
Vehicle Motion Planning with Time-Varying Constraints

W. Todd Cerven1, Francesco Bullo2, and Victoria L. Coverstone3

University of Illinois at Urbana-Champaign

Introduction

With the growing emphasis on vehicle autonomy, the problem of planning a trajectory

in an environment with obstacles has become increasingly important. This task has been

of particular interest to roboticists and computer scientists, whose primary focus is on kine-

matic motion planning [1]. Typical kinematic planning methods fall into two main categories,

roadmap methods and incremental search methods, both of which find collision-free paths in

the state space. Roadmap methods generate and traverse a graph of collision-free connect-

ing paths spanning the state space, while incremental search methods, including dynamic

programming [2] and potential field methods [3], perform an iterative search to connect the

initial and goal states. For the purely geometric path planning problem, deterministic algo-

rithms have been created that are complete, i.e., they will find a solution if and only if one

exists. Unfortunately, these suffer from high computational costs which are exponential in

system degrees of freedom. This cost has motivated the development of iterative randomized

path planning algorithms that are probabilistically complete, i.e., if a feasible path exists, the

probability of finding a path from the initial to final conditions converges to one as the num-

ber of iterations goes to infinity. The introduction of the Rapidly-exploring Random Trees

(RRTs) of LaValle and Kuffner [4] allowed both for computationally efficient exploration of

a complicated space as well as incorporation of system dynamics. The RRT grows a tree

of feasible trajectories from the initial condition, or root node. Each node, or waypoint, on

the tree represents a system state and has possible trajectories branching from it. Through

use of an embedded planning routine, the tree incrementally builds itself in random direc-

1Senior Member of Technical Staff, currently at The Aerospace Corporation, 15049 Conference Center
Drive, Suite 1029, Chantilly, VA 20151, Member AIAA

2Assistant Professor, Coordinated Sciences Laboratory, 1308 West Main Street, Urbana, IL 61801
3Associate Professor, Department of Aerospace Engineering, 104 South Wright Street, Urbana, IL 61801,

Associate Fellow AIAA

1 of 12



tions, node by node, until the final conditions are met (within accuracy bounds). Frazzoli [5]

demonstrated that a hybrid systems representation of vehicle dynamics, when coupled with

the RRT, could be used to address moving obstacles and time-invariant final conditions in a

real-time environment. This paper presents a similar approach which provides probabilistic

completeness in the presence of both time-varying obstacles and final conditions while using

a simpler algorithmic procedure. In addition, a novel approach to provide error mitigation of

the embedded planner in a hybrid system-based RRT is presented. An example is then given

in which the proposed algorithm is applied to the landing of a spacecraft on an idealized

asteroid.

An RRT-based Approach

Background

The idea of this method is to incrementally build a tree of feasible trajectories to efficiently

explore a reachable space, where a tree is a directed graph in which all nodes (excepting the

root) have one parent node and an unspecified number of child nodes. The basic RRT

algorithm [4] can be seen in Figure 1(a).

The original RRT algorithm, shown to be probabilistically complete, extended the tree

by picking the closest (Euclidean metric ρ) node on the tree to the random point and choos-

ing the best constant input from a finite predetermined set. For this simplistic embedded

planner, the system equations of motion are propagated according to the input for a prede-

termined time. If no collisions are found, a new child node is added to the tree corresponding

to the propagated state.

Frazzoli adapted this method for control of autonomous vehicles where motion is repre-

sented by a concatenation of motion primitives [5]. He redefined the metric ρ as the cost-to-go

function of an optimal control problem [2] and replaced the constant input set with an online

planning algorithm that found solutions for the obstacle-free planning problem. Using the

Extend routine in Figure 1(b), he was able to address moving obstacles by looping through

successively close nodes on the tree until one was found which allowed an acceptable trajec-

2 of 12



tory. If a collision free trajectory was found, the routine would grow the tree and then try

to connect to the final state. A completeness proof of this approach is in [5]. A limitation

on this method lies in its inability to address time-varying final conditions.

A New Approach

We use a primitive-based hybrid system model that expands upon that in [5], where

the dynamics of the system, commonly described using an ordinary differential equation,

are instead modeled by computed state flows in response to differing inputs. These can be

separated into two types of primitives, reference trajectories and maneuvers, where refer-

ence trajectories are precomputed trajectories with a variable time duration within a given

interval and maneuvers are fixed time primitives connecting reference trajectories. This is a

hybrid system in that the state space is defined by the finite set of trajectory primitives, the

continuous space over which each primitive can be applied (i.e., where the dynamics of the

system are invariant), and time. The control variables then consist of the reference trajec-

tory time durations and the parameters defining each maneuver. Initial and final conditions

are assumed to lie on reference trajectories. A more detailed description of this system is

found in [6]. Furthermore, we assume that there exists an embedded planner guaranteed to

find motion planning solutions in an obstacle-free environment subject to time-varying final

constraints and an upper time limit. The RRT-based algorithm for this approach follows the

general loop in Figure 1(a), calling the Extend routine in Figure 1(c) to try to connect the

trajectories represented by the tree to a state defined by the function RandomState. Once

again, the metric is defined as the cost-to-go function, but the state variable x now includes

time as well. This addition both accommodates a time-dependent final condition and allevi-

ates the need for cycling through the nodes in the tree to address time-varying obstacles. In

this Extend routine, NearestNeighbor merely finds the closest node in the tree to x instead

of sorting the tree nodes and cycling through them. InputFound then calls the embedded

planner to find a feasible trajectory from the nearest node state to x and NoCollision incre-

mentally checks the resulting trajectory for collisions. Provided a collision-free trajectory is

3 of 12



found, the tree is extended by AddChildren. Unlike the approach of Frazzoli, this allows for

the addition of single or multiple nested child nodes along the reference trajectories. Extend

will repeat this process with the last created node until x is reached or a collision-free tra-

jectory cannot be obtained. Once Extend exits, BuildRRT keeps looping until a solution is

found. Probabilistic completeness for this algorithm can then be shown as follows:

Lemma Assuming no two RRT milestones lie within a specified ε > 0 of one another for

the given metric, this method is probabilistically complete.

Proof: Noting that the appropriate input is always generated by the online planning

algorithm if it exists and is assigned a specific nonzero execution time, it follows from

Theorem 3 of [4] that this method is probabilistically complete.

Embedded Planner Error Mitigation

The embedded planner naturally has a prescribed accuracy and, as a result, an error

that can be propagated as trajectories are concatenated together. Although this effect could

be troublesome, the framework of the RRT also allows for correction of errors from the

underlying planning algorithm. For the initial incarnation of the RRT [4], a constant input

was chosen from a finite set and was highly unlikely to control the system to the intended

final state. As a result, the actual final state (as found by integrating the system under the

input) is that which is stored as the new node state rather than the targeted state. Thus,

replanning from that node takes into account the error correction. When addressing the

hybrid system, the characteristics of these errors become important, as replanning can only

occur from nodes on reference trajectories. Thus, when integrating along the trajectory,

nodes would only be added to the tree where the state matched the trajectory primitive

within an acceptable error. While this methodology is useful in practice, it is not a complete

error correction, as the correction is only the projection of the total error onto the trajectory

primitive. It is notable that, although limitations of handling the error in this manner were

not quantified, this method was shown to be consistently effective for the example problem.

4 of 12



Asteroid Landing Example

The example described here is that of a spacecraft landing on a celestial body similar to

the asteroid Ida. We made simplifying assumptions by geometrically modeling the asteroid

as a 60 km long cylinder with radius 12 km and modeling the gravity as a Newtonian

point source. While it is known that the gravity field about a non-spherical body is more

complicated than the point source model, it is used here for simplicity. The algorithm could

then be extended to other gravity models when needed. The setup of the problem is seen

in Figure 2, where the initial position of the spacecraft is 18 km above the surface of the

asteroid with the final condition of “landing” at a point just off the surface on the other

side of the asteroid. Although this problem could have been cast in a rotating reference

frame, an inertial reference frame was chosen to show algorithm performance in relation to

time-varying obstacles and final conditions. Additionally, artificial constraints are imposed

to limit motion to Ida’s plane of rotation and an annulus with radii between 19.1 and 38.3

km of the center of mass. An upper bound of 46 hours was placed on the transfer time. The

embedded planner used in the InputFound routine was based on a dynamic programming

approach and can be found in [6]. Note that, rather than sample the reachable set, which

is computationally impractical to define, the sampling in the function RandomState was

done over free hybrid state space. Here, the reference trajectories in the hybrid system are

defined as the set of all circular orbits and the maneuvers are defined through an online local

planning algorithm. From a start point at [xT , vT ]T = [0, 30, 0,−0.0062, 0, 0]T (km, km/s),

the randomized algorithm grows a tree as seen in Figure 2, the result of 11 randomized

planner iterations. The results of these iterations are given in Table 1.

The “Greedy Loops” column in the table refers to the fact that the error correction men-

tioned in Section can cause a loop in the Extend routine. This occurred in step 11, where the

Extend algorithm looped an extra time to reach the inertial final state. The overall solution

was computed in 64.2 seconds, with a final state of [−26.2,−12, 0, 0.0026,−0.0057, 0]T (km,

km/s) at 12.3 hours. This is an error of .03 percent in position and .2 percent in velocity

5 of 12



from the final condition.

Of course, this is a planner based on randomized methods, and, as such, every solution

to this algorithm will be slightly different with different run times. A batch of 50 runs of the

aforementioned example were completed and yielded a median run time was 95.9 seconds

(on an 850 MHz Pentium III computer) with 78% of the cases taking less than 200 seconds.

The median number of randomized planner iterations was 11, with 90% taking less than 40

iterations. In every case tested, the algorithm successfully converged to a solution.

Conclusion

This paper presented a new variant of the Rapidly-exploring Random Tree (RRT) for use

with a motion primitive-based planner. By including time as a state it is able to accommodate

time-varying obstacles and final conditions. This method is shown to be probabilistically

complete, finding a solution with a probability of one as the number of iterations goes to

infinity. This method was then applied to the example of a spacecraft landing on an idealized

asteroid, for which analysis of a batch of runs was completed. This method showed itself

to be reliable with typical run times of less than 3 minutes. While the randomized method

shown is not optimal, there exist methods to refine the tree to increase optimality.

Acknowledgments

This research is supported in part by the U.S. Army Research Office under grant DAAD

190110716, and by NSF grant IIS-0118146. The authors also gratefully acknowledge Pro-

fessor Emilio Frazzoli as well as Professor Steven LaValle and his research group, whose

comments were beneficial in the development of this paper.

References

1 Latombe, J.-C., “Motion Planning: A Journey of Robots, Molecules, Digital Actors,

and Other Artifacts,” International Journal of Robotics Research, Vol. 18, No. 11, 1999,

pp. 1119–1128.

6 of 12



2 Bertsekas, D. P., Dynamic Programming and Optimal Control, Vol. 1 , Athena Scientific,

Belmont, MA, 2nd ed., 2001, Chap. 1, pp. 18–34.

3 Sundar, S. and Shiller, Z., “Optimal Obstacle Avoidance Based on the Hamilton-Jacobi-

Bellman Equation,” IEEE Transactions on Automatic Control , Vol. 13, No. 2, 1997,

pp. 305–310.

4 LaValle, S. M. and Kuffner, J. J., “Randomized Kinodynamic Planning,” International

Journal of Robotics Research, Vol. 20, No. 5, 2001, pp. 378–400.

5 Frazzoli, E., Daleh, M. A., and Feron, E., “Real-time motion planning for agile autonomous

vehicles,” AIAA Journal of Guidance, Control, and Dynamics , Vol. 25, No. 1, 2002,

pp. 116–129.

6 Cerven, W. T., Efficient Hierarchical Global Motion Planning for Autonomous Vehicles ,

Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, Oct. 2003.

7 of 12



List of Table Captions
Table 1: Randomized Planner Iterations: Extend Results

8 of 12



Iteration End Condition Greedy Loops

0 Collision 0
1 Not Reachable 0
2 Not Reachable 0
3 Collision 0
4 Not Reachable 0
5 Not Reachable 0
6 Collision 1
7 Collision 1
8 Not Reachable 0
9 Not Reachable 0
10 Collision 1
11 Connected 2

Table 1: 9 of 12



List of Figure Captions

Figure 1: Algorithm Pseudocode, (a) (top) Basic RRT loop, (b) (left) Fraz-
zoli Extend routine, and (c) (right) Proposed Extend routine; ρ is a predefined
metric.

Figure 2: Ida Landing, setup and relative target location(left), tree and final
path in rotating reference frame(right)

10 of 12



BuildRRT(xstart,xfinal)

1: tree.Initialize(xstart)
2: for iterations = 1 to maxiterations

3: xrand ← RandomState()
4: Extend(tree,xrand,xfinal)
5: if ρ(xrand, xfinal) < ε break loop
6: return tree

Extend(tree,x,xfinal) Extend(tree,x,xfinal)

1: for all xnear in SortedNodeList(tree,x) 1: xnear ← NearestNeighbor(tree,x)
2: if InputFound(xnear, x, u) 2: if InputFound(xnear, x, u)

and NoCollision(xnear, x, u) and NoCollision(xnear, x, u)
3: tree.AddChild(xnear, x, u) 3: tree.AddChildren(xnear, x, u)
4: if ρ(x, xfinal) < ε return success 4: if ρ(x, xfinal) < ε return connected

5: else let xnear = x, x = xfinal and goto 2: 5: else let xnear = x, x = xfinal and goto 2:
6: return failure 6: return not reachable or collision

Figure 1: 11 of 12



� � �������� � �� ���� ��� �

�

� � �

� ���

���

� �

	�


	�


Figure 2: 12 of 12


