commonly been used, e.g., see [9], [7], [8]. These advastage
include a larger range of measurements (3cm to 6m), lower
power consumption (during both firing and quiescent pejiods
and smaller size. Any ultrasonic sensor comes with a set of
problems [10], [11] such as wide beam angle, interference,
communication. The BX24 Micro multiple and specular reflections. Much of the previous work
controller co-ordinates a set of A5\ on these issues has focused on map building, e.g., [12] and
three Daventech SRFO04 ultrasonic path planning problems, where probabilistic approachés [8
sensors as well as three infrared distance sensors. Thersensalman filters [12], and stereoscopic approaches [13] have
are mounted on a RC servomotor that rotates to incrementaiyen shown to significantly improve the overall scanning
scan the area around the robot. Pittman motors drive therformance. Unfortunately, the distributed aspects af ou
robot wheels and HP optical encoders provide odometsgtting limits the applicability of these approaches.
information. A Matrix Orbital LCD screen displays onboard
debugging information and data is sent over a RS232 wirelgss |mproving scanning reliability
serial connection to a base station PC and to the other robots

Texas instruments Code composer and C compiler were useghne of the problems with ultrasonics sensors is direct and
to program the robots. Figure 3 contains a diagram illusiat indirect interference from stray sonar pulses and reflastio

the hardware architecture of the multi-robot testbed. causingvery erroneous readings. It is a serious factor in sonar
usage and occurs when vagrant sonic pulses are mistaken
- for an intended objects reflection. This problem is pastiall
e Sera T é addressed by the error eliminating rapid ultrasonic firing
Conm I — (EERUF) procedure described by Borenstein and Korne in [5].

In the approach sonar sensors are fired in a sequence with
different timing. The timings differ between all sonars on
the same robot as well as between successive firings of the
same sonar. Apredeterminedtiming schedule for &known

number of sensors is developed. The variable timing scheme

ensures that interference in successive readings is netartn

RC Servo

TI Developers Board

PWM

DSP

80 Pin bus

Daughter Card

om R A Scanning then continues until a pair of readings agree mithi
Bncoder | | Encoder some tolerance. Borenstein and Korne implem&ERUF
Encoder | . .. .
. |o————— with a total of 32 sonar firing on two separate robots. Their
algorithm successfully rejects 97% of all erroneous regslin
Fig. 3. Hardware diagram of multi-robot testbed. that would affect naive firing methods. The work [5] contains

little indication of the measurement length at which these
results are achieved; to the best of our understandigpiears

IV. DISTRIBUTED SONAR SENSING that these successful results were obtain for distancésatiyp
) o less than100c¢m. This is an important consideration for the
A. Implementation limitations comparison of results in Section IV-D.

It is important to emphasize the constraints imposed bylIn a truly distributed system it is difficult to determine
the problem definition on the implementation. Firstly, théhe global number of sensors as well as to obtain global
algorithms are to be completely decentralized. Hencegath synchronization of the robot’s internal clocks and hence it
the robots might communicate among themselves or withisavery difficult to devise gglobal timing schedule for sonar
base station, their behavior must not depend on this. Sgconéiring. In addition, in this investigation it was found that @n
due to the dynamic nature and undetermined size of thavironment with several (5§tatic mobile robots each with
environment, the robot cannot expect to build and keep &8rsonar implementing thEERUF method there was sufficient
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o The EERUF method proves to be reliable but slow with
respect to the other methods. This is becausequence
of readings differ from one another according to the
overall error distribution; see Figure 4. However, the

e EERUF algorithm was found to be more effective at
Distance (cm) shorter distances<(100cm); this is consistent with the
results reported in [5].

Fig. 4. Error distribution at a distance of 120cm with 15 Somaunted on « The Queue Checker approach improves the readings

5 robots in the environment. reliability only at short distances. At larger distances th

measurement error distribution is such that it is more

K . | interf d oft likely to match a series of incorrect readings than select
cross talk to continuously cause interference and oftevepite the correct distance. In comparison, thex Fi | t er

two succes_sive sonar readings _from being within tolerance. algorithm improves reading reliability at all distances.
The result is very long delays (in the order of seconds) for | 1o time required for a reading using th@ueue

obtaining a validEERUF reading. In cher w_ords thEERUF Checker method increases exponentially with increas-
method appears to be not scalable in distributed systems. ing number of values to match where as thax

=
o
=)

a1
=)

Number of Readings

o

To overcome these problems, we propose, and later com- Fi | ter time increases linearly.
pare, a number of single-point sonar-scan algorithms. \fée re
to the following scheme as ti@ueue Checker algorithm. E. Improving scanning resolution
Let ¢ > 0 be a tolerance, and let be the size of a queue
where we record successive sonar readings in a FIFO fashionA persisting problem of using sonar is the wide beam
If a new reading differs by less thanfrom a certain number angle as shown in Figure 5. In many approaches to improving
k < n of readings in the queue, then the reading is accepted as
avalidQueue Checker measurement. In addition, the firing oo Space
schedule isandomizedand halts as soon as a valid measure-
ment is obtained. This allows other sensors to fire alon&ifas
and with less probability of interference. The randomizati
reduces the possibility of consecutive interference aaougias
a result of other sonar firing at the same rate. The performanc
of the algorithm can be tuned by appropriate selections @f th
parameters, k, andn.

Area of scan A
Sonar

] Apparent size
L — of object

Object

Ignored object

/

Area of scan B

After considering a set of naive sonar data as in Figure 4 it
is evident that the measurements are strongly left skewed, i
erroneous measurements are alwaysaller than the actual
distance. Hence, thgreatestdistance observed is relative torig. 5. As a result of the wide beam angle (i) distant objeatswat observed
the closestobject. Using this observation, thdax Filter and (i) the 'size’ of an object is increased.
filter collects a series of sonar distance readings and elsoos

the maximum value as a valid measurement. sonar resolution the robot moves through an environment and

A further means to impro\/ing the sonar performance 145€s readings from multiple, individual and Subsequenarson
to adjust the sensitivity and maximum range of the sensoféings, from different locations, to improve the resolutiof
Limiting the maximum sensitivity ignores weaker reflecgonthe observed objects. A popular approach is ¢iceupancy
and interference. Scanning is also faster as the sonar doesdiid method developed by Moravec and Elfes [8] in which the
have to wait as long to detect reflections. The sensitivitylma Probability of an object being located in discretized regio

set dynamically and was implemented throughout this papdif space is computed. Certainty is ‘added’ along an arc at
the distance recorded by the sonar (the ‘apparent objeet siz

in Figure 5), and ‘subtracted’ in wedge shape of free space
between the robot and the object. A recent approach by Choset

The performance of each sonar scan algorithm was testd@gatani and Lazar [9] represents each wide sonar reading as
in a reproducible environment that simulated the testbédsingle arc. Intersections of subsequent arcs then irdicat
environment. The experiments were conducted with a varidfje location of an object. McKerrow [14] proposes fitting

of distances, objects and number of sonar. A brief summdHye segments through successive sonar arcs that metrcertai
of the results are shown in Table |. criteria. The result of all of these methods is a represiemtaif

o S ~ the environment that is significantly better than a naiveason
Considering Table I it is significant to note the following: model. However, their application to our problem is sewerel

limited as there is onlyone set of sonar readings from an

« Unfiltered sonar measurements produce very poor Megsy nown |ocation available at any time (cf. Section IV-A).
surements particularly with longer distance measure-

ments. As a result of these limitations, we developed a new ap-

D. Experimental performance of sensing algorithms



TABLE |
SUMMARY OF SONAR TEST RESULTS FOR THBMAX FI LTER AND QUEUE CHECKER METHODS. 10ELEMENTS WERE USED IN THEQUEUE CHECKER
METHOD. THE TIME ENTRIES WERE RECORDED FOR SCANNING A120CM.

Percentage errors in readings
Actual Distance] Sonar | EERUF Number to match ifueue Checker Number of readings foMax Filter
(cm) Alone 1 2 3 4 2 3 4 12 20
80 18% 0% 7% 4% 4% 4% 3% 1% 0% - -
100 47% 4% 41% 32% 23% 20% 40% 24% 17% 4% -
120 66% 18% 83% 89% 92% 98% 53% 49% 41% 9% 2%
Time (Relative) 0.5 40 1.3 2.5 4.3 9.9 0.8 11 1.4 3.6 5.9

o object centroid is computed. (Object size is limited to

==fg==With Max Resolver

90° subtended at the sonar.)

(iv) A correction to ensure that the robot does not perceive
an adjacent wall segment as the next closest object is
applied and the previous step is repeated until 3 unique
objects have been identified.

(v) If the distance to allhreeobjects are within tolerance the
robot stays in the “central region.” Otherwise it moves
away from the closest object (or bisector of the two
closest) according to (2a).

(vi) Visualization data is sent to the PC and the robot return
to step 1.

In some implementations only one robot would scan at any
Fig. 6. lllustration of improvement scanning resolution gsithe Max  time. This was done to reduce the possibility of sonar in-
Resol ver algorithm. terference but was slow. The algorithms were successfully
implemented with up to 5 robots as shown in Figure 7. There

_ _ ) are several tradeoffs that need to be made for a successful
proach called thé/ax Resol ver in which a set of adjacent jmplementation:

readings in a single scan are compared and used to improve the

resolution of the complete horizon of distance measuresnenyumber of readings: 36 was sufficient. Fewer readings
The effect of a wide beam angle is to record a distance as ¢gysed thévax Resol ver algorithm to eliminate some

the minimum distance tany object within the beam angle as  gpjects while taking more increased scan time but did not
shown in Flgure 5. This has the effect of enlarglng an Ob]ect Significanﬂy increase accuracy.

in the sonar view. Thvax Resol ver algorithm uses the sjze of central region: Should initially be large and then
maximum distance in a set of readings that would lie within  gradually reduced. This reduces close proximity colli-
the beam angle as the actual distance. This approach astempt sjons due to robots moving simultaneously but slows the
to “invert” the wide beam angle effect and has the effect of  performance.

“sharpening” the sonar readings. Figure 6 shows the ofigimgistance to Move: Reducing the distance moved each step
and modified sonar distance measurements and illustrages th takes longer but reduces close quarter collisions and

effect of implementing thévax Resol ver on the robot in produces behavior which closely represents the simulated
the actual environment. results.
Parameters of Max Fi | t er: Reliable and fast results were
V. EXPERIMENTAL RESULTS obtained fore = 5¢m, k = 4, andn = 10.

Sonar Sensitivity and Range:Can be reduced for speed and
The steps in implementing the algorithm are outlined below: —accuracy but needs to be dynamically adjusted.

Robot Recognition: To implement the 1/2 distance rule for
(i) The micro-controller fires the 3 ultrasonic sensors for the sphere packing (Remark 2.1) robots and wall objects

use in theMax Filter or Queue Checker algo- must be identified. Leonard and Durrant-Whyte [10]
rithms. useregions of constant dep{RCD). In this investigation

(i) A valid reading is returned to the DSP and stored. The a RCD of up t060° was found for walls and0° to
RC servo then rotates the sonar to obtain a 8@l° 45° for a robot. Hence, any object smaller thdf°
horizon of distance measurements. Ultrasonic scanning was considered to be a robot. This was successful but
is halted. sometimes inconsistent.

(i) The Max Resol ver algorithm modifies the distance
horizon and finds the centroid of the closest object. Local minima play a larger role in the implementation
Neighboring measurements are incorporated into tlleompared to simulation) because the introduction of araént
object if they are sufficiently close and the the newegion enlarges the space where a robot is in equilibrium.



Fig. 7. The upper left (right) figures illustrate the initiginal) locations of 5 robots in a typical 5 robot implementatidhe lower figures represent a
computer simulation ran iivat hemat i ca with identical initial condition.
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