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Abstract

In this paper we investigate the relationship between nonlinear control and passive walking in

bipedal locomotion for the general case of ann degree-of-freedom biped in three dimensional space. We

introduce the notion ofControlled Symmetryto capture the effect of the control input on the invariance

of the system Lagrangian under group action. We then show theexistence of a controlled symmetry

for general bipeds under the action ofSO(3) taking into account not only the kinetic energy but also

the potential energy and impact dynamics. We use this resultto show the existence of a nonlinear

control law that reproduces so-called passive gaits independent of the particular ground slope. Our

contribution in this paper is two-fold. First, our result contains the first rigorous proof of the existence

of so-called passivity mimicking control laws that explicitly accounts for the impact dynamics. Second,

whereas previous papers have studied only planar bipeds with and without knees, our result is completely

general.

Our results can be viewed as direct extensions of several previous results, such aspassivity based

control [1], [2], virtual gravity [3] and virtual passive dynamic walking[4] from the planar case to

generaln-DOF robots in three dimensional space.

I. INTRODUCTION

The notion that it is possible to achieve walking gaits from mechanical bipeds powered only

by gravity has intrigued robotics researchers since the pioneering work of McGeer more than
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a decade ago; see [5]. These so-called passive gaits may helpto explain the efficiency of

human and animal locomotion and provide insight into the development of walking robots.

Several researchers have studied passive walking in planarmechanisms, with and without knees

and analyzed their passive gaits [5]–[8]. The stable passive gaits found in these mechanisms

typically exist only for very shallow slopes and exhibit extreme sensitivity to slope magnitude.

For example, the compass gait biped studied in [8] exhibits period doubling bifurcations leading

to chaos as the ground slope is changed from about3◦ to about5◦.

The first results in active feedback control that exploit passive walking for planar bipeds

appeared in [1], [2], [6], and later in [9] and [10]. Passive walking in three-dimensions was

investigated by Kuo in [11]. Passive limit cycles were foundin the lateral plane as well as in the

sagittal plane. However, the lateral motion was unstable and had to be compensated by feedback

control. More recently, true three dimensional passive walking has been achieved by Collins,

et. al. in [12]. This remarkable biped has specially shaped feet to stabilize passively the lateral

motion. It also has arms, whose motion is coupled to the leg motion in order to stabilize the

yaw dynamics. The resulting gait is surprisingly anthropomorphic.

Motivated in part by the above work showing that passive walking can be achieved in three

dimensions, we consider the general case of a three dimensional n degrees-of-freedom biped.

We show that changing the ground slope defines a group action on the configuration manifold of

the system and that both the kinetic energy and impact dynamics are invariant under this group

action. Hence, to achieve invariance of the passive limit cycles, one need only compensate the

potential energy of the system. We therefore introduce a potential energy shaping controller that

ensures the closed-loop system is invariant under the slope-changing action. We refer to this as

a Controlled Symmetrysince the Lagrangian of the open-loop system is not invariant under this

group action.

The idea of potential energy shaping in robotics goes back tothe early work of Takegaki and

Arimoto [13] and Koditschek [14]. More recently, potentialenergy shaping has been used in

other classes of mechanical systems, for example in [15] and[16]. While the control algorithm

that we derive in this paper is ultimately a potential energyshaping control of the type considered

in these and other works, there are important differences especially with respect to the analysis

methods used. First, we do not seek to stabilize an equilibrium configuration or relative equilibria

but rather to create a stable limit cycle. Second, the analysis of walking must take into account
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the impact dynamics, which result in discontinuous changesin energy and which means that

the system is fundamentally a hybrid dynamical system. Our analysis showing that the impact

dynamics are invariant with respect to changes in the groundslope is an important part of the

result, which distinguishes this work from previous work onbiped control.

II. M ATHEMATICAL BACKGROUND

We first review some basic background from differential geometry. For more details we refer

the reader to [17], [18].

A. Group Actions, Invariance and Equivariance

Definition 2.1: Let Q be a smooth manifold andG be a Lie group. Aleft actionof G on Q is

a mapΦ: G × Q → Q taking a pair(g, q) to Φ(g, q) = Φg(q) ∈ Q and satisfying for allq ∈ Q

(i) Φe(q) = q, wheree is the identity element ofG, and

(ii) Φg1
(Φg2

(q)) = Φg1g2
(q).

Definition 2.2: Let TqQ be the linear space of tangent vectors atq ∈ Q, and letTQ =
⋃

q TqQ

be the tangent bundle ofQ. If Φ is a group action onQ, we letTqΦg denote the tangent function

to Φg mappingTqQ ontoTΦg(q)Q. This defines a mappingTΦ : G×TQ → TQ which is called

the Lifted Action.

A group action onQ thus induces, in a natural way, a corresponding action onTQ. Likewise

a group action induces corresponding maps on other quantities, such as scalar functions over

Q, one-forms, and covector fields. Such induced maps are important in order to determine how

vector fields and their associated flows are affected by the group action.

Definition 2.3: Let F : M → N be a smooth mapping between manifoldsM andN and let

Φ : G × M → M be an action of the Lie GroupG on M . Then we say that

(i) F is Invariant under the group action ifF ◦ Φ = F , i.e., if, for all g ∈ G andm ∈ M

(F ◦ Φg)(m) = F (m).

(ii) F is Equivariant if there exists an associated group actionΦ̃ : G × N → N such that

F ◦ Φ = Φ̃ ◦ F in the sense that for allg ∈ G there exists̃g ∈ G̃ such that

(F ◦ Φg)(m) = (Φ̃g̃ ◦ F )(m) for all m ∈ M
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Invariance is then seen to be a special case of equivariance corresponding to the choicẽΦ = I,

the identity transformation. For a vector fieldX, considered as a mapping fromQ → TQ,

equivariance means that for allg ∈ G andq ∈ Q

X(Φg(q)) = TqΦg(X(q)). (1)

We note that it is more common to refer to such a vector field asinvariant, since Equation (1)

can be equivalently expressed as

Φ∗

gX = X.

whereΦ∗

g denotes the pullback map. Henceforth we will use the term invariant when referring

to group actions on vector fields. Similarly, a covector fieldα on Q is invariant if, for allg ∈ G

andq ∈ Q

α(Φg(q)) = T ∗

q Φg(α(q)).

In addition, one can show that if a functionh : Q → R is invariant (respectively, equivariant),

then so is its differentialdh [18]. The importance of these definitions for us is the following

result.

Lemma 2.4:Let the vector fieldX beΦ-invariant, and letγ : [0, T ] → Q be an integral curve

of X, i.e., the solution of the differential equation defined byX with initial condition γ(0).

Then, for allg ∈ G, the mapΦg ◦ γ : [0, T ] → Q is an integral curve forX.

III. D YNAMICS OF BIPEDAL LOCOMOTION

The act of walking involves both a swing phase and a stance phase for each leg as well as

impacts between the swing leg and ground, and possibly “internal” impacts, such as a knee-strike,

which are due to mechanical constraints on the joints.

Consider ann degree-of-freedom biped during the single-support phase as shown in Figure 1.

Each joint of the robot is assumed to be revolute and to allow asingle degree-of-freedom

rotation. Multi-degree-of-freedom joints, such as ball and socket joints, can be represented as

multiple single degree of freedom joints with zero link lengths in between. The stance leg,

which is in contact with the ground, has three degrees-of-freedom relative to an inertial frame

(assuming no slipping). We can therefore useQ = SO(3)× T
n−3 to represent the configuration

space of the biped, whereSO(3) is the Rotation Group inR3 and T
n−3 is the (n − 3)-torus.
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In what follows, we shall consider the standard coordinate chart on T that identifies points

with angles in the interval[0, 2π). A configuration is then characterized by an ordered pair

q = (R, r) whereR ∈ SO(3) is the orientation of the first link, andr ∈ T
n−3 is the shape of the

multi-body chain, for example the angle of each joint referenced to the previous joint. Given a

Swing Leg

Stance Leg

Fig. 1. A General 3-D Biped in the single-support phase showing the stance leg (right leg) and swing leg (left leg).

configuration,q = (R, r) ∈ SO(3) × T
n−3, we represent a velocity vector inTqQ via the pair

(R−1Ṙ, ṙ) ∈ so(3) × R
3, whereso(3) is the Lie Algebra of3 × 3 skew-symmetric matrices.

The advantage of this formalism is that only the first degree-of-freedom is referenced to an

absolute or world frame. The remaining joint variables, called the shape variables, are then

invariant under a change of basis of the world frame. Configuration spaces that can be written

as the Cartesian product of a Lie group and a shape space are referred to as principal bundles;

see [17].

Remark 3.1:In the case of ann degrees-of-freedom planar mechanism,Q = SO(2)× S and

we may identifyQ with T
n since elements ofSO(2) can be represented by scalars (angles).

In the case of a serial link mechanism we may again identifyQ with T
n using the familiar

Denavit-Hartenberg variables to define the configurationq.
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A. Lagrangian Dynamics

In order to write the equations of motion for the walking machine during the single-support

phase, we introduce a parametrization of the configuration spaceSO(3)×T
n−3 which is equiv-

alent toq = (R, r) but minimal, in the sense that onlyn coordinates are required. For example,

we shall let (q1, . . . , qn) be a coordinate chart where(q1, q2, q3) are Euler angles forSO(3)

and (q4, . . . , qn) are angles in[0, 2π) for T
n−3. Accordingly, we can write the Euler-Lagrange

equations of motion as

d

dt

∂L

∂q̇i
−

∂L

∂qi
=

n
∑

j=1

Bi,j(q), uj, i = 1, . . . , n

whereL(q, q̇) = K(q, q̇) − V(q) is the difference of the kinetic energyK : TQ → R and the

potential energy due to gravity,V : Q → R, Bi,j is the i-th component of thej-th force which

has magnitudeuj. If we express the kinetic energy in the usual fashion asK(q, q̇) = 1
2
q̇M(q)q̇,

whereM(q) is the symmetric, positive definiten×n inertia matrix, the controlled Euler-Lagrange

equations can be written in matrix form as [19]

M(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)u, (2)

whereṀ − 2C is skew symmetric andg(q) = dV(q) is the vector of gravitational torques. We

assume the walking biped is fully actuated so that then× n matrix B in (2) is full rank for all

q.

B. Impact Dynamics

Impacts arise in two ways: from the foot/ground contact and from internal constraints such as

mechanical stops designed to prevent hyperextension of theknees. For space reasons, we analyze

here only the impacts resulting from the foot/ground contact. Since the impacts resulting from

internal constraints are dependent only on the shape variables and their velocities, it follows

immediately that they are independent of the ground slope and we will omit the details. With

regard to the foot/ground impact, we make the standard assumptions, namely,

(i) impacts are perfectly inelastic (no bounce),

(ii) transfer of support between swing and stance legs is instantaneous, i.e. the double support

phase is negligible,

(iii) there is no slipping at the stance leg ground contact.
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Under these assumptions each impact results in an instantaneous jump in velocities, hence a

discontinuity in kinetic energy, whereas the position variables are continuous through the impact;

see [20].

Let h : Q → R be the smooth function defining the foot height and assume that foot/ground

impacts take place precisely whenh(q) = 0. Assuming an impact has taken place atq0, the

foot/ground contact imposes a number of holonomic constraints on the translational and, possibly,

rotational motion of the foot. There constraints can be written ashfoot(q) = hfoot(q0) for an

appropriate functionhfoot : Q → R
ν . For bipeds with point foot contact, the dimensionν is two

in the planar2D case and three in the general3D case. For bipeds with extended feet,ν is

three for planar bipeds and six in the most general case. The two functionsh andhfoot can be

computed using the forward kinematic equations of the robot.

The change in velocity at impact is found by integrating the Euler-Lagrange equations over

the (infinitesimally small) duration of the impact:

∂L

∂q̇

∣

∣

∣

t+

t−
=

∫ t+

t−
F (q, t)dt (3)

whereF (q, t) represents the contact force over the impact event[t−, t+]. Because

∂L

∂q̇
=

∂K

∂q̇
= M(q)q̇

we concludeq̇(t+) − q̇(t−) = M(q)−1
∫ t+

t−
F (q, t)dt. Second, we note that the contact forceF

is aligned with the constraint directionsd(hfoot)1, . . . , d(hfoot)ν so that there exist1 a function

f(t) = (f1(t), . . . , fν(t)) such thatF (q, t) =
∑ν

i=1 fi(t)d(hfoot)i(q). Thus

q̇(t−) = q̇(t+) − M(q)−1

∫ t+

t−

(

ν
∑

i=1

fi(t)d(hfoot)i(q)

)

dt. (4)

Third, after the impact the quantitiest 7→ (hfoot)i(q(t)) are constant and therefore

0 =
d

dt
(hfoot)i(q(t)) = d(hfoot)i · q̇(t

+), for i = 1, . . . , ν.

The geometric interpretation of this fact is thatq̇(t+) is perpendicular with respect to theM-inner

product to the vectorsM(q)−1d(hfoot)i. This fact shows that the right-hand side of equation (4)

is an orthogonal sum and thereforeq̇(t+) equals theM(q)-orthogonal projection oḟq(t−) onto

the feasible space{v ∈ TqQ| d(hfoot)i(q) · v = 0, i = 1, . . . , ν}. We refer the reader to [21] for

1This is a standard fact from constrained Lagrangian systems[17].
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more details on this characterization of ideal impact dynamics. In summary, the impact dynamics

may be represented as

q̇(t+) = Pq(q̇(t
−)), (5)

where theplastic projectionPq for the impact occurring ath(q) = 0 is the M(q)-orthogonal

projection of q̇(t−) onto {v ∈ TqQ| d(hfoot)i(q) · v = 0, i = 1, . . . , ν}. Putting these previous

notions together leads to a hybrid dynamical system

d
dt

∂L
∂q̇

− ∂L
∂q

= B(q)u, for h(q) 6= 0

q(t+) = q(t−)

for h(q) = 0

q̇(t+) = Pq(q̇(t
−))

(6)

IV. M AIN RESULTS

A. Slope Changing Symmetry

Let us now consider the effect of symmetries on Lagrangian dynamics. LetΦ : G × Q → Q

be a group action and suppose that for allg ∈ G

L(q, q̇) = L(Φg(q), TqΦg(q̇)) (7)

i.e., the Lagrangian is invariant under the group actionΦ. Such a Lagrangian system is said to

possess aSymmetrywith respect toΦ.

A consequence of symmetry of the Lagrangian is that the vector field X associated with the

Lagrangian dynamics is invariant with respect toΦ and hence its integral curves, i.e. solutions

of the Euler-Lagrange equations of motion are preserved according to Lemma (2.4). See [17].

We are interested in deriving control laws that preserve or create symmetries with respect to

group actions. For this reason we introduce the notion ofControlled Symmetryas follows.

Definition 4.1: The Lagrangian system (2) is said to possess aControlled Symmetrywith

respect to a group actionΦ if, for eachg ∈ G, there exists a control inputu = ug(q, q̇), which

depends ong, such that

d

dt

∂L

∂q̇
−

∂L

∂q
− B(q)ug =

d

dt

∂Lg

∂q̇
−

∂Lg

∂q
(8)

whereLg(q, q̇) = L(Φg(q), TqΦg(q̇)).
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It immediately follows that there is a one-one correspondence between solutions of the closed

loop dynamics
d

dt

∂L

∂q̇
−

∂L

∂q
= B(q)ug (9)

and solutions of
d

dt

∂Lg

∂q̇
−

∂Lg

∂q
= 0. (10)

We show next how to create a controlled symmetry withG = SO(3) representing changing

ground slopes. Including the analysis of the impact dynamics will complete the main result. Let

Σ = {O, {e1, e2, e3}} be an inertial reference frame. Assume the pointO is fixed on the ground

and assume the ground is defined by a plane inR
3. Given the coordinatesx ∈ R

3 of a point on

the ground, changing the ground slope is anSO(3)-group action(A, x) 7→ Ax. Assuming that

the contact point for the stance leg is at the originO of Σ, we define a corresponding actionΦ of

SO(3) on the configuration spaceQ = SO(3)×T
n−3 that maps(A, q) = (A, (R, r)) ∈ SO(3)×Q

into Q by

Φ(A, (R, r)) = ΦA(R, r) = (AR, r) . (11)

This group action is illustrated in Figure 2.

��

��

�

�

�
��

��

	




Fig. 2. A planar illustration of the slope-changing action:slope and walking biped are affected, whereas the inertial reference

frame and gravity remain unchanged.

Next, let us write coordinate expressions for the lifted action TΦ: SO(3)×TQ → TQ. Given

A ∈ SO(3), one can easily see that(AR)−1 ˙(AR) = R−1Ṙ. Therefore, for allq̇ = (R−1Ṙ, ṙ)

the lifted action satisfies

TΦA(q, q̇) = (ΦA(q), TqΦA(q̇)) = (ΦA(q), q̇). (12)
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Putting these ideas together, we can state the following proposition.

Proposition 4.2:The kinetic energyK : TQ → R is invariant under the lifted slope changing

action, that is, for allA ∈ SO(3),

K ◦ TΦA = K. (13)

In terms of the generalized coordinates(q, q̇), this meansK(q, q̇) = K(ΦA(q), q̇).

Proof: The kinetic energyK of a single rigid body with center of mass at positionP ∈ R
3

is the sum of its translational and rotational kinetic energies as

K =
1

2
mṖ T Ṗ +

1

2
ωT Iω (14)

whereω ∈ R
3 is the body angular velocity, andI is the inertia matrix. It is easily shown that

both inner productsṖ T Ṗ and ωT Iω are independent of the world coordinate system, i.e., are

invariant under a rotation of the world frame (see [19] for the details). In the general case of an

n degrees-of-freedom biped with configurationq = (R, r), only the first degree-of-freedom is

referenced to the world frame. Since its kinetic energy is invariant under rotations of the world

frame, it follows that the kinetic energy of the entire system is invariant.

B. Equivariance of the kinematics and impacts

Let

f(q) =





fp(q)

fO(q)





be the forward kinematics map [19] that associates to each configurationq ∈ Q of the biped

the position and orientation of the tip of the swing leg. In most cases the maph(q) defining the

foot/ground contact will be one or more components off(q). It follows, for A ∈ SO(3), that

Afp(q) = Afp(R, r) = fp(AR, r) = fp(ΦA(q)). (15)

hence the forward position kinematics mapfp is equivariant with respect toSO(3). A similar

relation can be shown for the forward orientation kinematics but is omitted here for space reasons.

An important consequence is that the functionh(q) defining the foot/ground impact constraint,

that we used previously to determine the impact equations, is likewise equivariant with respect

to SO(3). Because the forward kinematic map as well as the ground surface are equivariant,

the distance of the swing leg to the ground isinvariant. This concept is illustrated in Figure 3.
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�

Fig. 3. Illustrating invariance of the distance of the tip ofthe swing leg to the ground under the slope-changing action.

Next, recall that theplastic projectionPq for the impacth(q) = 0 is the orthogonal projection

with respect toM onto {v ∈ TqQ| dhi(q) · v = 0 i = 1, . . . , ν}. Becauseh has been shown to

be equivariant with respect toSO(3) and M was previously shown to be invariant under this

action, we can immediately state

Lemma 4.3:The projection operatorPq defining the velocity change at impact is equivariant

with respect toSO(3), i.e.

TΦA (Pq(v)) = PΦA(q) (TΦA(v)) ,

for all v ∈ TqQ.

As a consequence we have

Corollary 4.4: The velocity change,̇q+ − q̇−, due to the ideal foot/ground impact is invariant

under the above slope changing action.

C. Potential Energy Shaping

We consider the mechanical control system governed by the controlled Euler-Lagrange equa-

tions (2) and by the plastic impact dynamics in equation (5).We have shown invariance of the

kinetic energy and equivariance of the impact dynamics withrespect to the action ofSO(3).

Therefore, in order to generate a controlled symmetry and preserve the solutions of the system

under impacts, we need only compensate the potential energy. Our main result is thus expressed

as
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Theorem 4.5:Let η : [0, T ] → Q be a solution trajectory to equation (2) atu = 0 undergoing

impacts according to equation (5). LetA ∈ SO(3) and define

uA(q) = B−1(q)
∂

∂q

(

V(q) − V(ΦA(q))
)

. (16)

Then the trajectoryΦA ◦ η : [0, T ] → Q is a solution for the closed-loop system, that is, for the

controlled walking machine characterized by (2) and (5).

Proof: Substituting the control law (16) into (2) and using invariance of the kinetic energy

under the group action we know that during the smooth evolution (single-support phase)

d

dt

∂LA

∂q̇
−

∂LA

∂q
= 0 (17)

whereLA(q, q̇) = L(ΦA(q), TqΦA(q̇)). Thus, if η is a solution of (2) withu = 0 in the absence

of impacts, thenΦA ◦ η is a solution of (17) in the absence of impacts. Furthermore,the impact

dynamics (5) being equivariant implies thatΦA ◦ η is a solution for the closed-loop system even

through impacts.

In particular, Theorem 4.5 tells us that any limit cycle thatexists for the passive walker for one

ground slope can be reproduced by the active control law (16)for any other ground slope. Also,

if (q0, q̇0) lies in the basin of attraction of the passive limit cycle, then(ΦA(q0), Tq0
ΦA(q̇0)) lies in

the basin of attraction of the closed loop system. Thus, we are able to determine the appropriate

initial conditions on any slope given one initial conditionthat leads to a passive gait on one

particular slope.

V. EXAMPLE AND DISCUSSION

Space limitations preclude the inclusion of detailed simulation results. We present here some

simulations of the compass gait biped from [6], whose dynamics are sufficiently well known that

we omit them here. The compass gait biped studied is equivalent to a double pendulum with

point masses concentrated at the hip and legs. The compass gait biped of [6] exhibits a passive

limit cycle for a three degree ground slope. Figure 4 shows limit cycles generated using the

above potential energy shaping control strategy on level ground and on slopes of±10-degrees,

for which no passive limit cycles exist. As expected, the limit cycles are shifted in position but

otherwise identical.
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θ
n

d/
dt

(θ
n)

10 degree downslope
0 degree slope
10 degree upslope

Fig. 4. Limit Cycle (velocity vs. position for one leg) for three distinct slopes - level ground,+10-degrees and−10-degrees.

A. Practical Considerations and Conclusions

This paper shows how active feedback control can completelyremove the sensitivity of passive

limit cycles to ground slope. As with all theoretical results, practical implementation on real

bipeds requires consideration of several factors, such as friction, actuator saturation, sensing of

the slope angle, parametric uncertainty, and a host of othereffects. Some of these effects, for

example saturation, will reduce the range of slopes for which our control can be used. We discuss

here only the practical considerations that arise from the fact that the foot/ground constraint is

unilateral, i.e. the foot can push but not pull on the ground,namely constraints on the magnitude

and direction of the ground reaction forces and constraintson the Zero Moment Point (ZMP)2.

First, the reaction force normal to the slope should be always directed downward in order to

maintain the foot/ground contact. Figure 5 shows the groundreaction forces for a ten degree

slope showing that the normal force applied to the ground is positive and bounded away from

zero. The forces are computed using the recursive Newton-Euler formula from [19]. Also, the

ground reaction force tangential to the slope is balanced bythe friction force. Insufficient friction

will cause the foot to slip. Figure 5 also shows the tangential foot/ground force. These constraints

cannot be guaranteed a priori for an arbitrary ground surface and slope, but can be checked via

2The Zero Moment Point is commonly called the Center-of-Pressure (CoP) in the biomechanics literature
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simulation to determine a possible range of allowable slopes given the material properties of the

foot/ground contact.

0 1000 2000 3000 4000 5000 6000 7000 8000
−60

−40

−20

0

20

N

Horizontal Reaction Force

0 1000 2000 3000 4000 5000 6000 7000 8000
190

195

200

205

210

215

220

N

Vertical Reaction Force

slope: 10 deg 

Fig. 5. Ground Reaction Forces and Joint Torques for a 10-degree Slope

The second constraint deals with the Zero Moment Point (ZMP), which is the resultant of the

normal forces acting on the foot during contact with the ground. If the ZMP reaches the edge

of the foot support polygon during the step, the foot will begin to rotate off the ground before

the swing leg impacts (see [22] for details). Such foot rotation may or may not be part of the

passive limit cycle. However, this phenomenon obviously depends on the size and shape of the

foot and is therefore outside the scope of the present article.

REFERENCES

[1] M. W. Spong, “Bipedal locomotion, robot gymnastics, androbot air hockey: A rapprochement,” inTITech COE/Super

Mechano-Systems Workshop, Tokyo, Japan, Feb. 1999, pp. 34–41.

February 26, 2005 DRAFT



15

[2] M. W. Spong, “Passivity based control of the compass gaitbiped,” in IFAC World Congress, Beijing, China, July 1999,

vol. 3, pp. 19–23.

[3] F. Asano and M. Yamakita, “Virtual gravity and coupling control for robot gait synthesis,”IEEE Transactions on Sys.

Man. and Cybernetics, vol. 31, no. 6, pp. 737–745, Nov. 2001.

[4] F. Asano, M. Yamakita, and K. Furuta, “Virtual passive dynamic walking and energy-based control laws,” inInt. Conf.

on Intelligent Robots and Systems, Oct. 2000, vol. 2, pp. 1149–1154.

[5] T. McGeer, “Passive dynamic walking,”International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990.

[6] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in apassive compass gait biped and passivity-mimicking control

laws,” Autonomous Robots, vol. 4, no. 3, pp. 273–86, 1997.

[7] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The simplest walking model: Stability, complexity, and scaling,”

ASME Journal on Biomechanical Engineering, vol. 120, no. 2, pp. 281–288, 1998.

[8] A. Goswami, B. Thuilot, and B. Espiau, “A study of the passive gait of a compass-like biped robot: Symmetry and chaos,”

International Journal of Robotics Research, vol. 17, no. 12, pp. 1282–301, 1998.

[9] H. Ohta, M. Yamakita, and K. Furuta, “From passive to active dynamic walking,” inIEEE Conf. on Decision and Control,

Phoenix, AZ, Dec. 1999, pp. 3883–3885.

[10] S. Suzuki, K. Furuta, Y. Pan, and S. Hatakeyama, “Biped walking robot control with passive walker model by new vsc

servo,” in American Control Conference, Arlington, VA, June 2001, pp. 107–112.

[11] A. D. Kuo, “Stabilization of lateral motion in passive dynamic walking,” International Journal of Robotics Research, vol.

18, no. 9, pp. 917–30, 1999.

[12] S. H. Collins, M. Wisse, and A. Ruina, “A three-dimensional passive-dynamic walking robot with two legs and knees,”

International Journal of Robotics Research, vol. 20, no. 7, pp. 607–15, 2001.

[13] M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manipulators,”Journal of Dynamic Systems,

Measurement, and Control, vol. 102, pp. 119–125, 1981.

[14] D.E. Koditschek, “The application of total energy as a lyapunov function for mechanical control systems,” inDynamics

and Control of Multibody Systems, et.al. J.E. Marsden, Ed. 1989, vol. 97, pp. 131–157, AMS.

[15] N. E. Leonard, “Stabilization of underwater vehicle dynamics with symmetry-breaking potentials,”IFAC Systems and

Control Letters, vol. 32, no. 1, pp. 35–42, 1997.

[16] R. Ortega et.al., “Energy shaping revisited,” inIEEE Conference on Control Applications, Anchorage, AL, Sept. 2000,

pp. 121–126.

[17] J. E. Marsden and T. S. Ratiu,Introduction to Mechanics and Symmetry, Springer Verlag, New York, NY, second edition,

1999.

[18] P. J. Olver,Application of Lie Groups to Differential Equations, vol. 107 ofGTM, Springer Verlag, New York, NY, 1993.

[19] M. W. Spong and M. Vidyasagar,Robot Dynamics and Control, John Wiley & Sons, New York, NY, 1989.

[20] Y. Hurmuzlu and D. Moskowitz, “The role of impact in the stability of bipedal locomotion,”Dynamics and Stability of

Systems, vol. 1, no. 3, pp. 217–234, 1986.

[21] F. Bullo and M.Žefran, “Modeling and controllability for a class of hybridmechanical systems,”IEEE Transactions on

Robotics and Automation, vol. 18, no. 4, pp. 563–573, 2002.

[22] A. Goswami, “Postural stability of biped robots and thefoot rotation indicator (fri) point,” International Journal of

Robotics Research, vol. 18, no. 6, pp. 523–533, 1999.

February 26, 2005 DRAFT


