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Abstract— This paper studies state quantization schemes for
feedback stabilization of linear control systems with limited
information. The focus is on designing the least destabilizing
quantizer subject to a given information constraint. We explore
several ways of measuring the destabilizing effect of a quantizer
on the closed-loop system, including (but not limited to) the
worst-case quantization error. In each case, we show how
quantizer design can be naturally reduced to a version of
the so-called multicenter problem from locational optimization.
Algorithms for obtaining solutions to such problems, all in terms
of suitable Voronoi quantizers, are discussed. In particular, an
iterative solver is developed for a novel weighted multicenter
problem which most accurately represents the least destabilizing
quantizer design.

I. I NTRODUCTION

In this paper we study linear control systems whose state
variables are quantized. We think of a quantizer as a device
that converts a real-valued signal into a piecewise constant
one taking a finite set of values. The recent papers [2], [9],
[12] discuss various situations where this type of quantization
arises and provide references to the literature. Mathemati-
cally, a quantizer can be described by a piecewise constant
function q : D ⊂ R

n → Q, whereQ is a finite subset
of R

n with a fixed number of elementsN . Here n is the
state dimension of a given system andD is a domain of
interest in the state space. We denote the elements ofQ by
q1, . . . , qN and refer to them asquantization points. The sets
Wi := cl{x ∈ D : q(x) = qi}, i ∈ {1, . . . , N} associated
with fixed values of the quantizer form a partition of the
domainD and are calledquantization regions(cl denotes
closure). We will sometimes identify a quantizerq with the
corresponding pair(Q,W), whereW := {W1, . . . ,WN}.

In the literature it is usually assumed that quantization
regions are fixed in advance and have specific shapes, most
often rectilinear. Here we are interested in the situation where
the numberN of quantizer values is a given information con-
straint, but the control designer has flexibility in choosing a
specific configuration of quantization regions (whose shapes
can in principle be arbitrary) and quantization points. While
there has been some research on systems with quantization
regions of arbitrary shapes [14], [13] and on the relationship
between the choice of quantization regions and the behavior
of the closed-loop system [9], [12], the general problem of
determining the “best” quantizer for a particular control task
such as feedback stabilization remains largely open.

A feedback law which globally asymptotically stabilizes a
given system in the absence of quantization will in general

fail to provide global asymptotic stability of the closed-loop
system that arises in the presence of state quantization. In
Section II we explain how the destabilizing effect of a given
quantizer can be measured. We introduce the concept of a
destabilization measurewhich, in conjunction with an arbi-
trary stabilizing feedback law and a corresponding Lyapunov
function, can be used to determine an ultimate bound on so-
lutions. One example of such a destabilization measure is the
worst-case quantization errormaxx∈D |q(x)− x|. However,
it turns out that there exist other destabilization measures
which are actually more suitable in the present context.
Although the parameters of the control system are used in
the stability analysis, the destabilization measure itself is a
function of the quantization regions and quantization points
only. The quantizer design problem then naturally reduces
to an optimization problem which consists in minimizing
such a measure over all quantizers satisfying the information
constraint. We describe this procedure for three different
types of quantizers arising from uniform, radial and spherical,
and radially weighted quantization.

After casting quantizer design as an optimization problem,
we proceed to explain how techniques fromoptimal facility
location (or locational optimization) yield new insights into
this problem as well as efficient algorithms for solving it.
Facility location problems concern the location of a fixed
number of facilities that provide service demanded by users;
the objective is to minimize the average or maximal distance
from sets of demand points to facilities. We focus here on
settings continuous in the location of both the facilities and
the demand points (i.e., both facilities and demand points
take values in a continuum of points, such as a polytope or
an ellipsoid). Facility location problems are surveyed in [7].
Relevant background on computational geometric methods
in locational optimization is provided in Section III.

We will find that the problem relevant for our purposes is
the multicenter problem, discussed in [17], [16]. It consists
in choosing a collection ofN points q1, q2, . . . , qN in a
bounded regionD ⊂ R

n so as to minimize the quantity
maxx∈D mini∈{1,...,N} |qi − x|; it can also be stated as the
problem of covering a given region with overlapping balls
of minimal radius. The connection between the quantized
control problem and the multicenter problem, although very
natural, apparently has not been pursued before. In SectionIII
we present a novel general formulation of the multicenter
problem with weighting factors. We then discuss solutions
of specific versions of this problem corresponding to the



three types of quantization considered in Section II, all in
terms of suitable Voronoi quantizers. We show how existing
algorithms can handle the first two approaches, and then
develop a new algorithm for the last one which gives less
conservative results.

Simulation results (as well as existing studies of the related
multimedian problem, such as [10]) indicate that by solving
the quantized feedback stabilization problem with the help
of locational optimization techniques, one may obtain quite
interesting quantization patterns. For the multicenter problem
in the plane, for example, a typical Voronoi region is a
hexagon. Consequently, hexagonal quantization regions are
capable of achieving better performance for planar systems
than more traditional rectangular ones. Simulations results,
as well as complete proofs, are omitted here for brevity; they
can be found in [3].

II. QUANTIZATION AND STABILITY

A. Worst-case quantization error

Consider the linear system

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m. (1)

Suppose that it is stabilizable, so that for some matrixK the
eigenvalues ofA + BK have negative real parts. Then there
exists a unique positive definite symmetric matrixP such
that

(A + BK)T P + P (A + BK) = −I.

We let λmin(P ) and λmax(P ) denote the smallest and
the largest eigenvalue ofP , respectively. We denote the
Euclidean norm by| · | and the corresponding induced matrix
norm by‖ · ‖.

The quantized state feedback control law

u = Kq(x)

yields the closed-loop system

ẋ = Ax + BKq(x) = (A + BK)x + BKe (2)

wheree := q(x) − x represents the quantization error. The
derivative of the functionV (x) := xT Px along solutions of
the system (2) satisfies

V̇ = −xT x + 2xT PBKe ≤ −|x|2 + 2|x||PBKe|. (3)

For an arbitrary smallε > 0, we have

|x| ≥ 2(1 + ε)‖PBK‖|e| ⇒ V̇ ≤ −
ε

1 + ε
|x|2. (4)

Pick a positive numberM and consider the ballBM := {x ∈
R

n : |x| ≤ M}. Define the worst-case quantization error

∆ := max
x∈BM

|e|. (5)

Consider the ellipsoids

R1 := {x ∈ R
n : xT Px ≤ λmin(P )M2} (6)

and

R2 := {x ∈ R
n : xT Px ≤ λmax(P )4(1+ ε)2‖PBK‖2∆2}.

(7)
The following is then straightforward to prove (see [13]).

Lemma 1 Assume that

λmin(P )M2 > λmax(P )4(1 + ε)2‖PBK‖2∆2. (8)

Then the ellipsoidsR1 and R2 defined by(6) and (7) are
invariant regions for the system(2). Moreover, all solutions
of (2) that start in the ellipsoidR1 enter the smaller ellipsoid
R2 in finite time. An upper bound on this time is

T =
λmin(P )M2 − λmax(P )4(1 + ε)2‖PBK‖2∆2

4‖PBK‖2∆2(1 + ε)ε
. (9)

This lemma implies, in particular, that all solutions starting
in R1 at time t = t0 satisfy the ultimate bound

|x(t)| ≤

√

λmax(P )

λmin(P )
2(1 + ε)‖PBK‖∆ ∀t ≥ t0 + T

with T given by the formula (9). Decreasingε to 0, we see
that solutions (asymptotically) approach the ellipsoid

{x ∈ R
n : xT Px ≤ λmax(P )4‖PBK‖2∆2}.

We regard the quantity∆ defined by (5) as adestabilization
measureof the quantizerq. It is not hard to see that if
the numberN of quantization regions is sufficiently large,
then ∆ can be made small enough for the inequality (8)
to hold. Minimizing ∆—and consequently the size of the
attracting invariant regionR2—over all possible choices of
the quantizerq corresponds to the following optimization
problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x| (10)

whereQ = {q1, . . . , qN} is a set of quantization points and
W = {W1, . . . ,WN} is a partition ofBM into quantization
regions. (We could work with partitions ofR1 rather than
BM , but this requires the knowledge ofV .) The optimization
problem (10) is known as themulticenter problemin compu-
tational geometry; we defer its discussion until Section III-A.

B. Radial and spherical quantization

In the above developments, the required bounds on the
quantization error do not depend on the size of the state. This
leads to uniform quantization, in the sense that quantization
points are distributed uniformly over the region of interest.
However, it is well known that more efficient quantization
schemes are those which provide lower precision far away
from the origin and higher precision close to the origin.
Quantizers with a logarithmic scale are particularly useful;
see [9]. Loosely speaking, with logarithmic quantization one
has the same number of quantization points in the vicinity of
every sphere centered at the origin in the state space, whereas



with uniform quantization this number grows with the radius.
This observation suggests introducing a “direct product” of
one quantizer on a unit sphere and another along the radial
direction, which is what we do next.

Let us writex = |x|vers(x) where vers(x) := x/|x|. We
represent the quantizer accordingly as

q(x) = qr(|x|)qs(vers(x)) (11)

whereqr takesN1 positive real values,qs takesN2 values
on or inside the unit sphere, andN1 and N2 are some
positive integers such thatN1N2 ≤ N . This means that we
introduce two separate quantizers, one for|x| and the other
for vers(x). The set of quantization points for the resulting
overall quantizerq is formed by theN pairwise products of
values ofqr andqs.

From the triangle inequality and the fact that
|qs(vers(x))| ≤ 1 for all x by construction, we obtain

|q(x)−x| ≤ |x|

(∣
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Use (3) and the definition ofe to write

V̇ ≤ −|x|2
(

1 − 2‖PBK‖
|q(x) − x|

|x|

)

. (12)

Take someε > 0. Then we haveV̇ ≤ −ε|x|2 whenever

|qs(vers(x)) − vers(x)| <
1 − ε

2‖PBK‖
(13)

and
∣

∣

∣

∣

qr(|x|)

|x|
− 1

∣

∣

∣

∣

≤
1 − ε

2‖PBK‖
− |qs(vers(x)) − vers(x)|. (14)

In view of (13), we introduce the worst-case quantization
error on the unit sphere corresponding toqs:

∆s := max
|x|=1

|qs(x) − x|. (15)

Pick a positive numberM . To handle (14), we takeqr to be
a logarithmic quantizer. Define

a := 1 −
1 − ε

2‖PBK‖
+ ∆s, b := 1 +

1 − ε

2‖PBK‖
− ∆s.

If (13) holds for allx on the unit sphere, then it can be shown
that 0 < a < 1 < b. Let

qr(s) :=
ai

bi−1
M for s ∈

(

ai

bi
M,

ai−1

bi−1
M

)

, i = 1, . . . , N1

(16)
and defineqr at the endpoints of the above intervals to make
it continuous from the right or from the left. Then it is easy
to check that (14) holds for allx such that(a/b)N1M ≤
|x| ≤ M. Consider the ellipsoid

R2 := {x ∈ R
n : xT Px ≤ λmax(P )(a/b)2N1M2}. (17)

The earlier Lyapunov analysis leads to the following result.

Lemma 2 Assume that

λmin(P )M2 > λmax(P )(a/b)2N1M2 (18)

and
∆s <

1 − ε

2‖PBK‖
. (19)

Then the ellipsoidsR1 and R2 defined by(6) and (17) are
invariant regions for the system(2) with the quantizer(11).
Moreover, all solutions of(2) that start in the ellipsoidR1

enter the smaller ellipsoidR2 in finite time. An upper bound
on this time is

T =
λmin(P )M2 − λmax(P )(a/b)2N1M2

(a/b)2N1M2ε
. (20)

For fixed N1 and N2, the quantity∆s defined by (15)
provides a destabilization measure (forqs). WhenK is given
and ∆s satisfies the inequality (19) for someε > 0, we
can constructqr via (16) and compute an ultimate bound on
solutions using Lemma 2. Minimizing∆s corresponds to the
following optimization problem:

min
Qs,Ws

max
i∈{1,...,N2}

max
x∈W s

i

|qs
i − x| (21)

whereQs = {qs
1, . . . , q

s
N2

} is a set of points on or inside the
unit sphere andWs = {W s

1 , . . . ,W s
N2

} is a partition of the
unit sphere. An algorithm for solving this problem will be
described in Section III-A. The quantity (21) will not exceed
the right-hand side of (19) ifN2 is sufficiently large.

C. Radially weighted quantization

The need for logarithmic quantization patterns is evidenced
by the fact that it is the ratio|e|/|x|, and not the absolute
value of the quantization error|e| itself, that needs to be
small. This is clear from the formulas (4) and (12). The
approach of Section II-B leads to an “aligned” logarithmic
quantization pattern, in the sense that quantization points
on spheres of different radii are aligned along the same
radial directions. However, it is not hard to see that non-
aligned quantization patterns may achieve better coverage.
This suggests proceeding from (12) in a more direct fashion.

To this end, pick two numbersM > m > 0 and consider
the ellipsoidsR1 given by (6) and

R2 := {x ∈ R
n : xT Px ≤ λmax(P )m2}. (22)

Define

∆rw := max
x∈R1\R2

|q(x) − x|

|x|
. (23)

Take someε > 0. The next result easily follows from (12).

Lemma 3 Assume that

λmin(P )M2 > λmax(P )m2 (24)

and
∆rw ≤

1 − ε

2‖PBK‖
. (25)



Then the ellipsoidsR1 and R2 defined by(6) and (22) are
invariant regions for the system(2). Moreover, all solutions
of (2) that start in the ellipsoidR1 enter the smaller ellipsoid
R2 in finite time. An upper bound on this time is

T =
λmin(P )M2 − λmax(P )m2

m2ε
. (26)

The quantity∆rw defined by (23) provides another desta-
bilization measure forq, in relation to a pair of numbers
M > m > 0. Given a stabilizing feedback gainK, we can
check the inequalities (24) and (25) and, if they are satisfied,
obtain an ultimate bound on solutions from Lemma 3. (It is
also clear from (12) that∆rw provides a lower bound on the
rate of decay of solutions inR1 \ R2.) This leads us to the
following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x|

|x|
(27)

whereQ = {q1, . . . , qN} is a set of quantization points and
W = {W1, . . . ,WN} is a partition of the annulus{x ∈ R

n :
m < |x| < M} into quantization regions. The inequality (25)
will hold for a givenK if N is sufficiently large.

The optimization problem (27) is different in structure
from the ones we encountered earlier, and apparently has
not been studied in the locational optimization literature. We
henceforth call it theradially weighted multicenter problem.
It turns out that while this problem is more challenging
than the others, it is still computationally tractable. We will
develop an algorithm for solving it in Section III-B.

III. M ULTICENTER PROBLEMS IN FACILITY LOCATION

In this section we present a class of optimization problems
related to the field of facility location, which contains as
special cases the optimization problems studied in SectionII,
and in particular the problems (10) from Section II-A, (21)
from Section II-B, and (27) from Section II-C.

Let us review some preliminary concepts. Given a compact
regionD ⊂ R

n and a set ofN pointsQ = {q1, . . . , qN} in
R

n, theVoronoi partitionV = {V1, . . . , VN} of D generated
by Q is defined according to

Vi := {x ∈ D : |x − qi| ≤ |x − qj | ∀j 6= i}. (28)

When it is useful to emphasize the dependency onQ, we
shall write V(Q) or Vi(Q). WhenD is a polytope inR

n,
each Voronoi regionVi is a polytope, otherwiseVi is the
intersection between a polytope andD. The faces of the
polytope which definesVi are given by hyperplanes of points
in R

n that are equidistant fromqi andqj , j 6= i; among the
latter, only “neighboring” points play a role. Note that this
(standard) construction remains valid whenD is a lower-
dimensional subset ofRn, such as a sphere. We refer to [6],
[15] for comprehensive treatments of Voronoi partitions.

Let Q = {q1, . . . , qN} be a collection of points inRn

and letW = {W1, . . . ,WN} be a partition ofD. In what

follows, we shall concern ourselves with the function

H(Q,W) := max
i∈{1,...,N}

max
x∈Wi

φ(x)f(|x − qi|) (29)

where φ : D → [0,∞) is continuous non-negative and
f : [0,∞) → [0,∞) is continuous, non-decreasing and
unbounded. We also assume thatφ does not identically vanish
on D. We investigate the optimization problem

min
Q,W

H(Q,W) (30)

and refer to it as theweighted multicenter problem. In
general,H is a nonlinear non-convex function of the lo-
cationsQ and of the partitionW. Accordingly, its global
minima can be obtained only numerically via nonlinear
programming algorithms. However, this and related facility
location problems [17], [16], [8] have some peculiar structure
that helps us characterize optimal solutions and design useful
iterative algorithms. Let us start by considering theweighted
1-center problemoverD, i.e., takeN = 1.

Lemma 4 The functionH1 : R
n → [0,∞) defined by

H1(q) := H({q}, {D}) = max
x∈D

φ(x)f(|x − q|)

is continuous, radially unbounded, and quasiconvex.1 If f is
convex andφ is constant, thenH1 is convex.

Lemma 5 The set of global minimum points forH1 is
compact, convex and has a non-empty intersection with
co(D). If f is strictly increasing, then all global minimum
points belong toco(D).

We call q∗(D) a weighted centerof the regionD if it is
a (possibly non-unique) global minimum point:

q∗(D) := argmin
q∈co(D)

max
x∈D

φ(x)f(|x − q|).

Now, it is useful to return to the general weighted multicenter
problem (29), (30) and defineW 7→ Q∗(W) as the map
that associates toW a collection ofN (possibly non-unique)
global minimum points for the corresponding weighted 1-
center problems; in other words,Q∗({W1, . . . ,WN}) :=
{q∗(W1), . . . , q

∗(WN )}. Note that these weighted centers
are well defined in view of the above discussion since each
Wi is compact. Finally, define theLloyd map(or the Lloyd
algorithm) L : (Q,W) 7→ (Q′,W ′) where W ′ := V(Q)
and Q′ := Q∗(W ′). The following result is a relatively
straightforward consequence of LaSalle Invariance Principle
for discrete-time dynamical systems; further convergence
properties are under current investigation in [5].

Lemma 6 At a fixed Q, the global minimum ofW 7→
H(Q,W) is achieved atW = V(Q). At a fixedW, a global

1Recall that aquasiconvexfunction is a function defined on a convex
domain and with convex sublevel sets.



minimum ofQ 7→ H(Q,W) is achieved atQ = Q∗(W).
The Lloyd map is a descent algorithm for the cost function
H, i.e., an application of the map is guaranteed not to
increase H. The cost is guaranteed to decrease in one
iteration if no active2 point qj ∈ Q is a weighted center of
its regionWj . Given an initial pair(Q0,W0), the sequence
{Lk(Q0,W0), k ≥ 0} approaches the largest set invariant
underL such thatH(L(Q,W)) = H(Q,W).

Fixed points of the Lloyd map areweighted central
Voronoi quantizers, i.e., pairs(Q,W) such thatW is the
Voronoi partition generated byQ and at the same time
the points inQ are weighted centers forW. It is an open
conjecture that the iteration described in the lemma converges
to local minima of H. Nevertheless, the algorithm is of
interest to us because it is guaranteed to improve a given
quantizer design and provides a good indication as to whether
or not N is large enough to achieve the control objective.

The classic Lloyd algorithm is tailored to the continuous
multimedian problem as it appears, for example, in the
problem of fixed-rate minimum-distorsion quantizer design;
see [7], [11]. The classic Lloyd algorithm differs from the
one considered here only in the fact that the points inQ
are moved to the centroids—as opposed to the weighted
centers—of the respective Voronoi regions. (Centroids are
solutions of the 1-median problems.)

Next, we consider the specific settings that arise in the
quantizer design problems discussed in the previous section.
We study the multicenter problem (10), the spherical mul-
ticenter problem (21), and the radially weighted multicenter
problem (27). To implement the Lloyd algorithm, two tasks
must be carried out repeatedly. One consists in computing
the Voronoi partition for a given set of pointsQ, which is
accomplished by the standard procedure described earlier.
The other amounts to computing a weighted center for each
set Wi in a given partition. Thus for each of the specific
multicenter problems studied below, we only need to explain
how to solve the corresponding 1-center problem.

A. Multicenter problem

Let us consider the problem (10) arising in Section II-
A. The domain is a ball centered at the origin or, more
generally, an ellipsoid, i.e.,D = {x ∈ R

n : xT Px ≤ 1} for
some positive definite symmetric matrixP . The weighting
function φ and the performance functionf are the identity
maps. Under these conditions, we refer to the optimization
problem (30) simply as the multicenter problem [17], [16].

Let us analyze the 1-center problem. From Lemma 4 we
know that this is a convex optimization problem. For each
regionVi, the optimal solutionq∗(Vi) is the unique center of
the minimal-radius enclosing sphere forVi. WhenVi ⊂ R

2 is
a polygon, this sphere is referred to as the smallest enclosing

2We call qj active if H(Q,W) = maxx∈Wj
φ(x)f(|x − qj |), i.e., the

maximum overi is achieved at the indexj.

circle and algorithms are available to compute it; see [6,
Chapter 4]. WhenVi ⊂ R

n is a polytope, the smallest
enclosing ellipsoid (in particular, sphere) can be computed
via iterative convex optimization algorithms; see [1]. For
a Voronoi regionVi near the boundary ofD, which is
not a polytope, we can under-approximate it by a polytope
generated by the vertices ofVi and suitable additional points
on the intersection ofVi with the boundary ofD, and then
compute the center of this polytope. For a sufficiently close
under-approximation, this center will also be the center ofVi.

The spherical multicenter problem (21) from Section II-B
corresponds to the setting whereD = {x ∈ R

n : |x| = 1}
is the unit sphere inRn. Since the spherical multicenter
problem is formulated in terms of the Euclidean distance
in R

n, Voronoi partitions of the sphere can be constructed
as explained earlier for the general case. Voronoi regions
will be intersections of polytopes with the unit sphere. The
center of each Voronoi regionVi is the center of the minimal-
radius enclosing sphere forVi. We can consider a polytope
in R

n generated by the vertices ofVi and perhaps some
other points inVi. If enough points are taken, then the
center of this polytope will also be the center ofVi. As we
explained earlier, computing the center of a polytope is a
computationally tractable task.

B. Radially weighted multicenter problem

Here, we study the problem (27) formulated in Section II-
C, where the domain is the spherical annulusD = {x ∈
R

n : m < |x| < M}. We consider the corresponding radially
weighted 1-center problem over a setV ⊂ D:

min
q∈co(V )

max
x∈V

|q − x|

|x|
. (31)

The problem is well-posed becauseV is a subset ofD and
therefore does not contain the origin. In what follows, we
takeV to be a polytope; if it is not, we approximate it by a
polytope as before.

Lemma 7 The optimal cost in the problem(31) is smaller
than 1 if and only if the setV is separated from the origin
by a hyperplane.

We shall henceforth assume that the setV is separated
from the origin by a hyperplane. ForN sufficiently large,
the initial quantization points can be chosen in such a way
that each of the resulting Voronoi regions indeed has this
property. Since by Lemma 6 the Lloyd algorithm does not
increase the cost, Lemma 7 implies that all Voronoi regions
will then have this property at every step of the iteration.

We know from Lemmas 4 and 5 that the weighted 1-
center problem is a quasiconvex optimization problem, i.e.,
it consists in minimizing the quasiconvex functionH1 over
the convex setco(D). Every quasiconvex optimization prob-
lem can be solved by iterative techniques (via a bisection
algorithm solving a convex feasibility problem at each step;



see Section 3.2 in [1]). However, the structure of the prob-
lem (31) can be used to obtain a solution more constructively.

Lemma 8 Let V be a polytope separated from the origin by
a hyperplane. Consider the problem of finding the sphere with
centerc and radiusr which enclosesV and minimizesr/|c|.
Let (c∗, r∗) be the parameters of the optimal sphere. Then
the optimal value for the problem(31) is γ∗ := r∗/|c∗| and
the optimal point isq∗ :=

(

1 − (γ∗)2
)

c∗.

The above result leads us to considering the problem

min
c,r

γ2(c, r) :=
r2

|c|2
where|c − vi|

2 ≤ r2, i = 1, . . . , p

(32)
wherev1, . . . , vp are the vertices of the polytopeV . This
is an optimization problem subject to inequality constraints,
which can be solved with a finite number of computations.
The idea is to enumerate active constraints, according to the
following algorithm:

1: for all subsetsS of the set of vertices ofV do
2: compute the(cS , rS)-sphere minimizingγ2 among all

(c, r)-spheres touching all points inS
3: end for
4: discard(cS , rS)-spheres not containing all vertices ofV
5: find global minima for (32) by comparing the values of

r2
S/|cS |

2 among all remaining candidate spheres

Steps 4 and 5 are straightforward comparison checks.
Regarding step1, it turns out we can restrict our search to
setsS containing at least two vertices ofV .

Lemma 9 The optimal sphere for the problem(32) touches
at least two vertices ofV , i.e., at least two constraints are
active at the minimum.

Regarding step2, we need to minimizeγ2 over spheres
passing through two or more vertices ofV . Spheres passing
throughl generic points inRn are parameterized byn+1− l
variables. A convenient parameterization is obtained by inter-
secting hyperplanes of points equidistant from pairs of points
from a given set. Coordinates of the points on the intersection
are given by affine functions ofn + 1 − l free parameters.
Note that the radiusr of the sphere is uniquely determined
by its centerc and the vertices ofV which lie on the sphere.
It is not hard to verify that the functionγ2 in (32) is a rational
function whose numerator and denominator are quadratic
inhomogeneous polynomials in these free parameters, and
that critical points ofγ2 are solutions ofn + 1− l quadratic
equations in the same number of unknowns. According to
Bezout’s theorem, this generically gives2n+1−l candidate
optimal spheres [4]. Step2 is completed by choosing the
one with the smallest radius.

As an example of step2, let us work out the planar case.
When n = 2, the problem reduces to finding critical points
of γ for circles passing throughl vertices ofV , wherel > 1

by Lemma 7. Since forl > 2 there is at most one circle
passing through the corresponding vertices, we only need to
explain how to solve this problem forl = 2. For convenience,
let us consider an affine change of coordinates which places
the two vertices at(1, 0)T and (−1, 0)T and the origin at
some point(x0, y0)

T . Without loss of generality, assume that
y0 ≥ 0. The center of the circle is denoted byc = (x̄, ȳ)T .
We know thatc must be equidistant from the two vertices,
hencex̄ = 0. In the special case wheny0 = 0, the solution
is ȳ = 0 (as is clear from symmetry). Wheny0 6= 0, the
minimum is achieved at

ȳ =
x2

0 + y2
0 − 1 −

√

(x2
0 + y2

0 − 1)2 + 4y2
0

2y0
< 0.
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