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Abstract— This paper studies state quantization schemes for fail to provide global asymptotic stability of the closembp
feedback stabilization of linear control systems with limited system that arises in the presence of state quantization. In
information. The focus is on designing the least destabilizing  gation |1 we explain how the destabilizing effect of a given
quantizer subject to a given information constraint. We explore . .
several ways of measuring the destabilizing effect of a quantizer dUantizer can be measured. We introduce the concept of a
on the closed-loop system, including (but not limited to) the destabilization measurevhich, in conjunction with an arbi-
worst-case quantization error. In each case, we show how trary stabilizing feedback law and a corresponding Lyapuno
quantizer design can be naturally reduced to a version of function, can be used to determine an ultimate bound on so-
the so-called muiticenter problem from locational optimization. | ;tjons. One example of such a destabilization measureeis th
Algorithms for obtaining solutions to such problems, all in terms R
of suitable Voronoi quantizers, are discussed. In particular, an WOrSt-case quantization erranax;ep |q(«) — x| However,
iterative solver is developed for a novel weighted multicenter it turns out that there exist other destabilization measure
problem which most accurately represents the least destabilizing which are actually more suitable in the present context.
quantizer design. Although the parameters of the control system are used in
the stability analysis, the destabilization measure fitseh
function of the quantization regions and quantization tmin

In this paper we study linear control systems whose statenly. The quantizer design problem then naturally reduces
variables are quantized. We think of a quantizer as a devite an optimization problem which consists in minimizing
that converts a real-valued signal into a piecewise cohstasuch a measure over all quantizers satisfying the infoomati
one taking a finite set of values. The recent papers [2], [9tonstraint. We describe this procedure for three different
[12] discuss various situations where this type of quatitza types of quantizers arising from uniform, radial and spteri
arises and provide references to the literature. Mathematind radially weighted quantization.
cally, a quantizer can be described by a piecewise constantAfter casting quantizer design as an optimization problem,
functiong : D C R* — Q, where Q is a finite subset we proceed to explain how techniques fraptimal facility
of R™ with a fixed number of elementd’. Heren is the location (or locational optimizatioh yield new insights into
state dimension of a given system afidis a domain of this problem as well as efficient algorithms for solving it.
interest in the state space. We denote the elemen@ oy  Facility location problems concern the location of a fixed
q, - - -, gy and refer to them aguantization pointsThe sets number of facilities that provide service demanded by ysers
W; == cl{z € D: q(z) = ¢;}, i € {1,..., N} associated the objective is to minimize the average or maximal distance
with fixed values of the quantizer form a partition of thefrom sets of demand points to facilities. We focus here on
domainD and are calledquantization regiongcl denotes settings continuous in the location of both the facilitiesl a
closure). We will sometimes identify a quantizewith the the demand points (i.e., both facilites and demand points
corresponding paitQ, W), whereW = {W;,..., Wx}. take values in a continuum of points, such as a polytope or

In the literature it is usually assumed that quantizatiomn ellipsoid). Facility location problems are surveyed i [
regions are fixed in advance and have specific shapes, mBslevant background on computational geometric methods
often rectilinear. Here we are interested in the situatiber® in locational optimization is provided in Section III.
the numberV of quantizer values is a given information con- We will find that the problem relevant for our purposes is
straint, but the control designer has flexibility in chogsen the multicenter problemdiscussed in [17], [16]. It consists
specific configuration of quantization regions (whose shapén choosing a collection ofV points g1, g2, ..., gy in a
can in principle be arbitrary) and quantization points. Whil bounded regionD c R™ so as to minimize the quantity
there has been some research on systems with quantizatiofx,cp min;c ;.. n} [¢; — z/; it can also be stated as the
regions of arbitrary shapes [14], [13] and on the relatigmsh problem of covering a given region with overlapping balls
between the choice of quantization regions and the behaviof minimal radius. The connection between the quantized
of the closed-loop system [9], [12], the general problem ofontrol problem and the multicenter problem, although very
determining the “best” quantizer for a particular contedk natural, apparently has not been pursued before. In Sdttion
such as feedback stabilization remains largely open. we present a novel general formulation of the multicenter

A feedback law which globally asymptotically stabilizes aproblem with weighting factors. We then discuss solutions
given system in the absence of quantization will in generaf specific versions of this problem corresponding to the

I. INTRODUCTION



three types of quantization considered in Section Il, all imnd
terms of suitable Voronoi quantizers. We show how existing, n. T 9 9 A9
algorithms can handle the first two approaches, and thén? "~ {z €R" 107 P < Anax(P)A(1+ )| PBK]| A(%
develop a new algorithm for the last one which gives les L .
conservative results. ‘?he following is then straightforward to prove (see [13]).
Simulation results (as well as existing studies of the eelat Lemma 1 Assume that

multimedian problem, such as [10]) indicate that by solving

Amin(P)M? > Anax(P)4(1 +¢)?| PBK||?A%. (8)

the quantized feedback stabilization problem with the help
of locational optimization techniques, one may obtain QUItThen the ellipsoidsR, and R, defined by(6) and (7) are

interesting quantization patterns. For the multicenteb : . . .
94 P fem invariant regions for the systeif?). Moreover, all solutions

in the plane, for example, a typical Voronoi region is a ) - o) o
hexagon. Consequently, hexagonal quantization regioms f(g) thqt stgrt in the ellipsoidk, enter th? S’T‘a”e.r ellipsoid
in finite time. An upper bound on this time is

capable of achieving better performance for planar syste
than more traditional rectangular ones. Simulations tgsul Amin (P)YM? — M\pax(P)4(1 + €)?| PBK ||* A2
4|PBK||?A%(1 4+ ¢)e '

as well as complete proofs, are omitted here for brevityy the
This lemma implies, in particular, that all solutions sStagt

can be found in [3].

in R, at timet = ¢ty satisfy the ultimate bound
/\max(P)
Amin(jt))

with T' given by the formula (9). Decreasingto 0, we see
that solutions (asymptotically) approach the ellipsoid

{z € R": 2T Pr < Apax(P)4||PBK | A%}.

©)

[l. QUANTIZATION AND STABILITY
A. Worst-case quantization error
Consider the linear system

z(t)] < 21+ ¢)|PBK|A  Vt>ty+ T

& = Ax + Bu, r €R" ueR™.

1)

Suppose that it is stabilizable, so that for some malfixhe
eigenvalues ofA + BK have negative real parts. Then there
exists a unique positive definite symmetric matfx such

that We regard the quantith defined by (5) as destabilization

measureof the quantizerq. It is not hard to see that if
the numberN of quantization regions is sufficiently large,
We let Apin(P) and Ayax(P) denote the smallest and then A can be made small enough for the inequality (8)
the largest eigenvalue oP, respectively. We denote the to hold. Minimizing A—and consequently the size of the
Euclidean norm by-| and the corresponding induced matrixattracting invariant regiorR,—over all possible choices of

(A+BK)'P+ P(A+ BK) = —1.

norm by|| - ||
The quantized state feedback control law

u = Kq(z)
yields the closed-loop system

&= Az + BKq(x) = (A+ BK)z + BKe 2

the quantizerq corresponds to the following optimization
problem:

min max max |g¢; — x| (10)
oW i€{l,.,N} xeW;
whereQ = {q1,...,qn} is a set of quantization points and

W = {Wi,...,Wn} is a partition of B, into quantization
regions. (We could work with partitions ok, rather than

wheree := ¢(x) — = represents the quantization error. Thes,,, but this requires the knowledge &f) The optimization

derivative of the functiod/(x) := 27 Px along solutions of
the system (2) satisfies

V =22+ 2:"PBKe < —|x|? + 2|z||PBKe|. (3)
For an arbitrary smalt > 0, we have
. €
> 2(1 PBK V< - 2 (4
7] 2 2(1+ )|l llel =V <—g—ll" (4

Pick a positive numbek/ and consider the ball,; := {z €
R™ : |z| < M}. Define the worst-case quantization error

A= 5161%141 le]. (5)
Consider the ellipsoids
Ry :={x eR": 2T Pr < /\min(P)MQ} (6)

problem (10) is known as thaulticenter problenin compu-
tational geometry; we defer its discussion until Sectid+All

B. Radial and spherical quantization

In the above developments, the required bounds on the
guantization error do not depend on the size of the state. Thi
leads to uniform quantization, in the sense that quantinati
points are distributed uniformly over the region of intéres
However, it is well known that more efficient quantization
schemes are those which provide lower precision far away
from the origin and higher precision close to the origin.
Quantizers with a logarithmic scale are particularly ukefu
see [9]. Loosely speaking, with logarithmic quantizatioreo
has the same number of quantization points in the vicinity of
every sphere centered at the origin in the state space, asere



with uniform quantization this number grows with the radiusLemma 2 Assume that
This observation suggests introducing a “direct produdt” o

. 2 2Ny A2
one quantizer on a unit sphere and another along the radial Amin (P)M > Amax(P)(a/b)""* M (18)
direction, which is what we do next. and
Let us writex = |x|verz) where ver§r) := z/|z|. We A, < 1—¢ ] (19)
represent the quantizer accordingly as 2| PBK||
q(z) = ¢"(Jz))¢* (versz)) (11) Then the ellipsoid$k; and R, defined by(6) and (17) are

invariant regions for the systeif2) with the quantizer(11).
whereq” takesN; positive real values¢® takes N, values Moreover, all solutions of(2) that start in the ellipsoidR
on or inside the unit sphere, an¥; and N, are some enter the smaller ellipsoi®- in finite time. An upper bound
positive integers such thdf; Ny < N. This means that we on this time is

introduce two separate quan_tize_rs, one [fdrand the othe_r Amin (P) M2 — Amax (P)(a/b)2N1 M2

for vergz). The set of quantization points for the resulting T= (a/b)2Ni M2e (20)

overall quantize is formed by theN pairwise products of

values ofg” and¢®. For fixed N; and N,, the quantityA, defined by (15)
From the triangle inequality and the fact thatprovides a destabilization measure (§6). WhenK is given

|¢*(verg(z))| < 1 for all = by construction, we obtain and A, satisfies the inequality (19) for some > 0, we

can construct” via (16) and compute an ultimate bound on

lg(2)—] < |z (‘ q (=) 1’ +|q* (vers()) — vers(a:)|> . solutions using Lemma 2. Minimizing , corresponds to the
ollowing optimization problem:
|| followi imizati bl
Use (3) and the definition of to write ) .
min max max |g; — x| (21)
' 2 lg(z) — x| Q5 Ws  ie{l,...,No} zEW;
V< —|z]?1-2|PBK|—— ). 12) ) ) o
|| whereQ° = {q7,...,q%,} is a set of points on or inside the

unit sphere andV*® = {W7,... , W{ } is a partition of the

: /< —elz]? ) . : ; .
Take some: > 0. Then we have/” < —e|z|* whenever unit sphere. An algorithm for solving this problem will be

l—¢ described in Section IlI-A. The quantity (21) will not excee
(ver — ver < 13 . q y
la°(versiw)) —verse)| < orppR] (13) " the right-nand side of (19) i, is sufficiently large.
and C. Radially weighted quantization

q"(lz]) ‘ < L-e " (vers(z)) — vers(z)|. (14)  The need for logarithmic quantization patterns is evidence

|z 2|PBK|| by the fact that it is the ratide|/|z|, and not the absolute

In view of (13), we introduce the worst-case quantizatioyalue of the quantization errde| itself, that needs to be
error on the unit Sphere Correspondingqfo Sma”. Th|S iS Cleal’ from the formulas (4) and (12) The
. approach of Section II-B leads to an “aligned” logarithmic
As = mfﬂq (z) — =l (15)  quantization pattern, in the sense that quantization goint

on spheres of different radii are aligned along the same
radial directions. However, it is not hard to see that non-
aligned quantization patterns may achieve better coverage

Pick a positive numbed/. To handle (14), we take” to be
a logarithmic quantizer. Define

1 1—c¢ A b1 1—¢ A This suggests proceeding from (12) in a more direct fashion.
a=17 2|PBK]|| TRs 0:=14 2|PBK| To this end, pick two numberad/ > m > 0 and consider
If (13) holds for allz on the unit sphere, then it can be shownthe ellipsoidsR, given by (6) and
that0 < a <1 < b. Let Ry = {z € R" : 2T Pz < Apax(P)m?}. (22)
al al ai—1 .
"(s) = —M f —M,—M),i=1,...,N; Define
q"(s) i1 or s¢ (bl T ) s e=1,...,N; A e s lg(x) — x| (23)
(16) T gerI\Ry x|

and defing;” at the endpoints of the above intervals to makel_ K H | iiv foll ; 19
it continuous from the right or from the left. Then it is easy! @K€ Somes > 0. The next result easily follows from (12).
to check that (14) holds for alt such that(a/b)" M <

|x] < M. Consider the ellipsoid ~ Lemma 3 Assume that

2 2
Ry i= {z € R" : 2" Par < Aax(P)(a/b)* M2}, (17) Amin (P)M > Amax (P)m (24)
The earlier Lyapunov analysis leads to the following resultand A 1—¢ 25)

< .
" = 2||PBK||



Then the ellipsoid$R; and R, defined by(6) and (22) are  follows, we shall concern ourselves with the function
invariant regions for the systeif2). Moreover, all solutions o

of (2) that start in the ellipsoidR; enter the smaller ellipsoid H(Q,W) = el Ny sew, o) f(lz —al)  (29)
R4 in finite time. An upper bound on this time is

where ¢ : D — [0,00) is continuous non-negative and
)\min(P)MQ - Amax(P)mQ

f : [0,00) — [0,00) is continuous, non-decreasing and

= m2e (26) unbounded. We also assume thatoes not identically vanish
The quantityA,., defined by (23) provides another desta®n P- We investigate the optimization problem
bilization measure for, in relation to a pair of numbers IQH% H(Q, W) (30)

M > m > 0. Given a stabilizing feedback gaili, we can

check the inequalities (24) and (25) and, if they are satisfieand refer to it as theweighted multicenter problemin
obtain an ultimate bound on solutions from Lemma 3. (It igeneral, is a nonlinear non-convex function of the lo-
also clear from (12) thaf\,.,, provides a lower bound on the cations Q and of the partition/V. Accordingly, its global
rate of decay of solutions iR, \ Rz.) This leads us to the minima can be obtained only numerically via nonlinear

following optimization problem: programming algorithms. However, this and related facilit
' i — 2| location problems [17],_[16], [8_] have some peculiar s_tuuet
gllvr\l) Z_G{I{laXN} max 2] (27) _that helps us _charactenze optimal soluthns gnd de_s,lgﬁmluse
A ’ iterative algorithms. Let us start by considering theighted
whereQ = {q1,...,qn} is a set of quantization points and 1-center problenmover D, i.e., takeN = 1.

W = {W1,...,Wx} is a partition of the annuluz € R" :
m < |z| < M} into quantization regions. The inequality (25)Lemma 4 The function; : R™ — [0, c0) defined by
will hold for a given K if N is sufficiently large. . _

The optimization problem (27) is different in structure Hila) :=H({a}.{P}) = sy o@)f(jz —dl)
or) e cn e encountred earer, a0 SRS Mconinuous el unbounded, nd quasicori
henceforth call it theadially weighted multicenter problem convex andy is constant, thert(; is convex.

It turns out that while this problem is more challenging
than the others, it is still computationally tractable. Wil w
develop an algorithm for solving it in Section IlI-B.

Lemma 5 The set of global minimum points fdk, is
compact, convex and has a non-empty intersection with
co(D). If f is strictly increasing, then all global minimum
I1l. M ULTICENTER PROBLEMS IN FACILITY LOCATION points belong tao(D).

In this section we present a class of optimization problems we call ¢*(D) a weighted centeof the regionD if it is

related to the field of facility location, which contains asy (possibly non-unique) global minimum point:
special cases the optimization problems studied in Sedtion

and in particular the problems (10) from Section II-A, (21) ¢"(D) :=argmin  max  ¢(z)f(|z - ql).
from Section II-B, and (27) from Section II-C. g<eo(D)

Let us review some pre“minary concepts. Given a Compab{OW, it is useful to return to the general Weighted multieznt
regionD C R” and a set ofV points Q = {qi,...,qn} in Problem (29), (30) and defingy — Q*(W) as the map
R”, the Voronoi partitionV = {V4,..., Vy} of D generated that associates tB/ a collection of N (possibly non-unique)
by Q is defined according to global minimum points for the corresponding weighted 1-

center problems; in other wordR*({W1,...,Wx}) =
Vic={z €D: |z —q| <|z—q| Vj#i} (28)  {¢*(W4),...,q¢*(Wx)}. Note that these weighted centers
When it is useful to emphasize the dependency@nwe are .weII defined ip view of .the above discussion since each
shall write V(Q) or V;(Q). WhenD is a polytope inR", W; is compact. Finally, define theloyd map(or the Lloyd
L - . - algorithm) £ : (Q, W) — (Q',W') where W' = V(Q)
each Voronoi regionV; is a polytope, otherwiséd’; is the , I \ : ;
intersection between a polytope add The faces of the and_Q = Q"(W'). The following result is a relatlvely_
polytope which defines’, are given by hyperplanes of points ?tralg.htforwar_d consequgnc:a of LaSaI.IefInvr?rlance Rrlaci
in R" that are equidistant frorg; andg;, j # i; among the or |S(_:rete-t|me dynamical .syste'ms,. urF er convergence
latter, only “neighboring” points play a role. Note thatghi properties are under current investigation in [5].
(standard) construction remains valid whénis a lower-
dimensional subset d&™, such as a sphere. We refer to [6],
[15] for comprehensive treatments of Voronoi partitions.

Let Q = {QIa Tt QN} be a COIIeCUpn of points IR™ 1Recall that aquasiconvextunction is a function defined on a convex
and letw = {W,...,Wx} be a partition ofD. In what domain and with convex sublevel sets.

Lemma 6 At a fixed Q, the global minimum ofWW +—
H(Q,W) is achieved atV = V(Q). At a fixedW, a global



minimum ofQ — H(Q,W) is achieved atQ = Q*(W). circle and algorithms are available to compute it; see [6,
The Lloyd map is a descent algorithm for the cost functio€hapter 4]. WhenV; C R"™ is a polytope, the smallest
H, i.e., an application of the map is guaranteed not taenclosing ellipsoid (in particular, sphere) can be comgute
increase H. The cost is guaranteed to decrease in oneia iterative convex optimization algorithms; see [1]. For
iteration if no activé point ¢; € Q is a weighted center of a Voronoi regionV; near the boundary o, which is
its region ;. Given an initial pair(Qy, W;), the sequence not a polytope, we can under-approximate it by a polytope
{£F(Qy,Ws), k > 0} approaches the largest set invariantgenerated by the vertices &f and suitable additional points
under £ such thatH(£(Q, W)) = H(Q,W). on the intersection o¥; with the boundary ofD, and then
. ) ] compute the center of this polytope. For a sufficiently close

Fixed points of the Lloyd map areveighted central nger-approximation, this center will also be the center;of
Voronoi quantizersi.e., pairs(Q,W) such that)V is the  The spherical multicenter problem (21) from Section 11-B
Vorono_i pa_rtition gene_rated by and at the. same time corresponds to the setting whefe= {z € R" : |z| = 1}
the points inQ are weighted centers far/. It is an open s the unit sphere iR™. Since the spherical multicenter
conjecture that the iteration described in the lemma cager problem is formulated in terms of the Euclidean distance
to local minima of 4. Nevertheless, the algorithm is of jn rr \oronoi partitions of the sphere can be constructed
interest to us because it is guaranteed to improve a giveRy explained earlier for the general case. Voronoi regions
quantizer design and provides a good indication as to whethgjj| pe intersections of polytopes with the unit sphere. The
or not NV is large enough to achieve the control objective. center of each Voronoi regioh is the center of the minimal-

The classic Lloyd algorithm is tailored to the continuousagiys enclosing sphere féf,. We can consider a polytope
multimedian problem as it appears, for example, in thg, grn generated by the vertices 6f and perhaps some
problem of fixed-rate minimum-distorsion quantizer designgiper points inV;. If enough points are taken, then the
see [7], [11]. The classic Lloyd algorithm differs from thecenter of this polytope will also be the centergf As we

one considered here only in the fact that the pointsdin explained earlier, computing the center of a polytope is a
are moved to the centroids—as opposed to the weightedmputationally tractable task.

centers—of the respective Voronoi regions. (Centroids are . ) .
solutions of the 1-median problems.) B. Radially weighted multicenter problem

Next, we consider the specific settings that arise in the Here, we study the problem (27) formulated in Section II-
quantizer design problems discussed in the previous secti&C, where the domain is the spherical annulds= {z €
We study the multicenter problem (10), the spherical mulR™ : m < |z| < M}. We consider the corresponding radially
ticenter problem (21), and the radially weighted multieznt weighted 1-center problem over a détC D:
problem (27). To implement the Lloyd algorithm, two tasks _ g — 2|
must be carried out repeatedly. One consists in computing min - max .
the Voronoi partition for a given set of poin@, which is aceoV) 2V =]
accomplished by the standard procedure described earliEhe problem is well-posed becaubeis a subset of> and
The other amounts to computing a weighted center for eadierefore does not contain the origin. In what follows, we
set W, in a given partition. Thus for each of the specifictake V' to be a polytope; if it is not, we approximate it by a
multicenter problems studied below, we only need to explaiRolytope as before.
how to solve the corresponding 1-center problem.

(1)

Lemma 7 The optimal cost in the problerf81) is smaller

A. Multicenter problem than 1 if and only if the sefl/ is separated from the origin
Let us consider the problem (10) arising in Section [y a hyperplane.

A. The domain is a ball centered at the origin or, more

generally, an ellipsoid, i.eD — {z € R" : 7Pz < 1} for We shall henceforth assume that the Betis separated

some positive definite symmetric matriR. The weightin from the origin by a hyperplane. Fav sufficiently large,
b y ’ ghting the initial quantization points can be chosen in such a way

function ¢ and the perform_ance functiof are the 'd‘?“F'ty. that each of the resulting Voronoi regions indeed has this

maps. Under these conditions, we refer to the optimization : .

) . property. Since by Lemma 6 the Lloyd algorithm does not

problem (30) simply as the multicenter problem [17], [16]. : N o

increase the cost, Lemma 7 implies that all Voronoi regions

Let us analyze the 1-center problem. From Lemma 4 we. . . .
know that this is a convex optimization problem. For eacHVIII then have this property at every step of the iteration.

P P : We know from Lemmas 4 and 5 that the weighted 1-

regionV;, the optimal solutiory*(V;) is the unique center of . : N .
. . : 9 : center problem is a quasiconvex optimization problem, i.e.
the minimal-radius enclosing sphere igr WhenV; C R is . A R ) i
it consists in minimizing the quasiconvex functiéty over

a polygon, this sphere is referred to as the smallest emgjosi : Lo
polygon, P ng the convex seto(D). Every quasiconvex optimization prob-
2We call g; activeif 7(Q, W) = maxzew, () f(|z — ¢;]). i.e., the lem can be solved by iterative techniques (via a bisection
maximum overi is achieved at the index algorithm solving a convex feasibility problem at each step



see Section 3.2 in [1]). However, the structure of the protby Lemma 7. Since fol > 2 there is at most one circle
lem (31) can be used to obtain a solution more constructivelgassing through the corresponding vertices, we only need to
explain how to solve this problem fér= 2. For convenience,
Lemma 8 LetV be a polytope separated from the origin bylet us consider an affine change of coordinates which places
a hyperplane. Consider the problem of finding the sphere withe two vertices a{1,0)” and (—1,0)” and the origin at
centerc and radiusr which enclose$” and minimizes:/|c|.  some point(zo, yo)”. Without loss of generality, assume that
Let (c*,7*) be the parameters of the optimal sphere. Thepo > 0. The center of the circle is denoted by= (z,7)”.
the optimal value for the problerf81) is v* := r*/|c*| and We know thatc must be equidistant from the two vertices,
the optimal point isg* := (1 — (v*)2)c*. hencez = 0. In the special case whep = 0, the solution

o is g = 0 (as is clear from symmetry). Whes, # 0, the
The above result leads us to considering the problem  minimum is achieved at

2

2 2 _ 1 _ 2 2 2 2
min ~>(c, r) = where|c —v;|> <72, i=1,...,p s Tty -1 V(@ + 5 = 1)? + 45 0.
c,r |C|2 4 2y0 =
(32)
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