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A catalog of inverse-kinematics planners for
underactuated systems on matrix Lie groups

Sonia Martı́nez, Jorge Cortés, and Francesco Bullo

Abstract— This paper presents motion planning algo-
rithms for underactuated systems evolving on rigid rotation
and displacement groups. Motion planning is transcribed
into (low-dimensional) combinatorial selection and inverse-
kinematic problems. We present a catalog of solutions for
all underactuated systems on SE(2), SO(3) and SE(2) × R
classified according to their controllability properties.

I. INTRODUCTION

This paper presents motion planning algorithms for
underactuated mechanical control systems. We consider
kinematic models that can switch between specified sets
of admissible vector fields. These models are motivated
by recent progress in kinematic modeling and kinematic
reductions for mechanical control systems; see [1], [2],
[3], [4], [5], [6]. In particular we focus on families of left-
invariant vector fields defined on rigid displacements
subgroups.

An important advantage of using a kinematic model
as opposed to a full dynamic model is the simplification
of the resulting control problem. In this way, motion
planning is transcribed into low-dimensional combinato-
rial selection and inverse-kinematic problems. Although
closed-form solutions and general methodologies for
the motion planning problem remain unfeasible, the
transcription into kinematic models renders individual
systems easier to tackle; e.g., [4] discusses 3R planar
manipulators and [7], [8] discuss the snakeboard system.

The literature on inverse kinematics suggests numer-
ous techniques that have never been applied in the
context of motion planning. Solution methods include
(i) the Paden-Kahan subproblems approach as described
in [9], [10], (ii) a linear programming approach for
linear translational generators [11], and (iii) the general
polynomial programming approach in [12]. The latter
and more general method is based on simultaneously
solving systems of algebraic equations and on tools from
algebraic geometry.

In this paper we provide a catalog of solutions for
some interesting and relevant systems. We consider
systems evolving on proper subgroups of the group
of rigid displacements in three-dimensional Euclidean
space. Our solutions are closely related to the system
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controllability properties and attempt to minimize the
number of switches.

Problem statement

We consider left-invariant control systems evolving on
a matrix Lie subgroup G ⊂ SE(3). Examples include
systems on SE(2), SO(3) and SE(2)×R. As common in
matters of Lie group theory, we identify left-invariant
vector fields with their value at the identity. Given a
family of left-invariant vector fields {V1, . . . , Vm} on G
we consider the associated driftless control system

ġ(t) =
m

∑
i=1

Vi(g(t))wi(t) (1)

where t 7→ g(t) ∈ G and where t 7→ (w1, . . . , wm) ∈
{(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}. For
these systems controllability can be assessed by algebraic
means: it suffices to check the lack of involutivity of
the Lie algebra subspace span{V1, . . . , Vm}. Recall that
for matrix Lie algebras, Lie brackets are simply matrix
commutators [A, B] = AB − BA.

We compute feasible motion plans for the control
system (1) by the concatenation of a finite number of
flows along the input vector fields. We call a flow along
any input vector field a maneuver and its duration a
coasting time. Therefore, motion planning is reduced to
the problem of selecting a finite-length combination of
k maneuvers {(i1, . . . , ik) | i j ∈ {1, . . . , m}} and com-
puting appropriate coasting times {t1, . . . , tk} that steer
the system from the identity in the group to any target
configuration gf ∈ G. In mathematical terms, we need to
solve

gf = exp(t1Vi1) · · · exp(tkVik ).

No general methodology is currently available to solve
these problems in closed-form. In this paper, we shall
present a catalog of solutions for underactuated exam-
ple systems defined on SE(2), SO(3), or SE(2) × R.
Based on a controllability analysis, we classify families of
underactuated systems that pose qualitatively different
planning problems. For each case, we solve the planning
problem by providing a combination of k maneuvers and
corresponding closed-form expressions for the coasting
times. In each case, we attempt to select k = dim(G): this
is the minimum necessary (but sometimes not sufficient)
number of maneuvers needed. If the motion planning
algorithm entails exactly dim(G) maneuvers, i.e., min-
imizes the number of switches, we will refer to it as a
switch-optimal algorithm.



Notation

Here we briefly collect the notation used throughout
the paper. Let idS : S → S denote the identity map on
the set S and let indS : R → R denote the characteristic
function of the set S, i.e., indS(x) = 1 if x ∈ S and
indS(x) = 0 if x 6∈ S. Let arctan2 (x, y) denote the arctan-
gent of y/x taking into account which quadrant the point
(x, y) is in. We make the convention arctan2 (0, 0) = 0.
Let sign : R → R be the sign function, sign(x) = 1 if
x > 0, sign(x) = −1 if x < 0 and sign(0) = 0. Let Ai j

be the (i, j) element of the matrix A. Given v, w ∈ Rn,
let arg(v, w) ∈ [0, π [ denote the angle between them.
Finally, let ‖ · ‖ denote the Euclidean norm.

II. CATALOG FOR SE(2)

Let
{

eθ , ex, ey

}
be the basis of se(2):

eθ =




0 −1 0
1 0 0
0 0 0



 , ex =




0 0 1
0 0 0
0 0 0



 , ey =




0 0 0
0 0 1
0 0 0



 .

Then, [eθ , ex] = ey, [ey, eθ] = ex and [ex, ey] = 0. For ease
of presentation, we write V ∈ se(2) as V = aeθ + bex +
cey ≡ (a, b, c), and g ∈ SE(2) as

g =




cosθ − sinθ x
sinθ cosθ y

0 0 1



 ≡ (θ, x, y) .

With this notation, exp : se(2) → SE(2) is

exp(a, b, c)

=

(
a ,

sin a

a
b − 1 − cos a

a
c ,

1 − cos a

a
b +

sin a

a
c

)

for a 6= 0, and exp(0, b, c) = (0, b, c).
Lemma 2.1 (Controllability conditions): Consider two

left-invariant vector fields V1 = (a1, b1, c1) and
V2 = (a2, b2, c2) in se(2). Their Lie closure is full rank if
and only if a1b2 − b1a2 6= 0 or c1a2 − a1c2 6= 0.

Proof: Given the equality [V1, V2] =
(0, c1a2 − a1c2 , a1b2 − b1a2), one can see that
span {V1, V2, [V1, V2]} = se(2) if and only if

det




a1 b1 c1

a2 b2 c2

0 c1a2 − c2a1 b2a1 − b1a2





= (a1b2 − b1a2)
2 + (c1a2 − a1c2)

2 6= 0 .

Let V1 = (a1, b1, c1) and V2 = (a2, b2, c2) satisfy
the controllability condition in Lemma 2.1. Accordingly,
either a1 or a2 is different from zero. Without loss of gen-
erality, we will assume that a1 6= 0, and take a1 = 1. As
a consequence of Lemma 2.1, there are two qualitatively
different cases to be considered:

Σ1 = {(V1, V2) ∈ se(2) × se(2) | V1 =
(1, b1, c1), V2 = (0, b2, c2) and b2

2 + c2
2 = 1}.

Σ2 = {(V1, V2) ∈ se(2) × se(2) | V1 =
(1, b1, c1), V2 = (1, b2, c2) and either b1 6=
b2 or c1 6= c2}.

Since dim(se(2)) = 3, we need at least three maneu-
vers along the flows of {V1, V2} to plan any motion
between two desired configurations. Consider the map

FK(1) : R3 → SE(2) defined by

FK(1)(t1, t2, t3) = exp(t1V1) exp(t2V2) exp(t3V1). (2)

In the following propositions, we compute solutions for
each case.

Proposition 2.2: (Inversion for Σ1-systems on SE(2))
Let (V1, V2) ∈ Σ1. Consider the map IKΣ1 : SE(2) → R3,

IKΣ1(θ, x, y) = (arctan2 (α, β) , ρ,θ − arctan2 (α, β)),

where ρ =
√

α2 + β2 and

[
α

β

]
=

[
b2 c2

−c2 b2

] ([
x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΣ1 is a global right inverse of FK(1), that is, it

satisfies FK(1) ◦ IKΣ1 = idSE(2) : SE(2) → SE(2).
Note that the algorithm provided in the proposition is
not only switch-optimal, but also works globally.

Proof: The proof follows from the expression for the

forward kinematics map. If FK(1)(t1, t2, t3) = (θ, x, y),
then

θ = t1 + t3 ,
[

x
y

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]
+

[
b2 −c2

c2 b2

] [
cos t1

sin t1

]
t2 .

The equation in [x, y]T can be rewritten as [α, β]T =
[cos t1, sin t1]

Tt2. The selection t1 = arctan2 (α, β), t2 =
ρ solves this equation.

Proposition 2.3: (Inversion for Σ2-systems on SE(2))
Let (V1, V2) ∈ Σ2. Define the neighborhood of the
identity in SE(2)

U = {(θ, x, y) ∈ SE(2) | ‖(c1 − c2, b1 − b2)‖2 ≥
max{‖(x, y)‖2 , 2(1 − cosθ)‖(b1, c1)‖2}.

Consider the map IKΣ2 : U ⊂ SE(2) → R3 whose
components are

IKΣ2
1 (θ, x, y) = arctan2

(
ρ,

√
4 − ρ2

)
+ arctan2 (α, β) ,

IKΣ2
2 (θ, x, y) = arctan2

(
2 − ρ2, ρ

√
4 − ρ2

)
,

IKΣ2
3 (θ, x, y) = θ − IKΣ2

1 (θ, x, y) − IKΣ2
2 (θ, x, y) ,

and ρ =
√

α2 + β2 and

[
α

β

]
=

1

‖(c1 − c2, b1 − b2)‖2

[
c1 − c2 b2 − b1

b1 − b2 c1 − c2

]

·
([

x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΣ2 is a local right inverse of FK(1), that is, it

satisfies FK(1) ◦ IKΣ2 = idU : U → U.



Proof: If (θ, x, y) ∈ U, then

ρ = ‖(α, β)‖ ≤ 1

‖(c1 − c2, b1 − b2)‖

·
(
‖(x, y)‖ +

∥∥∥
[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

] ∥∥∥
)
≤ 2 ,

and therefore IKΣ2 is well-defined on U. Let
IKΣ2(θ, x, y) = (t1, t2, t3). The components of

FK(1)(t1, t2, t3) are

FK(1)
1 (t1, t2, t3) = t1 + t2 + t3 ,

[
FK(1)

2 (t1, t2, t3)

FK(1)
3 (t1, t2, t3)

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]

+

[
c1 − c2 b1 − b2

b2 − b1 c1 − c2

] [
cos t1 − cos(t1 + t2)
sin t1 − sin(t1 + t2)

]
.

After some computations, one can verify

FK(1)(t1, t2, t3) = (θ, x, y).
Remark 2.4: The map IKΣ2 in Proposition 2.3 is a

local right inverse to FK(1) on a domain that strictly
contains U. In other words, our estimate of the domain
of IKΣ2 is conservative. For instance, for points of the
form (0, x, y) ∈ SE(2), it suffices to ask for

‖(x, y)‖ ≤ 2‖(c1 − c2, b1 − b2)‖ .

For a point (θ, 0, 0) ∈ SE(2), it suffices to ask for

(1 − cosθ)‖(b1, c1)‖2 ≤ 2‖(c1 − c2, b1 − b2)‖2 .

Additionally, without loss of generality, it is convenient
to assume that the vector fields V1, V2 satisfy b2

1 + c2
1 ≤

b2
2 + c2

2, so as to maximize the domain U.
We illustrate the performance of the algorithms in

Figure 1.

Fig. 1. We illustrate the inverse-kinematics planners for Σ1 and Σ2.
The parameters of both systems are (b1 , c1) = (0, .5), (b2 , c2) = (1, 0).
The target final location is (π/6, 1, 1).

III. CATALOG FOR SO(3)

Let
{

êx, êy, êz

}
be the basis of so(3):

êx =




0 0 0
0 0 −1
0 1 0



, êy =




0 0 1
0 0 0
−1 0 0



, êz =




0 −1 0
1 0 0
0 0 0



.

Here we make use of the notation V̂ = aêx + bêy +

cêz ≡ (̂a, b, c) based on the Lie algebra isomorphism ·̂ :
(R3,×) → (so(3), [·, ·]). An expression of the exponential

exp : so(3) → SO(3) is given in terms of Rodrigues
formula [10]:

exp(η̂) = I3 +
sin ‖η‖
‖η‖ η̂ +

1 − cos ‖η‖
‖η‖2

η̂2 .

The commutator relations are [êx, êz] = −êy,
[
êy, êz

]
= êx

and
[
êx, êy

]
= êz.

Lemma 3.1 (Controllability conditions): Consider two
left-invariant vector fields V1 = (a1, b1, c1) and
V2 = (a2, b2, c2) in so(3). Their Lie closure is full rank
if and only if c1a2 − a1c2 6= 0 or b1c2 − c1b2 6= 0 or
b1a2 − a1b2 6= 0.

Proof: Given the equality [V̂1, V̂2] = V̂1 × V2, with
V1 × V2 = (b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1), one can
see that span {V1, V2, [V1, V2]} = so(3) if and only if

det




a1 b1 c1

a2 b2 c2

b1c2 − b2c1 c1a2 − c2a1 a1b2 − a2b1



 =

(b1c2 − b2c1)
2 + (c1a2 − c2a1)

2 + (a1b2 − a2b1)
2 6= 0 .

Let V1, V2 satisfy the controllability condition in
Lemma 3.1. Without loss of generality, we can assume
V1 = ez (otherwise we perform a suitable change of
coordinates), and ‖V2‖2 = 1. In what follows, we let
V2 = (a, b, c). Since ez and V2 are linearly independent,
necessarily a2 + b2 6= 0 and c 6= ±1.

Since dim(so(3)) = 3, we need at least three maneu-
vers to plan any motion between two desired configu-

rations. Consider the map FK(2) : R3 → SO(3) defined
by

FK(2)(t1, t2, t3) = exp(t1 êz) exp(t2V̂2) exp(t3 êz) . (3)

Observe that equation (3) is similar to the formula for
certain sets of Euler angles; see [10].

Proposition 3.2 (Inversion for systems on SO(3)): Let
V1 = (0, 0, 1) and V2 = (a, b, c), with a2 + b2 6= 0 and
c 6= ±1. Define the neighborhood of the identity in
SO(3)

U = {R ∈ SO(3) | R33 ∈ [2c2 − 1, 1]}.

Consider the map IK : U ⊂ SO(3) → R3 whose compo-
nents are

IK1(R) = arctan2 (w1R13 + w2R23,−w2R13 + w1R23) ,

IK2(R) = arccos

(
R33 − c2

1 − c2

)
,

IK3(R) = arctan2 (v1R31 + v2R32, v2R31 − v1R32) ,

where, for z = (1 − cos(IK2(R)), sin(IK2(R)))T,
[

w1

w2

]
=

[
ac b
cb −a

]
z ,

[
v1

v2

]
=

[
ac −b
cb a

]
z.

Then, IK is a local right inverse of FK(2), that is, it

satisfies FK(2) ◦ IK = idU : U → U.

Proof: Let R ∈ U. Then, −1 ≤ R33−c2

1−c2 ≤ 1, and

therefore IK(R) is well-defined. Denote ti = IKi(R)



and let us show R = FK(2)(t1, t2, t3). Recall that the
rows (resp. the columns) of a rotation matrix consist
of orthonormal vectors in R3. Therefore, the matrix
FK(2)(t1, t2, t3) ∈ SO(3) is completely determined by

its third column FK(2)(t1, t2, t3)ez and its third row

eT
z FK(2)(t1, t2, t3).

The factors in (3) admit the following closed-form
expressions. For ct = cos t and st = sin t, we compute

exp(têz) =




ct −st 0
st ct 0
0 0 1



 ,

and exp(tV̂2) equals

[
a2 + (1 − a2)ct ba(1 − ct)− cst ca(1 − ct) + bst

ab(1 − ct) + cst b2 + (1 − b2)ct cb(1 − ct)− ast

ac(1 − ct)− bst bc(1 − ct) + ast c2 + (1 − c2)ct

]
.

Now, using the fact that exp(têz)ez = ez, we compute

FK(2)(t1, t2, t3)ez = exp(t1 êz) exp(t2V̂2) exp(t3 êz)ez

= exp(t1 êz) exp(t2V̂2)ez = exp(t1 êz)




w1

w2

R33



 = Rez .

A similar computations shows that eT
z FK(2)(t1, t2, t3) =

eT
z R, which concludes the proof.

Remark 3.3: If êz and V2 are perpendicular, then U =
SO(3) and the map IK is a global right inverse of FK(2).
Otherwise, let us provide an equivalent formulation
of the constraint R33 ∈ [2c2 − 1, 1] in terms of the
axis/angle representation of the rotation matrix R. Recall
that there always exist, possibly non-unique, a rotation
angle θ ∈ [0, π ] and an unit-length axis of rotation
ω ∈ S2 such that R = exp(ω̂θ). Because ω̂2 = ωTω− I3,
an equivalent statement of Rodrigues formula is

R = I3 + ω̂ sinθ + (1 − cosθ)(ωTω − I3).

From eT
z ω = cos(arg(ez,ω)) we compute

eT
z Rez = eT

z ez + (1 − cosθ)((eT
z ω)2 − eT

z ez)

= 1 + (1 − cosθ)((eT
z ω)2 − 1)

= 1 − sin2(arg(ez,ω))(1 − cosθ) (4)

Therefore, R33 ∈ [2c2 − 1, 1] if and only if

1 − sin2(arg(ez,ω))(1 − cosθ) ≥ 2c2 − 1

⇐⇒ sin2(arg(ez,ω))(1 − cosθ) ≤ 2(1 − c2) .

Two sufficient conditions are also meaningful. In terms
of the rotation angle, if |θ| ≤ arccos(2c2 − 1) then 1 −
cosθ ≤ 2(1 − c2), and in turn equation (4) is satisfied.
In terms of the axis of rotation, a sufficient condition
for equation (4) is sin2(arg(ez,ω)) ≤ sin2(arg(ez, V2)) =
1 − c2.

We illustrate the performance of the algorithms in
Figure 2.

Fig. 2. We illustrate the inverse-kinematic planner on SO(3). The
system parameters are (a, b, c) = (0, 1/

√
2, 1/

√
2). The target final

rotation is exp(π/3, π/3, 0). To render the sequence of three rotations
visible, the body is translated along the inertial x-axis.

IV. CATALOG FOR SE(2) ×R

Let
{
(ex, 0), (ey, 0), (eθ , 0), (0, 0, 0, 1)

}
be a basis of

se(2)×R, where
{

ex, ey, eθ
}

stands for the basis of se(2)
introduced in Section II. With a slight abuse of notation,
we will denote by ex the element (ex, 0), and so on. Also,
we will use the shorthand notation ez = (0, 0, 0, 1). The
Lie algebra commutators are given by

[ex, ey] = [ex, ez] = [ey, ez] = [ez, eθ] = 0 ,

[ex, eθ] = −ey, [ey, eθ] = ex .

A left-invariant vector field V in se(2) × R is written
as V = aeθ + bex + cey + dez ≡ (a, b, c, d), and g ∈
SE(2) × R as g = (θ, x, y, z). The exponential map,
exp : se(2)×R −→ SE(2)×R, is given component-wise
by the exponential on se(2) and R, respectively. That is,
exp(V) is equal to

(
a ,

sin a

a
b − 1 − cos a

a
c ,

1 − cos a

a
b +

sin a

a
c , d

)

if a 6= 0, and exp(V) = (0, b, c, d) if a = 0.
Lemma 4.1: (Controllability conditions for SE(2) × R

systems with 2 inputs) Consider two left-invariant vector
fields V1 = (a1, b1, c1, d1) and V2 = (a2, b2, c2, d2) in
se(2) × R. Their Lie closure is full rank if and only
if a2d1 − d2a1 6= 0, and either c1a2 − a1c2 6= 0 or
a1b2 − b1a2 6= 0.

Proof: Since [V1, V2] = (0 , c1a2 − a1c2 , a1b2 −
b1a2 , 0) 6= 0, we deduce that either c1a2 − a1c2 6= 0
or a1b2 − b1a2 6= 0. In particular, this implies that
necessarily a1 6= 0 or a2 6= 0. Assume a1 6= 0. Now,

[V1, [V1, V2]] = (0, a1(−b2a1 + b1a2), a1(c1a2 − c2a1), 0) ,

and note that [V2, [V1, V2]] = (a2/a1)[V1, [V1, V2]]. Fi-
nally, Lie({V1, V2}) = se(2) ×R if and only if

det





b1 c1 d1 a1

b2 c2 d2 a2

c1a2 − c2a1 b2a1 − b1a2 0 0
a1(−b2a1 + b1a2) a1(c1a2 − c2a1) 0 0



 =

a1(a2d1 − d2a1)
[
(c1a2 − c2a1)

2 + (−b2a1 + b1a2)
2
]
6= 0.

Since [V1, V2] 6= 0, this condition reduces to a2d1 −
d2a1 6= 0.



Let V1, V2 satisfy the controllability condition in
Lemma 4.1. Without loss of generality, we can assume
a1 = 1. As in the case of SE(2), there are two qualita-
tively different situations to be considered:

Λ1 = {(V1, V2) ∈ (se(2) × R)2 | V1 =
(1, b1, c1, d1), V2 = (0, b2, c2, 1) and b2

2 + c2
2 6=

0}.
Λ2 = {(V1, V2) ∈ (se(2) × R)2 | V1 =
(1, b1, c1, d1), V2 = (1, b2, c2, d2), d1 6=
d2 and either b1 6= b2 or c1 6= c2}.

Lemma 4.2: (Controllability conditions for SE(2) × R
systems with 3 inputs) Consider three left-invariant vec-
tor fields Vi = (ai , bi , ci , di), i = 1, 2, 3 in se(2) × R.
Assume Lie(

{
Vi1 , Vi2

}
) ( se(2) × R, for i j ∈ {1, 2, 3}

and Lie({V1, V2, V3}) = se(2) × R. Then, possibly after
a reordering of the vector fields, they must fall in one of
the following cases:

Λ3 = {(V1, V2, V3) ∈ (se(2) × R)3 | V1 =
(1, b1, c1, d1), V2 = (0, b2, c2, 0), V3 =
(1, b1, c1, d3), d1 6= d3 and b2

2 + c2
2 6= 0}.

Λ4 = {(V1, V2, V3) ∈ (se(2) × R)3 | V1 =
(1, b1, c1, d1), V2 = (0, b2, c2, 0), V3 =
(0, 0, 0, d3), 0 6= d3 6= d1 and b2

2 + c2
2 6= 0}.

Λ5 = {(V1, V2, V3) ∈ (se(2) × R)3 | V1 =
(1, b1, c1, d1), V2 = (1, b2, c2, d1), V3 =
(0, 0, 0, d3), d3 6= 0 and either b2 6= b1 or c1 6=
c2}.

Proof: Without loss of generality, we can assume that
[V1, V2] 6= 0 and a1 = 1. Since Lie({V1, V2}) 6= se(2)×R,
then a2d1 = d2. Given that the Lie closure of {V1, V2, V3}
is full-rank, and dim(span {V1, V2, [V1, V2]}) = 3, we
have that d3 6= a3d1. This latter fact, together with
Lie({V1, V3}) ( se(2)×R, implies that [V1, V3] = 0, and
therefore b3 = a3b1, c1a3 = c3.

We distinguish now two situations depending on
[V2, V3] being zero or not.
(a) [V2, V3] 6= 0. Necessarily, a3 6= 0. Therefore, we can
assume a3 = 1. Since Lie({V2, V3}) is not full-rank, then
a2 = 0. We then have a Λ3-system.
(b) [V2, V3] = 0. Necessarily, b3a2 = b2a3 and c2a3 = c3a2.
Depending on the values of a2 and a3, there are four sub-
cases:

(i) If a2 = a3 = 0, then d2 = 0, d3 6= 0, b3 = c3 = 0.
Then, this is a Λ4-system.

(ii) If a2 = 0, and a3 = 1, then b2 = b3a2 = 0,
c2 = c3a2 = 0 and also d2 = d1a2 = 0. This is
not possible as it would make V2 = 0.

(iii) If a2 = 1 and a3 = 0, then b3 = c3 = 0, and d2 = d1.
Therefore, this is a Λ5-system.

(iv) Finally, if a2 = 1 and a3 = 1, then b1 = b2, c1 =
c2, and d1 = d2, which makes V1 and V2 linearly
dependent.

A. Two-dimensional input distribution

Let V1, V2 satisfy the controllability condition in
Lemma 4.1. Since dim(se(2) × R) = 4, we need at

least four maneuvers to plan any motion between two

desired configurations. Consider the map FK(3) : R4 →
SE(2) ×R,

FK(3)(t1, t2, t3, t4) = exp(t1V2) exp(t2V1)

· exp(t3V2) exp(t4V1) . (5)

Proposition 4.3: (Lack of switch-optimal inversion for
Λ1-systems on SE(2) × R) Let (V1, V2) ∈ Λ1. Then, the

map FK(3) in not invertible at any neighborhood of the
origin.

Proof: Let FK(3)(t1, t2, t3, t4) = (θ, x, y, z). Then,

θ = t2 + t4 ,

z = t1 + t3 + d1(t2 + t4) = t1 + t3 + d1θ ,
[

x
y

]
=

[
−c1

b1

]
+

[
c1 b1

−b1 c1

] [
cosθ

sinθ

]

+

[
b2

c2

]
t1 +

[
b2 −c2

c2 b2

] [
cos t2

sin t2

]
t3 .

Consider a configuration with θ = z = 0. Then, the
equation in (x, y) is invertible if and only if the map
f : R2 → R2 defined by

[
t2

t3

]
7−→

[
cos t2 − 1

sin t2

]
t3

is invertible. But f can not be inverted in (0, β), β 6= 0.

Remark 4.4: A similar situation occurs if we start tak-
ing maneuvers along the flow of V1 instead of V2.

Consider the map FK(4) : R5 → SE(2)×R defined by

FK(4)(t1, t2, t3, t4, t5) = exp(t1V1) exp(t2V2)

· exp(t3V1) exp(t4V2) exp(t5V1) . (6)

Proposition 4.5 (Inversion for Λ1-systems on SE(2) ×R):
Let (V1, V2) ∈ Λ1. Consider the map IKΛ1 : SE(2) ×
R → R5 whose components are

IKΛ1
1 (θ, x, y, z) = π ind]−∞,0[(γ − ρ) + arctan2 ((ρ + γ)/2, 0)

+ arctan2 (α, β) ,

IKΛ1
2 (θ, x, y, z) = (γ − ρ)/2,

IKΛ1
3 (θ, x, y, z) = arctan2 ((ρ −γ)/2, 0) − arctan2 ((ρ + γ)/2, 0)

+ π(ind]−∞,0[(γ + ρ) − ind]−∞,0[(γ − ρ)),

IKΛ1
4 (θ, x, y, z) = (γ + ρ)/2,

IKΛ1
5 (θ, x, y, z) = θ − IKΛ1

1 (θ, x, y, z) − IKΛ1
3 (θ, x, y, z),

where ρ =
√

α2 + β2 and

γ = z − d1θ ,
[
α

β

]
=

1

b2
2 + c2

2

[
b2 c2

−c2 b2

] ([
x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΛ1 is a global right inverse of FK(4), that is,

it satisfies FK(4) ◦ IKΛ1 = idSE(2)×R : SE(2) × R →
SE(2) ×R.



Proof: The proof follows from the expression for

the forward kinematics map. If FK(4)(t1, t2, t3, t4, t5) =
(θ, x, y, z), then

θ = t1 + t3 + t5 ,

z = t2 + t4 + d1θ ,
[

x
y

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]

+

[
b2 −c2

c2 b2

] ([
cos t1

sin t1

]
t2 +

[
cos(t1 + t3)
sin(t1 + t3)

]
t4

)
.

The equation in [x, y]T can be rewritten as
[
α

β

]
=

[
cos t1

sin t1

]
t2 +

[
cos(t1 + t3)
sin(t1 + t3)

]
t4 ,

which is solved by the selection of coasting times given
by the components of the map IKΛ1 .

Proposition 4.6 (Inversion for Λ2-systems on SE(2) ×R):
Let (V1, V2) ∈ Λ2. Define the neighborhood of the
identity in SE(2) ×R

U =
{
(θ, x, y, z) ∈ SE(2)×R | 4 ‖(c1 − c2, b1 − b2)‖2 ≥
max{‖(x, y)‖2 , 2(1 − cosθ)‖(b1, c1)‖2} ,

|z − d1θ| ≤ 2|d2 − d1| arccos

(
−1 +

1

‖(c1 − c2, b1 − b2)‖

·
(
‖(x, y)‖ + ‖(b1, c1)‖

√
2(1 − cosθ)

)) }
.

Consider the map IKΛ2 : SE(2) × R → R5 whose com-
ponents are

IKΛ2
1 (θ, x, y, z) = arctan2

(
l,

√
4 − l2

)
+ arctan2 (α, β) ,

IKΛ2
2 (θ, x, y, z) = 2 arctan2

(√
4 − l2, l

)
,

IKΛ2
3 (θ, x, y, z) = − arctan2

(
ρ − l,

√
4 − (ρ − l)2

)

− IKΛ2
1 (θ, x, y, z) − IKΛ2

2 (θ, x, y, z),

IKΛ2
4 (θ, x, y, z) = γ − IKΛ2

2 (θ, x, y, z)

IKΛ2
5 (θ, x, y, z) = θ −

4

∑
i=1

IKΛ2
i (θ, x, y, z),

where ρ =
√

α2 + β2, s = sin(γ/2), c = cos(γ/2) and

γ = (z − d1θ)/(d2 − d1) ,

l =
ρ(1 + c) + sign(γ)

√
ρ2(1 + c)2 − (1 + c)(2ρ2 − 8s2)

2(1 + c)
,

[
α

β

]
=

1

‖(d1 − d2, c1 − c2)‖2

[
d1 − d2 c2 − c1

c1 − c2 d1 − d2

]

·
([

x
y

]
−

[
−d1 c1

c1 d1

] [
1 − cosθ

sinθ

])
.

Then, IKΛ2 is a local right inverse of FK(4), that is, it

satisfies FK(4) ◦ IKΛ2 = idU : U → U.
Proof: If (θ, x, y, z) ∈ U, then ρ ≤ 4 and |γ| ≤

2 arccos (−1 + ρ/2). This in turn implies that

c = cos
(γ

2

)
≥ −1 +

ρ

2
≥ −1 +

ρ2
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over ρ ≤ 4. The second inequality guarantees that
l is well-defined. The first one implies l ∈ [ρ −
2, 2], which makes IKΛ2 well-defined on U. Let
IKΛ2(θ, x, y, z) = (t1, t2, t3, t4, t5). The components of

FK(4)(t1, t2, t3, t4, t5) are the following

θ = t1 + t2 + t3 + t4 + t5 ,

z = d1θ + (d2 − d1)(t2 + t4) ,
[

x
y

]
=

[
−c1

b1

]
+

[
c1 b1

−b1 c1

] [
cosθ

sinθ

]
+

[
c1 − c2 b1 − b2

b2 − b1 c1 − c2

]

[
cos t1 − cos(t1 + t2) + cos(t1 + t2 + t3) − cos(∑4

i=1 ti)
sin t1 − sin(t1 + t2) + sin(t1 + t2 + t3) − sin(∑4

i=1 ti)

]

After some rather involved computations, one can verify

FK(4)(t1, t2, t3, t4, t5) = (θ, x, y, z).

B. Three-dimensional input distribution

Let V1, V2, V3 satisfy the controllability condition in

Lemma 4.2. Consider the map FK(5) : R4 → SE(2) × R
defined by

FK(5)(t1, t2, t3, t4) = exp(t1V1) exp(t2V3)

· exp(t3V2) exp(t4V1) . (7)

Proposition 4.7 (Inversion for Λ3-systems on SE(2) ×R):
Let (V1, V2, V3) ∈ Λ3. Consider the map
IKΛ3 : SE(2) ×R → R4 whose components are

IKΛ3
1 (θ, x, y, z) = arctan2 (α, β) − IKΛ3

2 (θ, x, y, z) ,

IKΛ3
2 (θ, x, y, z) =

z − d1θ

d3 − d1
,

IKΛ3
3 (θ, x, y, z) = ρ ,

IKΛ3
4 (θ, x, y, z) = θ − arctan2 (α, β) ,

where ρ =
√

α2 + β2 and
[
α

β

]
=

1

b2
2 + c2

2

[
b2 c2

−c2 b2

] ([
x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΛ3 is a global right inverse of FK(5), that is,

it satisfies FK(5) ◦ IKΛ3 = idSE(2)×R : SE(2) × R →
SE(2) ×R.

Proof: The proof follows from the expression for the

map FK(5). If FK(5)(t1, t2, t3, t4) = (θ, x, y, z), then

θ = t1 + t2 + t4 ,

z = d1t1 + d3t2 + d1t4 = d1θ + (d3 − d1)t2 ,
[

x
y

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]
+

[
b2 −c2

c2 b2

] [
cos(t1 + t2)
sin(t1 + t2)

]
t3 .

The equation in [x, y]T can be rewritten as
[
α

β

]
=

[
cos(t1 + t2)
sin(t1 + t2)

]
t3 ,

which is solved by the selection given by (t1, t2, t3, t4) =
IKΛ3(θ, x, y, z).



Consider the map FK(6) : R4 → SE(2)×R defined by

FK(6)(t1, t2, t3, t4) = exp(t1V1) exp(t2V2)

· exp(t3V1) exp(t4V3) . (8)

Proposition 4.8 (Inversion for Λ4-systems on SE(2) ×R):
Let (V1, V2, V3) ∈ Λ4. Consider the map
IKΛ4 : SE(2) ×R → R4 given by

IKΛ4(θ, x, y, z)=

(
arctan2 (α, β), ρ,θ−arctan2 (α, β),

z − d1θ

d3

)
,

where ρ =
√

α2 + β2 and
[
α

β

]
=

1

b2
2 + c2

2

[
b2 c2

−c2 d2

] ([
x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΛ4 is a global right inverse of FK(6), that is,

it satisfies FK(6) ◦ IKΛ4 = idSE(2)×R : SE(2) × R →
SE(2)×R.

Proof: If FK(6)(t1, t2, t3, t4) = (θ, x, y, z), then

θ = t1 + t3 ,
[

x
y

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]
+

[
b2 −c2

c2 b2

] [
cos t1

sin t1

]
t2 ,

z = d1(t1 + t3) + d3t4 .

The equation in [x, y]T can be rewritten as [α, β]T =
[cos t1, sin t1]

Tt2. As in the proof of Proposition 2.2, the
selection t1 = arctan2 (α, β), t2 = ρ solves it.

Proposition 4.9 (Inversion for Λ5-systems on SE(2) ×R):
Let (V1, V2, V3) ∈ Λ5. Define the neighborhood of the
identity in SE(2) ×R

U = {(θ, x, y) ∈ SE(2) ×R | ‖(c1 − c2, b1 − b2)‖2 ≥
max{‖(x, y)‖2 , 2(1 − cosθ)‖(b1, c1)‖2}.

Consider the map IKΛ5 : U ⊂ SE(2) × R → R4 whose
components are

IKΛ5
1 (θ, x, y, z) = arctan2

(
ρ,

√
4 − ρ2

)
+ arctan2 (α, β) ,

IKΛ5
2 (θ, x, y, z) = arctan2

(
2 − ρ2, ρ

√
4 − ρ2

)
,

IKΛ5
3 (θ, x, y, z) = θ − IKΛ5

1 (θ, x, y) − IKΛ5
2 (θ, x, y) ,

IKΛ5
4 (θ, x, y, z) =

z − d1θ

d3
,

and ρ =
√

α2 + β2 and
[
α

β

]
=

1

‖(c1 − c2, b1 − b2)‖2

[
c1 − c2 b2 − b1

b1 − b2 c1 − c2

]

·
([

x
y

]
−

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

])
.

Then, IKΛ5 is a local right inverse of FK(6), that is, it

satisfies FK(6) ◦ IKΛ5 = idU : U → U.
Proof: If (θ, x, y, z) ∈ U, then one can see that ρ =

‖(α, β)‖ ≤ 2, and therefore IKΛ5 is well-defined on U.

Let IKΛ5(θ, x, y, z) = (t1, t2, t3, t4). The components of

FK(6)(t1, t2, t3, t4) are

FK(6)
1 (t1, t2, t3, t4) = t1 + t2 + t3 ,

[
FK(6)

2 (t1, t2, t3, t4)

FK(6)
3 (t1, t2, t3, t4)

]
=

[
−c1 b1

b1 c1

] [
1 − cosθ

sinθ

]

+

[
c1 − c2 b1 − b2

b2 − b1 c1 − c2

] [
cos t1 − cos(t1 + t2)
sin t1 − sin(t1 + t2)

]
,

FK(6)
4 (t1, t2, t3, t4) = d1(t1 + t2 + t3) + d3t4 .

After some computations, one can verify

FK(6)(t1, t2, t3, t4) = (θ, x, y, z).

V. CONCLUSIONS

We have presented a catalog of feasible motion plan-
ning algorithms for underactuated controllable systems
on SE(2), SO(3) and SE(2) × R. Future directions of
research include (i) considering other relevant classes of
underactuated systems on SE(3), (ii) computing catalogs
of optimal sequences of maneuvers, and (iii) developing
hybrid feedback schemes that rely on the proposed
open-loop planners to achieve point stabilization and
trajectory tracking.

Acknowledgments

This research was partially supported by NSF Grant
IIS-0118146 and Spanish MCYT Grant BFM2001-2272.

REFERENCES

[1] H. Arai, K. Tanie, and N. Shiroma, “Nonholonomic control of a
three-DOF planar underactuated manipulator,” IEEE Transactions
on Robotics and Automation, vol. 14, no. 5, pp. 681–695, 1998.

[2] A. D. Lewis, “When is a mechanical control system kinematic?”
in IEEE Conf. on Decision and Control, Phoenix, AZ, Dec. 1999, pp.
1162–1167.

[3] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “Collision-
free trajectory planning for a 3-DOF robot with a passive joint,”
International Journal of Robotics Research, vol. 19, no. 12, pp. 1171–
1184, 2000.

[4] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled
trajectory planning in underactuated mechanical systems,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 4, pp. 402–412,
2001.

[5] F. Bullo, A. D. Lewis, and K. M. Lynch, “Controllable kinematic
reductions for mechanical systems: concepts, computational tools,
and examples,” in Mathematical Theory of Networks and Systems,
South Bend, IN, Aug. 2002.

[6] S. Martı́nez, J. Cortés, and F. Bullo, “Motion planning and
control problems for underactuated robots,” in Control Problems
in Robotics, ser. STAR, Springer Tracts in Advanced Robotics,
A. Bicchi, H. Christensen, and D. Prattichizzo, Eds. New York:
Springer Verlag, 2003, vol. 4, pp. 59–74.

[7] F. Bullo and A. D. Lewis, “Kinematic controllability and motion
planning for the snakeboard,” IEEE Transactions on Robotics and
Automation, vol. 19, no. 3, pp. 494–498, 2003.

[8] S. Iannitti and K. M. Lynch, “Minimum control switch motions
for the snakeboard: A case study in kinematically controllable
underactuated systems,” Preprint, Feb. 2003.

[9] B. Paden, “Kinematics and control of robot manipulators,” Ph.D.
dissertation, University of California, U.C. Berkeley, 1986.

[10] R. M. Murray, Z. X. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

[11] E. Frazzoli and F. Bullo, “On quantization and optimal control of
dynamical systems with symmetries,” in IEEE Conf. on Decision
and Control, Las Vegas, NV, Dec. 2002, pp. 817–823.

[12] D. Manocha and J. F. Canny, “Efficient inverse kinematics for
general 6R manipulators,” IEEE Transactions on Robotics and Au-
tomation, vol. 10, no. 5, pp. 648–657, 1994.


