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Abstract— This paper investigates the behavior of a group
of autonomous robots evolving in a polygonal environment
according to a “move away from the closest neighbor” heuristic.
We demonstrate that this distributed coordination algorithm op-
timizes an aggregate cost function that measures how uniformly
distributed are the robots in their environment. Our technical
approach based on non-smooth analysis and computational
geometry unveils a sphere-packing problem. The algorithm is
implemented in a testbed of indoor mobile robots equipped with
sonar. We develop novel approaches for improving single point
sonar scan performance. These algorithms are then shown to
have improved reliability, resolution and speed in distributed
environments as compared to other scanning methods.

I. I NTRODUCTION

One fundamental capability of future mobile and tunable
networks of robots will be the ability to perform spatially-
distributed sensing tasks including coverage, surveillance, ex-
ploration, target detection, and search. These future networks
of autonomous vehicles will be able to adapt to changing
environments and dynamic situations. They will provide guar-
anteed quality of service in the presence of failures, and will
operate via limited-bandwidth ad-hoc communication links.
The algorithms required to achieve these desirable capabilities
must be amenable to implementation in a cooperative setting,
i.e., they are required to bedistributed, asynchronous, adap-
tive, and verifiably correct.Sample references on coordination
problems for multi-vehicle networks include [1], [2], [3].

The premise of this paper is based on a class of coverage
and deployment problems for networks of mobile robots. Once
the optimal sensor coverage is formalized as an aggregate
performance metric via methods from geometric optimization,
a class of cooperative control algorithms can be designed by
generalizing the classic Lloyd algorithm from quantization
theory. The resulting control laws are interaction protocols
between the mobile sensors and include behaviors such as,
“move away from your closest neighbor,” and, “move toward
the geometric center of your sensing region.”

The first objective of this paper is the study of the “move
away from your closest neighbor” algorithm in group of robots
and is developed in Section II. Tools from nonsmooth analysis,
stability and convergence analysis via a LaSalle Invariance
Principle and geometric optimization concepts such as sphere-
packing and disk-covering functions are used. It turns out that

this collection of techniques is well-suited to study a number
of coordination problems. The reader is referred to [4] for the
comprehensive mathematical treatment.

The second objective of this paper is to investigate the
practical issues that arise in the implementation of these algo-
rithms. A decentralized sensor based testbed consisting ofsev-
eral mobile DSP platforms (discussed in Section III) equipped
with rotating sonar sensors is used. Successful implementation
of the algorithms is largely dependent on the properties and
limitations of the inexpensive wide-angle sonar sensors used.
These problems are reviewed in Section IV which combined
with the implementation limitations in Section IV-A provided
the impetus to develop improved methods for single point
sonar scan resolution and reliability. Hence, the final objec-
tive of this paper is contained in Sections IV-C and IV-E
where two new algorithms called theMax Filter andMax
Resolver as well as an extension of theEERUF method
by Borenstein and Korne [5] are described. These methods
prove to be very effective at improving sonar reading reliability
and resolution within the context of this investigation in an
environment with large amounts of interference. Finally, Sec-
tion V discusses the combined implementation of the sensing
and coordination algorithms, as well as the modifications,
adaptations and tradeoffs of the final implementation.

II. I NTERACTION ALGORITHMS

A. Preliminaries

Let ‖ · ‖ denote the Euclidean distance function and let
v · w denote the scalar product of the vectorsv, w ∈ R

N .
Throughout the paper,versus(v) will denote the unit vector
in the direction ofv 6= 0, i.e., versus(v) = v/‖v‖. Recall that
a setS ⊂ R

N is said to beconvexif λx + (1 − λ)y ∈ S, for
all λ ∈ [0, 1] and all x, y ∈ S. Given S ⊂ R

N , the convex
hull of S, co(S), is defined as

co(S) =
{

z ∈ R
N | z = λx + (1 − λ)y

for someλ ∈ [0, 1] andx, y ∈ S} .

Obviously, if S is convex, thenS = co(S). In general,S ⊂
co(S). If S is a convex set inRN , let projS : R

N → S denote
the orthogonal projection ontoS and letDS : R

N → R denote
the distance function toS. Also, let Ln(S) denote the least-
norm vector inS (see Figure 1).
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Fig. 1. The convex hull of the setS = {v1, v2, v3, v4, v5} is shown in
grey. The vectorw is the least-norm element inco(S).

Let Q be a convex polygon inR2. Denote byint Q its
interior set and byEd(Q) = {e1, . . . , eM} its set of edges.
Given an edgee ∈ Ed(Q), we let ne denote the unit normal
to e pointing toward theint(Q). Let P = (p1, . . . , pn) ∈ Qn

denote the location ofn generators (or robots) in the space
Q. The Voronoi partitionV(P ) = (V1(P ), . . . , Vn(P )) of Q
generated by the points(p1, . . . , pn) ∈ Qn is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i} .

For simplicity, we refer toVi(P ) asVi. If Vi andVj share an
edge, i.e.,Vi ∩ Vj is neither empty nor a singleton, thenpi is
called aneighborof pj (and vice-versa). Given a polytopeW
in R

N , its incenter set, denoted byIC(W ), is the set of the
centers of maximum-radius spheres contained inW .

B. The geometric optimization problem

Consider the optimization problem consisting of maximiz-
ing the following aggregate cost function

H(P ) = min
i,j∈{1,...,n}
i6=j, e∈Ed(Q)

{

1
2‖pi − pj‖,De(pi)

}

= min
i∈{1,...,n}

{

min
q 6∈int Vi

‖q − pi‖

}

.

This geometric optimization problem corresponds to the situa-
tion where we are interested in maximizing the coverage of the
polygonQ in such a way that the radius of the robots do not
overlap (in order not to interfere with each other) or leave the
environment. Following [4], this problem can be restated as
a sphere-packing problem: how to maximize the coverage of
a region with non-overlapping disks (contained in the region)
of minimum radius. The problem reads:

max{R | ∪i∈{1,...,n} B(pi, R) ⊆ Q ,

B(pi, R) ∩ B(pj , R) = ∅} , (1)

where B(p,R) =
{

q ∈ R
2 | ‖q − p‖ < R

}

and where
B(p,R) is its closure.

Remark 2.1:In the definition of H we employ a 1/2
correction factor in comparing the pairwise robot distances,
‖pi − pj‖, with the distances to the walls,De(pi). This factor
is necessary to establish the equivalence between minimizing
H and solving the sphere-packing problem (1).

C. The distributed coordination algorithms

Here we design two coordination algorithms with the prop-
erty that the corresponding closed-loop systems are guaranteed
to monotonically increase the value of the performance mea-
sureH. Let i ∈ {1, . . . , n}. At a configurationP ∈ Qn, the
following set describes the distances of the generatorpi to the
rest of generators and to the boundary ofQ,

Mi(P ) =

{

1

2
‖pj − pi‖ | j ∈ {1, . . . , n} \ {i}

}

∪ {De(pi) | e ∈ Ed(Q)} .

Let Ri(P ) denote the minimum ofMi(P ). Note thatH(P ) =
mini∈{1,...,n} Ri(P ). Consider the setSi(P ) defined by

versus(pi − pj) ∈ Si(P ) ⇔
1

2
‖pj − pi‖ = Ri(P ) ,

ne ∈ Si(P ) ⇔ De(pi) = Ri(P ) .

Note that if there is a single element (generator or edge of
Q) which is nearest topi, the setSi(P ) is formed by a
single vector. If several elements are equidistant topi, then
Si(P ) is composed of several vectors (see Figure 2). For
implementation purposes, it is also worth noticing that in order
to computeSi(P ), we need to compare12‖pi−pj‖ with De(pi)
(see Remark 2.1).
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Fig. 2. Illustration of the vector field (2a). At this configuration, the first
generator is the only one such thatLn(co(S1(P ))) = 0.

Now, consider the following dynamical systems describing
the evolution of the generatorsi ∈ {1, . . . , n},

ṗi = Ln(co(Si(P ))) . (2a)

ṗi ∈ IC(Vi(P )) . (2b)

The first system isnearest-neighbor-distributedin the sense
that Ln(co(Si(P ))) depends only by the position ofpi and
its nearest neighbors. The second system isVoronoi-neighbor-
distributed in the sense thatIC(Vi(P )) depends only by the
position of pi and its Voronoi neighbors. Note also that the
solution to both systems must be understood in the Filippov
sense [6]. Classical notions in differential equations such
as existence and uniqueness of solutions, invariant sets and
stability analysis can also be extended to dynamical systems of
this type. In particular, we need the notion of weakly invariant
set to state the next result: a setM is saidweakly invariant
if for each x0 ∈ M , M contains a maximal solution of the
corresponding dynamical system in (2).

Theorem 2.2:For the dynamical systems (2a) and (2b), the
generators’ locationP = (p1, . . . , pn) converges asymptoti-
cally to the largest weakly invariant set contained in the closure
of A(Q) = {P ∈ Qn | Ri(P ) = Hi(P ) ⇒ pi ∈ IC(Vi)}.



The configurationsP ∈ A(Q) ⊂ QN have the property that
all the robots with the smallest value ofRi(P ) are located at
the incenter of their Voronoi regions.

III. I NDOOR MULTI-ROBOT TESTBED

A group of 5 mobile robots was developed
in the UIUC Control Systems Laboratory.
The robots are based on
a 150MHz 32bit floating
point Texas Instruments DSP
6711 mounted on a TI DSP
development board. A daughter
card was built in house to
provide an interface point for a
BX24 Micro controller, PWM
output, encoder input, A/D
and D/A converters and serial
communication. The BX24 Micro
controller co-ordinates a set of
three Daventech SRF04 ultrasonic
sensors as well as three infrared distance sensors. The sensors
are mounted on a RC servomotor that rotates to incrementally
scan the area around the robot. Pittman motors drive the
robot wheels and HP optical encoders provide odometry
information. A Matrix Orbital LCD screen displays onboard
debugging information and data is sent over a RS232 wireless
serial connection to a base station PC and to the other robots.
Texas instruments Code composer and C compiler were used
to program the robots. Figure 3 contains a diagram illustrating
the hardware architecture of the multi-robot testbed.
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Fig. 3. Hardware diagram of multi-robot testbed.

IV. D ISTRIBUTED SONAR SENSING

A. Implementation limitations

It is important to emphasize the constraints imposed by
the problem definition on the implementation. Firstly, the
algorithms are to be completely decentralized. Hence, although
the robots might communicate among themselves or with a
base station, their behavior must not depend on this. Secondly,
due to the dynamic nature and undetermined size of the
environment, the robot cannot expect to build and keep an

accurate updated map. The occupancy grid methods described
by [7], [8] do account for a changing environment but several
readings are required to remove an object from the map if
it has moved. This is not acceptable in this implementation.
Decisions concerning the environment surrounding the robot
must be made from onlyonehorizon of sonar readings atone
location. This was the main stimulus to improve single point
resolution in sonar scans.

B. Sonar advantages and disadvantages

The Daventech SRF04 Ultrasonic range sensor has several
distinct advantages over the Polaroid 6500 sensors which have
commonly been used, e.g., see [9], [7], [8]. These advantages
include a larger range of measurements (3cm to 6m), lower
power consumption (during both firing and quiescent periods),
and smaller size. Any ultrasonic sensor comes with a set of
problems [10], [11] such as wide beam angle, interference,
multiple and specular reflections. Much of the previous work
on these issues has focused on map building, e.g., [12] and
path planning problems, where probabilistic approaches [8],
Kalman filters [12], and stereoscopic approaches [13] have
been shown to significantly improve the overall scanning
performance. Unfortunately, the distributed aspects of our
setting limits the applicability of these approaches.

C. Improving scanning reliability

One of the problems with ultrasonics sensors is direct and
indirect interference from stray sonar pulses and reflections
causingveryerroneous readings. It is a serious factor in sonar
usage and occurs when vagrant sonic pulses are mistaken
for an intended objects reflection. This problem is partially
addressed by the error eliminating rapid ultrasonic firing
(EERUF) procedure described by Borenstein and Korne in [5].
In the approach sonar sensors are fired in a sequence with
different timing. The timings differ between all sonars on
the same robot as well as between successive firings of the
same sonar. Apredeterminedtiming schedule for aknown
number of sensors is developed. The variable timing scheme
ensures that interference in successive readings is not constant.
Scanning then continues until a pair of readings agree within
some tolerance. Borenstein and Korne implementEERUF
with a total of 32 sonar firing on two separate robots. Their
algorithm successfully rejects 97% of all erroneous readings
that would affect naive firing methods. The work [5] contains
little indication of the measurement length at which these
results are achieved; to the best of our understanding itappears
that these successful results were obtain for distances typically
less than100cm. This is an important consideration for the
comparison of results in Section IV-D.

In a truly distributed system it is difficult to determine
the global number of sensors as well as to obtain global
synchronization of the robot’s internal clocks and hence it
is very difficult to devise aglobal timing schedule for sonar
firing. In addition, in this investigation it was found that in an
environment with several (5)static mobile robots each with
3 sonar implementing theEERUF method there was sufficient



10 20 30 40 50 60 70 80 90 100 110 120 130
0

50

100

150
N

um
be

r 
of

 R
ea

di
ng

s

Distance (cm)

Fig. 4. Error distribution at a distance of 120cm with 15 Sonar mounted on
5 robots in the environment.

cross talk to continuously cause interference and often prevent
two successive sonar readings from being within tolerance.
The result is very long delays (in the order of seconds) for
obtaining a validEERUF reading. In other words theEERUF
method appears to be not scalable in distributed systems.

To overcome these problems, we propose, and later com-
pare, a number of single-point sonar-scan algorithms. We refer
to the following scheme as theQueue Checker algorithm.
Let ε > 0 be a tolerance, and letn be the size of a queue
where we record successive sonar readings in a FIFO fashion.
If a new reading differs by less thanε from a certain number
k < n of readings in the queue, then the reading is accepted as
a validQueue Checker measurement. In addition, the firing
schedule israndomizedand halts as soon as a valid measure-
ment is obtained. This allows other sensors to fire alone, faster,
and with less probability of interference. The randomization
reduces the possibility of consecutive interference occurring as
a result of other sonar firing at the same rate. The performance
of the algorithm can be tuned by appropriate selections of the
parametersε, k, andn.

After considering a set of naive sonar data as in Figure 4 it
is evident that the measurements are strongly left skewed, i.e.,
erroneous measurements are alwayssmaller than the actual
distance. Hence, thegreatestdistance observed is relative to
the closestobject. Using this observation, theMax Filter
filter collects a series of sonar distance readings and chooses
the maximum value as a valid measurement.

A further means to improving the sonar performance is
to adjust the sensitivity and maximum range of the sensors.
Limiting the maximum sensitivity ignores weaker reflections
and interference. Scanning is also faster as the sonar does not
have to wait as long to detect reflections. The sensitivity can be
set dynamically and was implemented throughout this paper.

D. Experimental performance of sensing algorithms

The performance of each sonar scan algorithm was tested
in a reproducible environment that simulated the testbed
environment. The experiments were conducted with a variety
of distances, objects and number of sonar. A brief summary
of the results are shown in Table I.

Considering Table I it is significant to note the following:

• Unfiltered sonar measurements produce very poor mea-
surements particularly with longer distance measure-
ments.

• The EERUF method proves to be reliable but slow with
respect to the other methods. This is because asequence
of readings differ from one another according to the
overall error distribution; see Figure 4. However, the
EERUF algorithm was found to be more effective at
shorter distances (<100cm); this is consistent with the
results reported in [5].

• The Queue Checker approach improves the readings
reliability only at short distances. At larger distances the
measurement error distribution is such that it is more
likely to match a series of incorrect readings than select
the correct distance. In comparison, theMax Filter
algorithm improves reading reliability at all distances.

• The time required for a reading using theQueue
Checker method increases exponentially with increas-
ing number of values to match where as theMax
Filter time increases linearly.

E. Improving scanning resolution

A persisting problem of using sonar is the wide beam
angle as shown in Figure 5. In many approaches to improving
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Fig. 5. As a result of the wide beam angle (i) distant objects are not observed
and (ii) the ‘size’ of an object is increased.

sonar resolution the robot moves through an environment and
uses readings from multiple, individual and subsequent sonar
firings, from different locations, to improve the resolution of
the observed objects. A popular approach is theoccupancy
grid method developed by Moravec and Elfes [8] in which the
probability of an object being located in discretized regions
of space is computed. Certainty is ‘added’ along an arc at
the distance recorded by the sonar (the ‘apparent object size’
in Figure 5), and ‘subtracted’ in wedge shape of free space
between the robot and the object. A recent approach by Choset,
Nagatani and Lazar [9] represents each wide sonar reading as
a single arc. Intersections of subsequent arcs then indicate
the location of an object. McKerrow [14] proposes fitting
line segments through successive sonar arcs that met certain
criteria. The result of all of these methods is a representation of
the environment that is significantly better than a naive sonar
model. However, their application to our problem is severely
limited as there is onlyone set of sonar readings from an
unknown location available at any time (cf. Section IV-A).

As a result of these limitations, we developed a new ap-



TABLE I

SUMMARY OF SONAR TEST RESULTS FOR THEMAX FILTER AND QUEUE CHECKER METHODS. 10 ELEMENTS WERE USED IN THEQUEUE CHECKER

METHOD. THE TIME ENTRIES WERE RECORDED FOR SCANNING AT120CM.

Percentage errors in readings
Actual Distance Sonar EERUF Number to match inQueue Checker Number of readings forMax Filter

(cm) Alone 1 2 3 4 2 3 4 12 20
80 18% 0% 7% 4% 4% 4% 3% 1% 0% - -
100 47% 4% 41% 32% 23% 20% 40% 24% 17% 4% -
120 66% 18% 83% 89% 92% 98% 53% 49% 41% 9% 2%

Time (Relative) 0.5 40 1.3 2.5 4.3 9.9 0.8 1.1 1.4 3.6 5.9

With Max Resolver

Original

Fig. 6. Illustration of improvement scanning resolution using the Max
Resolver algorithm.

proach called theMax Resolver in which a set of adjacent
readings in a single scan are compared and used to improve the
resolution of the complete horizon of distance measurements.
The effect of a wide beam angle is to record a distance as
the minimum distance toany object within the beam angle as
shown in Figure 5. This has the effect of enlarging an object
in the sonar view. TheMax Resolver algorithm uses the
maximum distance in a set of readings that would lie within
the beam angle as the actual distance. This approach attempts
to “invert” the wide beam angle effect and has the effect of
“sharpening” the sonar readings. Figure 6 shows the original
and modified sonar distance measurements and illustrates the
effect of implementing theMax Resolver on the robot in
the actual environment.

V. EXPERIMENTAL RESULTS

The steps in implementing the algorithm are outlined below:

(i) The micro-controller fires the 3 ultrasonic sensors for
use in theMax Filter or Queue Checker algo-
rithms.

(ii) A valid reading is returned to the DSP and stored. The
RC servo then rotates the sonar to obtain a full360o

horizon of distance measurements. Ultrasonic scanning
is halted.

(iii) The Max Resolver algorithm modifies the distance
horizon and finds the centroid of the closest object.
Neighboring measurements are incorporated into the
object if they are sufficiently close and the the new

object centroid is computed. (Object size is limited to
90o subtended at the sonar.)

(iv) A correction to ensure that the robot does not perceive
an adjacent wall segment as the next closest object is
applied and the previous step is repeated until 3 unique
objects have been identified.

(v) If the distance to allthreeobjects are within tolerance the
robot stays in the “central region.” Otherwise it moves
away from the closest object (or bisector of the two
closest) according to (2a).

(vi) Visualization data is sent to the PC and the robot returns
to step 1.

In some implementations only one robot would scan at any
time. This was done to reduce the possibility of sonar in-
terference but was slow. The algorithms were successfully
implemented with up to 5 robots as shown in Figure 7. There
are several tradeoffs that need to be made for a successful
implementation:

Number of readings: 36 was sufficient. Fewer readings
caused theMax Resolver algorithm to eliminate some
objects while taking more increased scan time but did not
significantly increase accuracy.

Size of central region: Should initially be large and then
gradually reduced. This reduces close proximity colli-
sions due to robots moving simultaneously but slows the
performance.

Distance to Move: Reducing the distance moved each step
takes longer but reduces close quarter collisions and
produces behavior which closely represents the simulated
results.

Parameters ofMax Filter: Reliable and fast results were
obtained forε = 5cm, k = 4, andn = 10.

Sonar Sensitivity and Range:Can be reduced for speed and
accuracy but needs to be dynamically adjusted.

Robot Recognition: To implement the 1/2 distance rule for
the sphere packing (Remark 2.1) robots and wall objects
must be identified. Leonard and Durrant-Whyte [10]
useregions of constant depth(RCD). In this investigation
a RCD of up to60o was found for walls and20o to
45o for a robot. Hence, any object smaller than45o

was considered to be a robot. This was successful but
sometimes inconsistent.

Local minima play a larger role in the implementation
(compared to simulation) because the introduction of a central
region enlarges the space where a robot is in equilibrium.



Fig. 7. The upper left (right) figures illustrate the initial(final) locations of 5 robots in a typical 5 robot implementation. The lower figures represent a
computer simulation ran inMathematica with identical initial condition.

A typical run (Figure 7) took about 3 minutes but can
be reduced to less than a minute by making the tradeoffs
discussed above. Finally, there are often several possible
equilibrium configurations with different regions of attraction.
While at equilibrium an erroneous sonar readings might cause
an unexpected movement. However, quite conveniently, the
system was found to often settle into another equilibrium
configuration with a larger region of attraction.

VI. CONCLUSIONS

We have formalized optimal sensor coverage as an aggregate
performance metric via methods from geometric optimization.
We characterized the asymptotic behavior of the “move away
from your closest neighbor” algorithm using tools from nons-
mooth analysis. We have presented experimental results from
a fully distributed implementation on a sonar based testbed.
These successful results were dependent on good sonar sensor
data and two novel methods: theMax Filter and the
Queue Checker. We found theMax Filter algorithm
to be faster and more reliable at longer distances than the
EERUF and Queue Checker methods. We also develop
and implement theMax Resolver algorithm for improving
single point sonar scanning resolution. Our experimental setup
provides valuable insight into practical issues regardingthe
realization of distributed sensor based exploration algorithms.
We refer the interested reader to [15] for more details.
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