Controlled Symmetries and Passive Walking

Mark W. Spong and Francesco Bullo

Index Terms

Bipedal Locomotion, Passive Walking, Group Action, SymmeLimit Cycle, Potential Energy

Shaping, Nonlinear Control.

Abstract

In this paper we investigate the relationship between neali control and passive walking in
bipedal locomotion for the general case ofradegree-of-freedom biped in three dimensional space. We
introduce the notion o€ontrolled Symmetryo capture the effect of the control input on the invariance
of the system Lagrangian under group action. We then shovexistence of a controlled symmetry
for general bipeds under the action $0(3) taking into account not only the kinetic energy but also
the potential energy and impact dynamics. We use this résuhow the existence of a nonlinear
control law that reproduces so-called passive gaits inu#get of the particular ground slope. Our
contribution in this paper is two-fold. First, our resultntains the first rigorous proof of the existence
of so-called passivity mimicking control laws that expligiaccounts for the impact dynamics. Second,
whereas previous papers have studied only planar bipetsawit without knees, our result is completely
general.

Our results can be viewed as direct extensions of severgigu®results, such gsassivity based
control [1], [2], virtual gravity [3] and virtual passive dynamic walkinff] from the planar case to

generaln-DOF robots in three dimensional space.

I. INTRODUCTION

The notion that it is possible to achieve walking gaits froractmanical bipeds powered only

by gravity has intrigued robotics researchers since thegaong work of McGeer more than
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a decade ago; see [5]. These so-called passive gaits maytdeadgplain the efficiency of
human and animal locomotion and provide insight into theetigyment of walking robots.
Several researchers have studied passive walking in plaaahanisms, with and without knees
and analyzed their passive gaits [5]—-[8]. The stable pasgaits found in these mechanisms
typically exist only for very shallow slopes and exhibit exhe sensitivity to slope magnitude.
For example, the compass gait biped studied in [8] exhil@tsod doubling bifurcations leading
to chaos as the ground slope is changed from aBowb about5°.

The first results in active feedback control that exploitgpas walking for planar bipeds
appeared in [1], [2], [6], and later in [9] and [10]. Passivalking in three-dimensions was
investigated by Kuo in [11]. Passive limit cycles were foundhe lateral plane as well as in the
sagittal plane. However, the lateral motion was unstabtehad to be compensated by feedback
control. More recently, true three dimensional passivekingl has been achieved by Collins,
et. al. in [12]. This remarkable biped has specially shamst fo stabilize passively the lateral
motion. It also has arms, whose motion is coupled to the lejaman order to stabilize the
yaw dynamics. The resulting gait is surprisingly anthropopiic.

Motivated in part by the above work showing that passive maglican be achieved in three
dimensions, we consider the general case of a three dimmaisiodegrees-of-freedom biped.
We show that changing the ground slope defines a group aatidineoconfiguration manifold of
the system and that both the kinetic energy and impact dyssaare invariant under this group
action. Hence, to achieve invariance of the passive limitas; one need only compensate the
potential energy of the system. We therefore introduce ariatl energy shaping controller that
ensures the closed-loop system is invariant under the slbgeging action. We refer to this as
a Controlled Symmetrgince the Lagrangian of the open-loop system is not invatiader this
group action.

The idea of potential energy shaping in robotics goes bactkdcaarly work of Takegaki and
Arimoto [13] and Koditschek [14]. More recently, potentiahergy shaping has been used in
other classes of mechanical systems, for example in [15][B8)d While the control algorithm
that we derive in this paper is ultimately a potential enesiggping control of the type considered
in these and other works, there are important differencpeagally with respect to the analysis
methods used. First, we do not seek to stabilize an equifibdonfiguration or relative equilibria

but rather to create a stable limit cycle. Second, the arsabfswalking must take into account
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the impact dynamics, which result in discontinuous charigesnergy and which means that
the system is fundamentally a hybrid dynamical system. @aityais showing that the impact
dynamics are invariant with respect to changes in the gralmge is an important part of the

result, which distinguishes this work from previous work lmped control.

[I. MATHEMATICAL BACKGROUND

We first review some basic background from differential getosn For more details we refer
the reader to [17], [18].

A. Group Actions, Invariance and Equivariance

Definition 2.1: Let Q be a smooth manifold and be a Lie group. Aeft actionof G onQ is
amap®: G x Q — (@ taking a pair(g, ¢) to ®(g,q) = ¢,(¢) € @ and satisfying for al € @

(i) ®.(q) = q, wheree is the identity element of7, and

(i) g, (Py,(q)) = Pyyg.(q)-

Definition 2.2: Let ;@ be the linear space of tangent vectorg at ), and let7’'Q = |, 7,Q
be the tangent bundle @j. If ® is a group action oK), we let7;,®, denote the tangent function
to ®, mappingT,Q onto Ty, (,) Q. This defines a mapping® : G x T'Q — T'Q which is called
the Lifted Action
A group action on( thus induces, in a natural way, a corresponding actioAl’én Likewise
a group action induces corresponding maps on other quemtigiuch as scalar functions over
@, one-forms, and covector fields. Such induced maps are tatan order to determine how
vector fields and their associated flows are affected by tbhapaction.

Definition 2.3: Let F: M — N be a smooth mapping between manifoldsand N and let
®: G x M — M be an action of the Lie Grou@ on M. Then we say that

(i) F is Invariant under the group action if' o ® = F, i.e., if, for all g € G andm € M
(F o ®,)(m) = F(m).

(i) F is Equivariantif there exists an associated group actibn G x N — N such that
Fo® = ®o F in the sense that for alj € G there existsj € G such that

(Fo®,)(m) = (; 0 F)(m) for all m € M
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Invariance is then seen to be a special case of equivariameesponding to the choice = I,
the identity transformation. For a vector field, considered as a mapping fro@ — TQ),

equivariance means that for alle G andq € Q

X((I)g(q)) :Tq(pg(X(Q))- (1)

We note that it is more common to refer to such a vector fieltheariant, since Equation (1)
can be equivalently expressed as
I = X.

where ®; denotes the pullback map. Henceforth we will use the terrariemt when referring
to group actions on vector fields. Similarly, a covector fieldn @ is invariant if, for allg € G
andqg € @

a(Py(q)) = T, Pg(alq)).

In addition, one can show that if a functidn ) — R is invariant (respectively, equivariant),
then so is its differentiallh [18]. The importance of these definitions for us is the follogv
result.

Lemma 2.4:Let the vector fieldX be ®-invariant, and lety : [0, 7] — @ be an integral curve
of X, i.e., the solution of the differential equation defined Kywith initial condition ~(0).

Then, for allg € G, the map®, o~ : [0,7] — @ is an integral curve forX.

I1l. DYNAMICS OF BIPEDAL LOCOMOTION

The act of walking involves both a swing phase and a stanceepfaa each leg as well as
impacts between the swing leg and ground, and possiblyrfiatéimpacts, such as a knee-strike,
which are due to mechanical constraints on the joints.

Consider am degree-of-freedom biped during the single-support phashawn in Figure 1.
Each joint of the robot is assumed to be revolute and to allosingle degree-of-freedom
rotation. Multi-degree-of-freedom joints, such as baltl aocket joints, can be represented as
multiple single degree of freedom joints with zero link Iémg in between. The stance leg,
which is in contact with the ground, has three degreeseddom relative to an inertial frame
(assuming no slipping). We can therefore Gge- SO(3) x T3 to represent the configuration
space of the biped, whei®O(3) is the Rotation Group ifR* and T"~3 is the (n — 3)-torus.
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In what follows, we shall consider the standard coordindtartcon T that identifies points
with angles in the interval0,2x). A configuration is then characterized by an ordered pair
q = (R,r) whereR € SO(3) is the orientation of the first link, and e T3 is the shape of the

multi-body chain, for example the angle of each joint refieesl to the previous joint. Given a

Stance Leg

Fig. 1. A General 3-D Biped in the single-support phase shgwhe stance leg (right leg) and swing leg (left leg).

configuration,g = (R,r) € SO(3) x T3, we represent a velocity vector ifi,Q via the pair
(R7'R,7) € s0(3) x R?, whereso(3) is the Lie Algebra of3 x 3 skew-symmetric matrices.

The advantage of this formalism is that only the first degrereedom is referenced to an
absolute or world frame. The remaining joint variablesezhlthe shape variablesare then
invariant under a change of basis of the world frame. Condigom spaces that can be written
as the Cartesian product of a Lie group and a shape spacefanedeto as principal bundles;
see [17].

Remark 3.1:In the case of am degrees-of-freedom planar mechanigpn= SO(2) x S and
we may identify@ with T" since elements ofO(2) can be represented by scalars (angles).
In the case of a serial link mechanism we may again ider@ifyith T" using the familiar

Denavit-Hartenberg variables to define the configuration
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A. Lagrangian Dynamics

In order to write the equations of motion for the walking miaehduring the single-support
phase, we introduce a parametrization of the configura@eeSO(3) x T3 which is equiv-
alent tog = (R, r) but minimal in the sense that only coordinates are required. For example,
we shall let(q!,...,q") be a coordinate chart whefg!, ¢>, ¢*) are Euler angles foBO(3)
and (¢*,...,q") are angles if0,2r) for T"~3. Accordingly, we can write the Euler-Lagrange

equations of motion as

doL oL n »
atog  og Y Bij(@u,  i=1,....n

j=1

where L(q,q) = K(q,¢) — V(q) is the difference of the kinetic enerdg: Q) — R and the
potential energy due to gravity]: @ — R, B, ; is thei-th component of thg-th force which
has magnitudes;. If we express the kinetic energy in the usual fashiorkég, ¢) = %QM(q)q,
whereM (q) is the symmetric, positive definitexn inertia matrix, the controlled Euler-Lagrange

equations can be written in matrix form as [19]

M(q)i+ C(q,4)q + g(q) = B(q)u, 2)

where M — 2C' is skew symmetric ang(q) = dV(q) is the vector of gravitational torques. We

assume the walking biped is fully actuated so thatithen matrix B in (2) is full rank for all

q.

B. Impact Dynamics

Impacts arise in two ways: from the foot/ground contact andhfinternal constraints such as
mechanical stops designed to prevent hyperextension d&nbes. For space reasons, we analyze
here only the impacts resulting from the foot/ground cont&mce the impacts resulting from
internal constraints are dependent only on the shape Vesiand their velocities, it follows
immediately that they are independent of the ground slopgkves will omit the details. With
regard to the foot/ground impact, we make the standard gssams, namely,

(i) impacts are perfectly inelastic (no bounce),

(i) transfer of support between swing and stance legs iirtaneous, i.e. the double support
phase is negligible,

(i) there is no slipping at the stance leg ground contact.
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Under these assumptions each impact results in an inseouarjump in velocities, hence a
discontinuity in kinetic energy, whereas the position ables are continuous through the impact;
see [20].

Let h: @ — R be the smooth function defining the foot height and assumefdioé/ground
impacts take place precisely whéiig) = 0. Assuming an impact has taken placeggt the
foot/ground contact imposes a number of holonomic cormgsain the translational and, possibly,
rotational motion of the foot. There constraints can be temitashot(q) = hioot(qo) for an
appropriate functiorhse: @ — R”. For bipeds with point foot contact, the dimensions two
in the planar2D case and three in the genefaD case. For bipeds with extended feetjs
three for planar bipeds and six in the most general case. Wadunctionsh and hso Can be
computed using the forward kinematic equations of the robot

The change in velocity at impact is found by integrating th#eELagrange equations over

the (infinitesimally small) duration of the impact:

aﬁ tt tt
— = F(q,t)dt 3
R ©
where F'(q, t) represents the contact force over the impact el{tent*|. Because
oL oK

we concludej(tt) — ¢(t7) = M(q)™* fttf F(q,t)dt. Second, we note that the contact forEe

is aligned with the constraint direction&hiot)1, - - -, d(htoot), SO that there exista function
f@) = (fu(1),..., fu(t)) such thatF(q, t) = 327", fi(t)d(htoot)i(q). Thus
+ v
g(t7) = q(t") — M(q)™ /tt (Z fi(t)d(hfoot)i(Q)> dt. 4)
i=1
Third, after the impact the quantities— (hot):(¢(t)) are constant and therefore
0= %(hfoot)i(Q(t)) = d(hoot)s - 4(t1), fori=1,...,v

The geometric interpretation of this fact is tljét™) is perpendicular with respect to tié-inner
product to the vectord/(q)'d(hiwot);- This fact shows that the right-hand side of equation (4)
is an orthogonal sum and therefajg™) equals the)M (¢)-orthogonal projection ofi(¢~) onto
the feasible spacév € T,Q)| d(hioot)i(q) -v =0, i =1,...,v}. We refer the reader to [21] for

1This is a standard fact from constrained Lagrangian sysféiis
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more details on this characterization of ideal impact dyicamn summary, the impact dynamics

may be represented as
(") = Py(q(t7)), (5)

where theplastic projection?, for the impact occurring ak(q) = 0 is the M(q)-orthogonal
projection ofg(t~) onto {v € T,Q| d(htoot)i(q) - v =0, i = 1,...,v}. Putting these previous

notions together leads to a hybrid dynamical system

49 9L — Blgu.  for hig) #0

q(t7) = qt7) (6)
for h(q) =0

q(t") = P(q(t7))
IV. MAIN RESULTS

A. Slope Changing Symmetry

Let us now consider the effect of symmetries on Lagrangiamadycs. Letd : G x Q — Q

be a group action and suppose that forga#t G

L(q,q) = E(q)g(q)7Tq(I)g(4)) (7)

i.e., the Lagrangian is invariant under the group actlorSuch a Lagrangian system is said to
possess &ymmetrywith respect tod.

A consequence of symmetry of the Lagrangian is that the vdigtid X associated with the
Lagrangian dynamics is invariant with respectdtcand hence its integral curves, i.e. solutions
of the Euler-Lagrange equations of motion are preservedrdioty to Lemma (2.4). See [17].

We are interested in deriving control laws that preservereate symmetries with respect to
group actions. For this reason we introduce the notioQaftrolled Symmetras follows.

Definition 4.1: The Lagrangian system (2) is said to possesSoatrolled Symmetryvith
respect to a group actiod if, for eachg € G, there exists a control input = u,(q, ¢), which

depends oy, such that

——.———B(q)ug:——.—— (8)

where (¢, ) = £(®,(q). T,8,(d).
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It immediately follows that there is a one-one correspordepetween solutions of the closed

loop dynamics
doL oL

iAoq  dg B(q)ug 9)
and solutions of
doL, 0L,

We show next how to create a controlled symmetry with= SO(3) representing changing
ground slopes. Including the analysis of the impact dynamiidl complete the main result. Let
Y ={0,{e1, ez, e3}} be an inertial reference frame. Assume the painis fixed on the ground
and assume the ground is defined by a plan&inGiven the coordinates € R? of a point on
the ground, changing the ground slope isSn(3)-group action(A, x) — Az. Assuming that
the contact point for the stance leg is at the origiof X, we define a corresponding actiénof
SO(3) on the configuration spae@ = SO(3) x T"~3 that mapg 4, q) = (A, (R,7)) € SO(3)xQ
into @ by

O(A,(R,r)) = Pa(R,7) = (AR, 7). (11)

This group action is illustrated in Figure 2.

lg

€3

Fig. 2. A planar illustration of the slope-changing actistope and walking biped are affected, whereas the inegfakence

frame and gravity remain unchanged.

Next, let us write coordinate expressions for the liftedaci'®: SO(3) x T'Q — T'Q. Given
A € SO(3), one can easily see thalR)~'(AR) = R~'R. Therefore, for allj = (R"'R,7)

the lifted action satisfies

T®a(q,9) = (alq), Ty®a(q)) = (Palg), 4)- (12)
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10

Putting these ideas together, we can state the followinggsition.
Proposition 4.2: The kinetic energyC: T'(Q — R is invariant under the lifted slope changing
action, that is, for allA € SO(3),
KoTdy =K. (13)

In terms of the generalized coordinates), this meansC(q, ¢) = K(Pa(q), q).

Proof: The kinetic energyC of a single rigid body with center of mass at positiBre R?
is the sum of its translational and rotational kinetic eresgs

1 ... 1
K= §mPTP + §wTIw (14)

wherew € R3 is the body angular velocity, anflis the inertia matrix. It is easily shown that
both inner products"” P andw”Iw are independent of the world coordinate system, i.e., are
invariant under a rotation of the world frame (see [19] fag ttetails). In the general case of an
n degrees-of-freedom biped with configuratipn= (R, ), only the first degree-of-freedom is
referenced to the world frame. Since its kinetic energy v&iiiant under rotations of the world

frame, it follows that the kinetic energy of the entire systes invariant. [ |

B. Equivariance of the kinematics and impacts
Let

fp(Q)
fo(q)

be the forward kinematics map [19] that associates to eaofigtmationq € Q of the biped

flq) =

the position and orientation of the tip of the swing leg. Ingncases the maj(q) defining the

foot/ground contact will be one or more componentsf¢f). It follows, for A € SO(3), that

Afp(q) = Afp(R,1) = fp(AR,7) = f,(®a(q))- (15)

hence the forward position kinematics mgpis equivariant with respect t60(3). A similar
relation can be shown for the forward orientation kinensaltict is omitted here for space reasons.
An important consequence is that the functidig) defining the foot/ground impact constraint,
that we used previously to determine the impact equatienkkewise equivariant with respect
to SO(3). Because the forward kinematic map as well as the grounderdre equivariant,

the distance of the swing leg to the groundngariant This concept is illustrated in Figure 3.
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11

Fig. 3. lllustrating invariance of the distance of the tiptbé swing leg to the ground under the slope-changing action.

Next, recall that theplastic projectionP, for the impacth(q) = 0 is the orthogonal projection
with respect tolM onto {v € T,Q| dhi(q) -v =0i =1,...,v}. Becauseh has been shown to
be equivariant with respect t80(3) and M was previously shown to be invariant under this
action, we can immediately state

Lemma 4.3:The projection operatoP, defining the velocity change at impact is equivariant
with respect toSO(3), i.e.

T (Py(v)) = Payq) (TPa(v))

for all v € T,Q.
As a consequence we have
Corollary 4.4: The velocity change;™ — ¢, due to the ideal foot/ground impact is invariant

under the above slope changing action.

C. Potential Energy Shaping

We consider the mechanical control system governed by thealed Euler-Lagrange equa-
tions (2) and by the plastic impact dynamics in equation (. have shown invariance of the
kinetic energy and equivariance of the impact dynamics wétpect to the action ofO(3).
Therefore, in order to generate a controlled symmetry aedguve the solutions of the system
under impacts, we need only compensate the potential en@rgymain result is thus expressed

as
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12

Theorem 4.5:Letn : [0,7] — @ be a solution trajectory to equation (2)«@at= 0 undergoing

impacts according to equation (5). Ldte SO(3) and define

5 (V@ = viea@)). (16)

Then the trajectoryb 4 on : [0,7] — @ is a solution for the closed-loop system, that is, for the

ua(q) = B '(q)

controlled walking machine characterized by (2) and (5).
Proof: Substituting the control law (16) into (2) and using invada of the kinetic energy

under the group action we know that during the smooth ewwiugsingle-support phase)
——— —— =0 a7

where L 4(q, ) = L(Pa(q), T,24(¢)). Thus, ifn is a solution of (2) withu = 0 in the absence
of impacts, thenb 4, o7 is a solution of (17) in the absence of impacts. Furthermibre jmpact
dynamics (5) being equivariant implies thBf, o ) is a solution for the closed-loop system even
through impacts. [ |

In particular, Theorem 4.5 tells us that any limit cycle thaists for the passive walker for one
ground slope can be reproduced by the active control lawf@rGny other ground slope. Also,
if (g0, go) lies in the basin of attraction of the passive limit cyclesrtid 4(qo), T,,P4(do)) lies in
the basin of attraction of the closed loop system. Thus, weahte to determine the appropriate
initial conditions on any slope given one initial condititimat leads to a passive gait on one

particular slope.

V. EXAMPLE AND DISCUSSION

Space limitations preclude the inclusion of detailed satiah results. We present here some
simulations of the compass gait biped from [6], whose dyrarare sufficiently well known that
we omit them here. The compass gait biped studied is equividea double pendulum with
point masses concentrated at the hip and legs. The compiasspgal of [6] exhibits a passive
limit cycle for a three degree ground slope. Figure 4 showst Icycles generated using the
above potential energy shaping control strategy on levaligel and on slopes of 10-degrees,
for which no passive limit cycles exist. As expected, thetlioycles are shifted in position but

otherwise identical.
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I
+ 10 degree downslope
— — 0 degree slope
25+ —— 10 degree upslope

-15f

2 I I I I I
-0.4 -0.2 e0 0.2 0.4 0.6

Fig. 4. Limit Cycle (velocity vs. position for one leg) forrde distinct slopes - level ground;10-degrees and-10-degrees.

A. Practical Considerations and Conclusions

This paper shows how active feedback control can completetpve the sensitivity of passive
limit cycles to ground slope. As with all theoretical resulpractical implementation on real
bipeds requires consideration of several factors, suchi@®h, actuator saturation, sensing of
the slope angle, parametric uncertainty, and a host of afiects. Some of these effects, for
example saturation, will reduce the range of slopes for Wwhier control can be used. We discuss
here only the practical considerations that arise from #uot that the foot/ground constraint is
unilateral, i.e. the foot can push but not pull on the grouramely constraints on the magnitude
and direction of the ground reaction forces and constraintthe Zero Moment Point (ZMP)

First, the reaction force normal to the slope should be adndiyected downward in order to
maintain the foot/ground contact. Figure 5 shows the growadtion forces for a ten degree
slope showing that the normal force applied to the groundostpe and bounded away from
zero. The forces are computed using the recursive NewtdéerEormula from [19]. Also, the
ground reaction force tangential to the slope is balanceithéyriction force. Insufficient friction
will cause the foot to slip. Figure 5 also shows the tangéfua@t/ground force. These constraints

cannot be guaranteed a priori for an arbitrary ground seréaw slope, but can be checked via

2The Zero Moment Point is commonly called the Center-of-8uies (CoP) in the biomechanics literature

February 26, 2005 DRAFT



14

simulation to determine a possible range of allowable Hapeen the material properties of the

foot/ground contact.

slope: 10 de
P 9 Horizontal Reaction Force

20 T T T

1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Vertical Reaction Force
220 T T \

215

210

z 205

200

195

1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

190
0

Fig. 5. Ground Reaction Forces and Joint Torques for a 1@ede§lope

The second constraint deals with the Zero Moment Point (ZMiR)ch is the resultant of the
normal forces acting on the foot during contact with the gcbulf the ZMP reaches the edge
of the foot support polygon during the step, the foot will imetp rotate off the ground before
the swing leg impacts (see [22] for details). Such foot rotamay or may not be part of the
passive limit cycle. However, this phenomenon obviouslyetels on the size and shape of the

foot and is therefore outside the scope of the present articl
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