A catalog of inverse-kinematics planners for underactuated systems on matrix Lie groups

Sonia Martínez, Jorge Cortés, and Francesco Bullo

Abstract—This paper presents motion planning algorithms for underactuated systems evolving on rigid rotation and displacement groups. Motion planning is transcribed into (low-dimensional) combinatorial selection and inverse-kinematic problems. We present a catalog of solutions for all underactuated systems on $\text{SE}(2)$, $\text{SO}(3)$ and $\text{SE}(2) \times \mathbb{R}$ classified according to their controllability properties.

I. INTRODUCTION

This paper presents motion planning algorithms for underactuated mechanical control systems. We consider kinematic models that can switch between specified sets of admissible vector fields. These models are motivated by recent progress in kinematic modeling and kinematic reductions for mechanical control systems; see [1], [2], [3], [4], [5], [6]. In particular we focus on families of left-invariant vector fields defined on rigid displacements subgroups.

An important advantage of using a kinematic model as opposed to a full dynamic model is the simplification of the resulting control problem. In this way, motion planning is transcribed into low-dimensional combinatorial selection and inverse-kinematic problems. Although closed-form solutions and general methodologies for the motion planning problem remain unfeasible, the transcription into kinematic models renders individual systems easier to tackle; e.g., [4] discusses 3R planar manipulators and [7], [8] discuss the snakeboard system.

The literature on inverse kinematics suggests numerous techniques that have never been applied in the context of motion planning. Solution methods include (i) the Paden-Kahan subproblems approach as described in [9], [10], (ii) a linear programming approach for linear translational generators [11], and (iii) the general polynomial programming approach in [12]. The latter and more general method is based on simultaneously solving systems of algebraic equations and on tools from algebraic geometry.

In this paper we provide a catalog of solutions for some interesting and relevant systems. We consider systems evolving on proper subgroups of the group of rigid displacements in three-dimensional Euclidean space. Our solutions are closely related to the system controllability properties and attempt to minimize the number of switches.

Problem statement

We consider left-invariant control systems evolving on a matrix Lie subgroup $G \subset \text{SE}(3)$. Examples include systems on $\text{SE}(2)$, $\text{SO}(3)$ and $\text{SE}(2) \times \mathbb{R}$. As common in matters of Lie group theory, we identify left-invariant vector fields with their value at the identity. Given a family of left-invariant vector fields $\{V_1,\ldots,V_m\}$ on G we consider the associated driftless control system

$$\dot{g}(t) = \sum_{i=1}^{m} V_i(g(t))w_i(t)$$

where $t \mapsto g(t) \in G$ and where $t \mapsto (w_1,\ldots,w_m) \in \{(\pm 1,0,\ldots,0),(0,\pm 1,0,\ldots,0),\ldots,(0,\ldots,0,\pm 1)\}$. For these systems controllability can be assessed by algebraic means: it suffices to check the lack of involutivity of the Lie algebra subspace span$\{V_1,\ldots,V_m\}$. Recall that for matrix Lie algebras, Lie brackets are simply matrix commutators $[A,B] = AB - BA$.

We compute feasible motion plans for the control system (1) by the concatenation of a finite number of flows along the input vector fields. We call a flow along any input vector field a maneuver and its duration a coasting time. Therefore, motion planning is reduced to the problem of selecting a finite-length combination of k maneuvers $\{(i_1,\ldots,i_k) \mid i_j \in \{1,\ldots,m\}\}$ and computing appropriate coasting times $\{t_{i_1},\ldots,t_k\}$ that steer the system from the identity in the group to any target configuration $g_f \in G$. In mathematical terms, we need to solve

$$g_f = \exp(t_{i_1}V_{i_1}) \cdots \exp(t_kV_{i_k}).$$

No general methodology is currently available to solve these problems in closed-form. In this paper, we shall present a catalog of solutions for underactuated example systems defined on $\text{SE}(2)$, $\text{SO}(3)$, or $\text{SE}(2) \times \mathbb{R}$. Based on a controllability analysis, we classify families of underactuated systems that pose qualitatively different planning problems. For each case, we solve the planning problem by providing a combination of k maneuvers and corresponding closed-form expressions for the coasting times. In each case, we attempt to select $k = \dim(G)$: this is the minimum necessary (but sometimes not sufficient) number of maneuvers needed. If the motion planning algorithm entails exactly $\dim(G)$ maneuvers, i.e., minimizes the number of switches, we will refer to it as a switch-optimal algorithm.
Notation

Here we briefly collect the notation used throughout the paper. Let \(\text{id}_S: S \rightarrow S \) denote the identity map on the set \(S \) and let \(\text{id}_S: \mathbb{R} \rightarrow \mathbb{R} \) denote the characteristic function of the set \(S \), i.e., \(\text{id}_S(x) = 1 \) if \(x \in S \) and \(\text{id}_S(x) = 0 \) if \(x \notin S \). Let \(\arctan(2)(x, y) \) denote the arctangent of \(y/x \) taking into account which quadrant the point \((x, y)\) is in. We make the convention \(\arctan(2)(0, 0) = 0 \).

Let \(\mathbb{R} \) be the sign function, \(\text{sign}(x) = 1 \) if \(x > 0 \), \(\text{sign}(x) = -1 \) if \(x < 0 \) and \(\text{sign}(0) = 0 \). Let \(A_{ij} \) be the \((i, j)\) element of the matrix \(A \). Given \(v, w \in \mathbb{R}^n \), let \(\text{arg}(v, w) \in [0, \pi] \) denote the angle between them. Finally, let \(\| \cdot \| \) denote the Euclidean norm.

II. Catalog for SE(2)

Let \(\{e_0, e_x, e_y\} \) be the basis of \(SE(2) \):

\[
e_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad e_x = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.
\]

Then, \(\{e_0, e_x\} = e_y \), \(\{e_y, e_0\} = e_x \), and \(\{e_x, e_y\} = 0 \). For ease of presentation, we write \(V \in SE(2) \) as \(V = ae_0 + be_x + ce_y \equiv (a, b, c) \), and \(g \in SE(2) \) as

\[
g = \begin{bmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{bmatrix} \equiv (\theta, x, y).
\]

With this notation, \(\exp: se(2) \rightarrow SE(2) \) is

\[
\exp(a, b, c) = \left(a, \frac{\sin a}{a} b - \frac{1 - \cos a}{a} c, \frac{1 - \cos a}{a} b + \frac{\sin a}{a} c \right)
\]

for \(a \neq 0 \), and \(\exp(0, b, c) = (0, b, c) \).

Lemma 2.1 (Controllability conditions): Consider two left-invariant vector fields \(V_1 = (a_1, b_1, c_1) \) and \(V_2 = (a_2, b_2, c_2) \) in \(se(2) \). Their Lie closure is full rank if and only if \(a_1 b_2 - b_1 a_2 \neq 0 \) or \(c_1 a_2 - c_2 a_1 \neq 0 \).

Proof: Given the equality \([V_1, V_2] = (0, c_1 a_2 - c_2 a_1, a_1 b_2 - b_1 a_2) \), one can see that span \(\{V_1, V_2, [V_1, V_2]\} = se(2) \) if and only if

\[
\det \begin{bmatrix} 1 & c_1 & 0 \\ 0 & c_2 & 1 \\ a_1 b_2 - b_1 a_2 & a_2 b_1 - b_2 a_1 & (c_1 a_2 - c_2 a_1)^2 \end{bmatrix} = (a_1 b_2 - b_1 a_2)^2 + (c_1 a_2 - c_2 a_1)^2 \neq 0.
\]

Let \(V_1 = (a_1, b_1, c_1) \) and \(V_2 = (a_2, b_2, c_2) \) satisfy the controllability condition in Lemma 2.1. Accordingly, either \(a_1 \) or \(a_2 \) is different from zero. Without loss of generality, we will assume that \(a_1 \neq 0 \), and take \(a_1 = 1 \). As a consequence of Lemma 2.1, there are two qualitatively different cases to be considered:

\(\Sigma_1 = \{(V_1, V_2) \in se(2) \times se(2) \mid V_1 = (1, b_1, c_1), V_2 = (0, b_2, c_2) \text{ and } b_2^2 + c_2^2 = 1 \} \)

\(\Sigma_2 = \{(V_1, V_2) \in se(2) \times se(2) \mid V_1 = (1, b_1, c_1), V_2 = (1, b_2, c_2) \text{ and } b_1 \neq b_2 \text{ or } c_1 \neq c_2 \} \).

Since \(\dim(se(2)) = 3 \), we need at least three maneuvers along the flows of \(\{V_1, V_2\} \) to plan any motion between two desired configurations. Consider the map \(F K^{(1)}: \mathbb{R}^3 \rightarrow SE(2) \) defined by

\[
FK^{(1)}(t_1, t_2, t_3) = \exp(t_1 V_1) \exp(t_2 V_2) \exp(t_3 V_1).
\]

(2)

In the following propositions, we compute solutions for each case.

Proposition 2.2 (Inversion for \(\Sigma \)-systems on \(SE(2) \))

Let \((V_1, V_2) \in \Sigma_1 \). Consider the map \(IK^{\Sigma_1}: SE(2) \rightarrow \mathbb{R}^3 \),

\[
IK^{\Sigma_1}(\theta, x, y) = (\arctan(2)(\alpha, \beta), \rho, \theta - \arctan(2)(\alpha, \beta)),
\]

where \(\rho = \sqrt{\alpha^2 + \beta^2} \) and

\[
\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_2 \\ c_2 \\ -c_2 - b_2 \end{bmatrix} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} -c_1 - b_1 \\ b_1 - c_1 \end{bmatrix} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix}.
\]

Then, \(IK^{\Sigma_1} \) is a global right inverse of \(FK^{(1)} \), that is, it satisfies \(FK^{(1)} \circ IK^{\Sigma_1} = \text{id}_{\mathbb{R}^3} \): \(SE(2) \rightarrow SE(2) \).

Note that the algorithm provided in the proposition is not only switch-optimal, but also works globally.

Proof: The proof follows from the expression for the forward kinematics map. If \(FK^{(1)}(t_1, t_2, t_3) = (\theta, x, y) \), then

\[
\begin{bmatrix} \theta \\ x \\ y \end{bmatrix} = \begin{bmatrix} -c_1 & b_1 & 1 - \cos \theta \\ b_1 & c_1 & \sin \theta \end{bmatrix} \begin{bmatrix} b_2 & c_2 & \cos t_1 \\ -c_2 & b_2 & \sin t_1 \end{bmatrix} t_2.
\]

The equation in \([x, y]^T \) can be rewritten as \([\alpha, \beta]^T = [\cos t_1, \sin t_1]^T t_2 \). The selection \(t_1 = \arctan(2)(\alpha, \beta), t_2 = \rho \) solves this equation.

Proposition 2.3 (Inversion for \(\Sigma \)-systems on \(SE(2) \))

Let \((V_1, V_2) \in \Sigma_2 \). Define the neighborhood of the identity in \(SE(2) \)

\[
U = \{ (\theta, x, y) \in SE(2) \mid \| (c_1 - c_2, b_1 - b_2) \|^2 \geq \max \{ \| (x, y) \|^2, 2(1 - \cos \theta) \| (b_1, c_1) \|^2 \} \}.
\]

Consider the map \(IK^{\Sigma_2}: U \subset SE(2) \rightarrow \mathbb{R}^3 \) whose components are

\[
IK^{\Sigma_2}(\theta, x, y) = \arctan(2)(\rho, \sqrt{4 - \rho^2}) + \arctan(2)(\alpha, \beta),
\]

\[
IK^{\Sigma_2}(\theta, x, y) = \arctan(2)(2 - \rho^2, \rho \sqrt{4 - \rho^2}),
\]

\[
IK^{\Sigma_2}(\theta, x, y) = \theta - FK^{(1)}(\theta, x, y) - FK^{(1)}(\theta, y, x),
\]

and \(\rho = \sqrt{\alpha^2 + \beta^2} \) and

\[
\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\| (c_1 - c_2, b_1 - b_2) \|^2} \begin{bmatrix} c_1 - c_2 & b_2 - b_1 \\ b_1 - b_2 & c_1 - c_2 \end{bmatrix} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix}.
\]

Then, \(IK^{\Sigma_2} \) is a local right inverse of \(FK^{(1)} \), that is, it satisfies \(FK^{(1)} \circ IK^{\Sigma_2} = \text{id}_U \): \(U \rightarrow U \).
Proof: If $(\theta, x, y) \in U$, then
\[
\rho = \|\alpha, \beta\| \leq \left\| (c_1 - c_2, b_1 - b_2) \right\| \cdot \left(\|x, y\| + \frac{1}{\|c_1 \|} \right) \leq 2 \cdot \|x, y\| + \frac{1}{\|c_1 \|} \leq 2,
\]
and therefore \mathcal{IK}^Σ is well-defined on U. Let $\mathcal{IK}^\Sigma((\theta, x, y)) = (t_1, t_2, t_3)$. The components of $\mathcal{FK}^{(1)}(t_1, t_2, t_3)$ are
\[
\mathcal{FK}_1^{(1)}(t_1, t_2, t_3) = t_1 + t_2 + t_3,
\]
\[
\mathcal{FK}_2^{(1)}(t_1, t_2, t_3) = \left[\begin{array}{cc} -c_1 & b_1 \\ b_1 & c_1 \end{array} \right] \left[\begin{array}{c} 1 - \cos \theta \\ \sin \theta \end{array} \right] + \left[\begin{array}{cc} c_1 - c_2 & b_1 - b_2 \\ b_1 - b_2 & c_1 - c_2 \end{array} \right] \cos \theta - \cos(t_1 + t_2),
\]
\[
\mathcal{FK}_3^{(1)}(t_1, t_2, t_3) = \left[\begin{array}{c} 1 - \cos \theta \\ \sin \theta \end{array} \right] - \left[\begin{array}{cc} c_1 - c_2 & b_1 - b_2 \\ b_1 - b_2 & c_1 - c_2 \end{array} \right] \sin \theta - \sin(t_1 + t_2).
\]

After some computations, one can verify $\mathcal{FK}^{(1)}(t_1, t_2, t_3) = (\theta, x, y)$.

Remark 2.4: The map \mathcal{IK}^Σ in Proposition 2.3 is a local inverse on $\mathcal{FK}^{(1)}$ on a domain that strictly contains U. In other words, our estimate of the domain of \mathcal{IK}^Σ is conservative. For instance, for points of the form $(0, x, y) \in \mathcal{SE}(2)$, it suffices to ask for
\[
\|x, y\| \leq 2 \|c_1 - c_2, b_1 - b_2\|.
\]

For a point $(\theta, 0, 0) \in \mathcal{SE}(2)$, it suffices to ask for
\[
(1 - \cos \theta)\|b_1, c_1\|^2 \leq 2\|(c_1 - c_2, b_1 - b_2)\|^2.
\]

Additionally, without loss of generality, it is convenient to assume that the vector fields V_1, V_2 satisfy $b_1^2 + c_1^2 \leq b_2^2 + c_2^2$, so as to maximize the domain U.

We illustrate the performance of the algorithms in Figure 1.

![Fig. 1. We illustrate the inverse-kinematics planners for Σ_1 and Σ_2. The parameters of both systems are $(b_1, c_1) = (0, 0.5)$, $(b_2, c_2) = (1, 0)$. The target final location is $(\pi/6, 1, 1)$.](image)

III. CATALOG FOR SO(3)

Let $\{e_x, e_y, e_z\}$ be the basis of $\mathfrak{so}(3)$:
\[
e_x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \ e_y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ e_z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Here we make use of the notation $\hat{V} = a\hat{e}_x + b\hat{e}_y + c\hat{e}_z \equiv (a, b, c)$ based on the Lie algebra isomorphism $\hat{\cdot}$: $(\mathbb{R}^3, \times) \rightarrow (\mathfrak{so}(3), \{, \})$. An expression of the exponential
\[
\exp : \mathfrak{so}(3) \rightarrow SO(3)
\]
is given in terms of Rodrigues formula [10]:
\[
\exp(\eta) = I_3 + \frac{\sin \|\eta\|}{\|\eta\|} \eta + \frac{1 - \cos \|\eta\|}{\|\eta\|^2} \|\eta\|^2.
\]
The commutator relations are $[\hat{e}_x, \hat{e}_z] = -\hat{e}_y$, $[\hat{e}_y, \hat{e}_z] = \hat{e}_x$ and $[\hat{e}_x, \hat{e}_y] = \hat{e}_z$.

Lemma 3.1 (Controllability conditions): Consider two left-invariant vector fields $V_1 = (a_1, b_1, c_1)$ and $V_2 = (a_2, b_2, c_2)$ in $\mathfrak{so}(3)$. Their Lie closure is full rank if and only if $c_1a_2 - a_1c_2 \neq 0$ or $b_1c_2 - c_1b_2 \neq 0$ or $b_1a_2 - a_1b_2 \neq 0$.

Proof: Given the equality $[\hat{V}_1, \hat{V}_2] = \hat{V}_1 \times \hat{V}_2$, with $V_1 \times V_2 = (b_1c_2 - b_2c_1, c_1b_2 - c_2a_1, a_1b_2 - a_2b_1)$, one can see that $\text{span} \{V_1, V_2, [V_1, V_2]\} = \mathfrak{so}(3)$ if and only if
\[
\det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ c_1b_2 - c_2a_1 & a_1b_2 - a_2b_1 & 1 \end{bmatrix} = (b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2 \neq 0.
\]

Let V_1, V_2 satisfy the controllability condition in Lemma 3.1. Without loss of generality, we can assume $V_1 = e_z$ (otherwise we perform a suitable change of coordinates), and $\|V_2\|^2 = 1$. In what follows, we let $V_2 = (a, b, c)$. Since ϵ_z and V_2 are linearly independent, necessarily $a^2 + b^2 \neq 0$ and $c \neq \pm 1$.

Since $\dim(\mathfrak{so}(3)) = 3$, we need at least three maneuvers to plan any motion between two desired configurations. Consider the map $\mathcal{FK}^{(2)} : \mathbb{R}^3 \rightarrow \mathfrak{so}(3)$ defined by
\[
\mathcal{FK}^{(2)}(t_1, t_2, t_3) = \exp(t_1\hat{e}_x) \exp(t_2\hat{e}_y) \exp(t_3\hat{e}_z).
\]

Observe that equation (3) is similar to the formula for certain sets of Euler angles; see [10].

Proposition 3.2 (Inversion for systems on $SO(3)$): Consider the map $\mathcal{IK} : U \subset \mathfrak{so}(3) \rightarrow \mathbb{R}^3$ whose components are
\[
\mathcal{IK}_1(R) = \arctan(\frac{w_1R_{13} + w_2R_{23} - w_2R_{13} + w_1R_{23}}{1 - w_1^2 - w_2^2}), \\
\mathcal{IK}_2(R) = \arccos(\frac{\sqrt{3} - c_1}{1 - c_2}), \\
\mathcal{IK}_3(R) = \arctan(\frac{v_1R_{31} + v_2R_{32} - v_2R_{31} + v_1R_{32}}{1 - v_1^2 - v_2^2}) \\
\]

then, for $z = (1 - \cos(\mathcal{IK}_2(R))), \sin(\mathcal{IK}_2(R)))^T,$
\[
\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} a & b \\ cb & -a \end{bmatrix} z, \quad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} a & -b \\ cb & a \end{bmatrix} z.
\]

Then, \mathcal{IK} is a local right inverse of $\mathcal{FK}^{(2)}$, that is, it satisfies $\mathcal{FK}^{(2)} \circ \mathcal{IK} = \text{id}_U : U \rightarrow U$.

Proof: Let $R \in U$. Then, $-1 \leq \frac{R_{33} - c_2}{1 - c_2} \leq 1$, and therefore $\mathcal{IK}(R)$ is well-defined. Denote $t_i = \mathcal{IK}_i(R)$
and let us show \(R = \mathcal{FK}^{(2)}(t_1, t_2, t_3) \). Recall that the rows (resp. the columns) of a rotation matrix consist of orthonormal vectors in \(\mathbb{R}^3 \). Therefore, the matrix \(\mathcal{FK}^{(2)}(t_1, t_2, t_3) \in SO(3) \) is completely determined by its third column \(\mathcal{FK}^{(2)}(t_1, t_2, t_3)e_z \) and its third row \(\epsilon_z^T\mathcal{FK}^{(2)}(t_1, t_2, t_3) \).

The factors in (3) admit the following closed-form expressions. For \(c_t = \cos t \) and \(s_t = \sin t \), we compute

\[
\exp(t\hat{\omega}_z) = \begin{bmatrix} c_t & -s_t & 0 \\ s_t & c_t & 0 \\ 0 & 0 & 1 \end{bmatrix},
\]

and \(\exp(t\hat{V}_2) \) equals

\[
\begin{bmatrix}
a^2 + (1 - a^2)c_t & ba(1 - c_t) - cs_t & ca(1 - c_t) + bs_t \\
ab(1 - c_t) + cs_t & b^2 + (1 - b^2)c_t & cb(1 - c_t) - as_t \\
ac(1 - c_t) - bs_t & bc(1 - c_t) + as_t & c^2 + (1 - c^2)c_t
\end{bmatrix}.
\]

Now, using the fact that \(\exp(t\hat{z}_e)z = e_z \), we compute

\[
\mathcal{FK}^{(2)}(t_1, t_2, t_3)e_z = \exp(t_1\hat{z}_e)\exp(t_2\hat{V}_2)\exp(t_3\hat{z}_e)e_z
\]

\[
= \exp(t_1\hat{z}_e)\exp(t_2\hat{V}_2)e_z = \exp(t_1\hat{z}_e)\begin{bmatrix} w_1 \\ w_2 \\ R_{33} \end{bmatrix} = R_{e_z}.
\]

A similar computations shows that \(\epsilon_z^T\mathcal{FK}^{(2)}(t_1, t_2, t_3) = \epsilon_z^TR \), which concludes the proof.

Remark 3.3: If \(\hat{z}_e \) and \(V_2 \) are perpendicular, then \(U = SO(3) \) and the map \(\mathcal{FK} \) is a global right inverse of \(\mathcal{FK}^{(2)} \). Otherwise, let us provide an equivalent formulation of the constraint \(R_{33} \in [2c^2 - 1, 1] \) in terms of the axis/angle representation of the rotation matrix \(R \). Recall that there always exist, possibly non-unique, a rotation angle \(\theta \in [0, \pi] \) and an unit-length axis of rotation \(\omega \in S^2 \) such that \(R = \exp(\hat{\omega}\theta) \). Because \(\hat{\omega}^2 = \omega^T\omega - I_3 \), an equivalent statement of Rodrigues formula is

\[
R = I_3 + \hat{\omega}\sin \theta + (1 - \cos \theta)(\omega^T\omega - I_3).
\]

From \(\epsilon_z^T\omega = \cos(\text{arg}(e_z, \omega)) \) we compute

\[
\epsilon_z^T R e_z = \epsilon_z^T e_z + (1 - \cos \theta)((\epsilon_z^T\omega)^2 - \epsilon_z^Te_z)
\]

\[
= 1 + (1 - \cos \theta)((\epsilon_z^T\omega)^2 - 1)
\]

\[
= 1 - \sin^2(\text{arg}(e_z, \omega))(1 - \cos \theta).
\]

Therefore, \(R_{33} \in [2c^2 - 1, 1] \) if and only if

\[
1 - \sin^2(\text{arg}(e_z, \omega))(1 - \cos \theta) \geq 2c^2 - 1 \iff \sin^2(\text{arg}(e_z, \omega))(1 - \cos \theta) \leq 2(1 - c^2).
\]

Two sufficient conditions are also meaningful. In terms of the rotation angle, if \(|\theta| \leq \arccos(2c^2 - 1) \) then \(1 - \cos \theta \leq 2(1 - c^2) \), and in turn equation (4) is satisfied. In terms of the axis of rotation, a sufficient condition for equation (4) is \(\sin^2(\text{arg}(e_z, \omega)) \leq \sin^2(\text{arg}(e_z, V_2)) = 1 - c^2 \).

We illustrate the performance of the algorithms in Figure 2.

IV. CATALOG FOR SE(2) \(\times \mathbb{R} \)

Let \(\{(e_x, 0), (e_y, 0), (e_z, 0), (0, 0, 0, 1)\} \) be a basis of \(\mathfrak{se}(2) \times \mathbb{R} \), where \(\{e_x, e_y, e_z\} \) stands for the basis of \(\mathfrak{se}(2) \) introduced in Section II. With a slight abuse of notation, we will denote by \(e_x \) the element \((e_x, 0) \), and so on. Also, we will use the shorthand notation \(e_z = (0, 0, 0, 1) \). The Lie algebra commutators are given by

\[
[e_x, e_y] = [e_x, e_z] = [e_y, e_z] = [e_z, e_0] = 0,
\]

\[
[e_x, e_0] = -e_y, \quad [e_y, e_0] = e_x.
\]

A left-invariant vector field \(V \) in \(\mathfrak{se}(2) \times \mathbb{R} \) is written as \(V = a\epsilon_0 + b\epsilon_x + c\epsilon_y + d\epsilon_z \equiv (a, b, c, d) \), and \(g \in \text{SE}(2) \times \mathbb{R} \) as \(g = (\theta, x, y, z) \). The exponential map, \(\exp: \mathfrak{se}(2) \times \mathbb{R} \rightarrow \text{SE}(2) \times \mathbb{R} \), is given component-wise by the exponential on \(\mathfrak{se}(2) \) and \(\mathbb{R} \), respectively. That is, \(\exp(V) \) is equal to

\[
\begin{bmatrix}
a \\
\sin a \\
b - 1 - \cos a \\
\frac{1 - \cos a}{a} \\
a \\
c \\
b + \frac{\sin a}{a} \\
d
\end{bmatrix}
\]

if \(a \neq 0 \), and \(\exp(V) = (0, b, c, d) \) if \(a = 0 \).

Lemma 4.1: (Controllability conditions for SE(2) \(\times \mathbb{R} \) systems with 2 inputs) Consider two left-invariant vector fields \(V_1 = (a_1b_1c_1d_1) \) and \(V_2 = (a_2b_2c_2d_2) \) in \(\text{se}(2) \times \mathbb{R} \). Their Lie closure is full rank if and only if \(a_2d_1 - b_2a_1 \neq 0 \), and either \(c_1a_2 - a_1c_2 \neq 0 \) or \(a_1b_2 - b_1a_2 \neq 0 \).

Proof: Since \([V_1, V_2] = (0, c_1a_2 - a_1c_2, a_1b_2 - b_1a_2, 0) \neq 0 \), we deduce that either \(c_1a_2 - a_1c_2 \neq 0 \) or \(a_1b_2 - b_1a_2 \neq 0 \). In particular, this implies that necessarily \(a_1 \neq 0 \) or \(a_2 \neq 0 \). Assume \(a_1 \neq 0 \). Now, \([V_1, [V_1, V_2]] = (0, a_1(-b_2a_1 + b_1a_2), a_1(c_1a_2 - c_2a_1), 0) \), and note that \([V_2, [V_1, V_2]] = (a_2/a_1)[V_1, [V_1, V_2]] \). Finally, \(\text{Lie}([V_1, V_2]) \equiv \mathfrak{se}(2) \times \mathbb{R} \) if and only if

\[
\det\begin{bmatrix}
b_1 & c_1 & d_1 & a_1 \\
b_2 & c_2 & d_2 & a_2 \\
c_1a_2 - c_2a_1 & b_1a_2 - b_1a_2 & a_1(c_1a_2 - c_2a_1) & 0 \\
a_1(-b_2a_1 + b_1a_2) & a_1(c_1a_2 - c_2a_1) & 0 & 0
\end{bmatrix}
\]

\[
= a_1(a_2d_1 - b_2a_1)(c_1a_2 - c_2a_1)^2 + (b_2a_1 + b_1a_2)^2 \neq 0.
\]

Since \([V_1, V_2] \neq 0 \), this condition reduces to \(a_2d_1 - b_2a_1 \neq 0 \). \(\blacksquare \)
Let V_1, V_2 satisfy the controllability condition in Lemma 4.1. Without loss of generality, we can assume $a_1 = 1$. As in the case of SE(2), there are two qualitatively different situations to be considered:

$$\Lambda_1 = \{ (V_1, V_2) \in (\mathfrak{se}(2) \times \mathbb{R})^2 \mid V_1 = (1, b_1, c_1, d_1), V_2 = (0, b_2, c_2, 1) \text{ and } b_2 + c_2^2 \neq 0 \}.$$

$$\Lambda_2 = \{ (V_1, V_2) \in (\mathfrak{se}(2) \times \mathbb{R})^2 \mid V_1 = (1, b_1, c_1, d_1), V_2 = (b_2, c_2, d_2, 1) \text{ and } d_2 \text{ and either } b_1 \neq b_2 \text{ or } c_1 \neq c_2 \}.$$

Lemma 4.2: (Controllability conditions for SE(2) × \mathbb{R} systems with 3 inputs) Consider three left-invariant vector fields $V_i = (a_i, b_i, c_i, d_i)$, $i = 1, 2, 3$ in $\mathfrak{se}(2) \times \mathbb{R}$. Assume $\mathfrak{Lie}(\{ V_i, V_{i+1} \}) \subseteq \mathfrak{se}(2) \times \mathbb{R}$ for $i \in \{1, 2, 3\}$ and $\mathfrak{Lie}(\{ V_1, V_2, V_3 \}) = \mathfrak{se}(2) \times \mathbb{R}$. Then, possibly after a reordering of the vector fields, they must fall in one of the following cases:

Proof: Without loss of generality, we can assume that $[V_1, V_2] \neq 0$ and $a_1 = 1$. Since $\mathfrak{Lie}(\{ V_i, V_{i+1} \}) \subseteq \mathfrak{se}(2) \times \mathbb{R}$, then $a_3 d_1 \neq 0$. Given that the Lie closure of $\{ V_1, V_2, V_3 \}$ is full-rank, and $\dim(\text{span}\{ V_1, V_2, [V_1, V_2] \}) = 3$, we have that $d_3 \neq a_3 d_1$. This latter fact, together with $\mathfrak{Lie}(\{ V_1, V_2, V_3 \}) \subseteq \mathfrak{se}(2) \times \mathbb{R}$, implies that $[V_1, V_3] = 0$, and therefore $b_3 = a_3 b_1, c_1 c_3 = c_3$.

We distinguish now two situations depending on $[V_2, V_3]$ being zero or not.

(a) $[V_2, V_3] \neq 0$. Necessarily, $a_3 \neq 0$. Therefore, we can assume $a_3 = 1$. Since $\mathfrak{Lie}(\{ V_2, V_3 \})$ is not full-rank, then $a_2 = 0$. We then have a Λ_3 system.

(b) $[V_2, V_3] = 0$. Necessarily, $b_3 a_2 = b_2 a_3$ and $c_2 a_3 = c_3 a_2$. Depending on the values of a_2 and a_3, there are four sub-cases:

(i) If $a_2 = a_3 = 0$, then $d_2 = 0, d_3 \neq 0, b_3 = c_3 = 0$. Then, this is a Λ_4 system.

(ii) If $a_2 = 0, a_3 = 1$, then $b_2 = b_3 a_2 = 0, c_2 = c_3 a_2 = 0$ and also $d_2 = d_1 d_2 = 0$. This is not possible as it would make $V_2 = 0$.

(iii) If $a_2 = 1$ and $a_3 = 0$, then $b_3 = c_3 = 0$, and $d_2 = d_1$. Therefore, this is a Λ_5-system.

(iv) Finally, if $a_2 = 1$ and $a_3 = 1$, then $b_1 = b_2, c_1 = c_2$, and $d_1 = d_2$, which makes V_1 and V_2 linearly dependent.

A. Two-dimensional input distribution

Let V_1, V_2 satisfy the controllability condition in Lemma 4.1. Since $\dim(\mathfrak{se}(2) \times \mathbb{R}) = 4$, we need at least four maneuvers to plan any motion between two desired configurations. Consider the map $\mathcal{FK}^{(3)} : \mathbb{R}^4 \rightarrow \text{SE}(2) \times \mathbb{R}$,

$$\mathcal{FK}^{(3)}(t_1, t_2, t_3, t_4) = \exp(t_1 V_2) \exp(t_2 V_1) \cdot \exp(t_3 V_2) \exp(t_4 V_1). \quad (5)$$

Proposition 4.3: (Lack of switch-optimal inversion for Λ_1-systems on SE(2) × \mathbb{R}) Let $(V_1, V_2) \in \Lambda_1$. Then, the map $\mathcal{FK}^{(3)}$ is not invertible at any neighborhood of the origin.

Proof: Let $\mathcal{FK}^{(3)}(t_1, t_2, t_3, t_4) = (\theta, x, y, z)$. Then,

$$\begin{align*}
\theta &= t_2 + t_4, \\
z &= t_1 + t_3 + d_1(t_2 + t_4) = t_1 + t_3 + d_1 \theta, \\
\begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} -c_1 \\ b_1 \\ -b_1 \\ c_1 \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + \begin{bmatrix} b_2 \\ c_2 \\ b_2 \\ c_2 \end{bmatrix} \begin{bmatrix} \cos t_2 \\ \sin t_2 \end{bmatrix} t_3.
\end{align*}$$

Consider a configuration with $\theta = z = 0$. Then, the equation in (x, y) is invertible if and only if the map $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$\begin{bmatrix} t_2 \\ t_3 \end{bmatrix} \mapsto \begin{bmatrix} \cos t_2 - 1 \\ \sin t_2 \end{bmatrix} t_3$$

is invertible. But f cannot be inverted in $(0, \beta), \beta \neq 0$.

Remark 4.4: A similar situation occurs if we start taking maneuvers along the flow of V_1 instead of V_2.

Consider the map $\mathcal{FK}^{(4)} : \mathbb{R}^5 \rightarrow \text{SE}(2) \times \mathbb{R}$ defined by

$$\mathcal{FK}^{(4)}(t_1, t_2, t_3, t_4, t_5) = \exp(t_1 V_1) \exp(t_2 V_2) \cdot \exp(t_3 V_1) \exp(t_4 V_2) \exp(t_5 V_1). \quad (6)$$

Proposition 4.5 (Inversion for Λ_1-systems on SE(2) × \mathbb{R}) Let $(V_1, V_2) \in \Lambda_1$. Consider the map $\mathcal{IK}^{(4)} : \text{SE}(2) \times \mathbb{R} \rightarrow \mathbb{R}^3$ whose components are

$$\mathcal{IK}^{(4)}(\theta, x, y, z) = \pi \text{ ind}_{-\infty,0}(\gamma - \rho) + \text{arctan}2\left((\rho + \gamma)/2, 0\right) + \text{arctan}2(\alpha, \beta),$$

$$\mathcal{IK}^{(4)}_1(\theta, x, y, z) = (\gamma - \rho)/2,$n

$$\mathcal{IK}^{(4)}_2(\theta, x, y, z) = \text{arctan}2\left((\rho - \gamma)/2, 0\right) - \text{arctan}2\left((\rho + \gamma)/2, 0\right) + \pi \text{ ind}_{[-\infty,0]}(\gamma + \rho) - \text{ind}_{[-\infty,0]}(\gamma - \rho),$$

$$\mathcal{IK}^{(4)}(\theta, x, y, z) = (\gamma + \rho)/2,$n

$$\mathcal{IK}^{(4)}_3(\theta, x, y, z) = \theta - \mathcal{IK}^{(4)}_1(\theta, x, y, z) - \mathcal{IK}^{(4)}_2(\theta, x, y, z),$$

where $\rho = \sqrt{\alpha^2 + \beta^2}$ and

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{b_2 + c_2^2} \begin{bmatrix} b_2 \\ -c_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ -c_1 \\ b_1 \end{bmatrix} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix}.$$
Proof: The proof follows from the expression for the forward kinematics map. If $\mathcal{F}(t_1, t_2, t_3, t_4, t_5) = (\theta, x, y, z)$, then

$$
\begin{align*}
\theta &= t_1 + t_2 + t_5, \\
z &= t_2 + t_4 + d_1 \theta, \\
\left[\begin{array}{c} \alpha \\ \beta \end{array} \right] &= \\
&= \left[\begin{array}{c} -c_1 \\ b_1 \\ c_1 \\ b_1 \end{array} \right] \left[\begin{array}{c} 1 - \cos \theta \\ \sin \theta \\ \cos t_1 \\ \sin t_1 \\
&+ b_2 - c_2 \right] \left[\begin{array}{c} t_2 \\ \cos(t_1 + t_3) \\ \sin(t_1 + t_3) \end{array} \right] t_4,
\end{align*}
$$

The equation in $[x, y]^T$ can be rewritten as

$$
\left[\begin{array}{c} \alpha \\ \beta \end{array} \right] = \left[\begin{array}{c} \cos t_1 \\ \sin t_1 \end{array} \right] t_2 + \left[\begin{array}{c} \cos(t_1 + t_3) \\ \sin(t_1 + t_3) \end{array} \right] t_4,
$$

which is solved by the selection of coasting times given by the components of the map $\mathcal{I} \mathcal{K}^A_1$.

Proposition 4.6 (Inversion for \mathcal{A}_2-systems on \mathbb{R}^2) Let $(V_1, V_2) \in \mathcal{A}_2$. Define the neighborhood of the identity in \mathbb{R}^2 by

$$
U = \left\{ (\theta, x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid 4 \left((c_1 - c_2, b_1 - b_2) \right) = 0, \right\}
$$

and consider the map $\mathcal{I} \mathcal{K}^A_2: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ whose components are

$$
\begin{align*}
\mathcal{I} \mathcal{K}^A_2(\theta, x, y, z) &= \arctan2 \left(\frac{1}{\sqrt{4 - l^2}} \right) + \arctan2 (\alpha, \beta), \\
\mathcal{I} \mathcal{K}^A_3(\theta, x, y, z) &= 2 \arctan2 \left(\frac{1}{\sqrt{4 - l^2}} \right), \\
\mathcal{I} \mathcal{K}^A_4(\theta, x, y, z) &= - \arctan2 \left(\rho - l, \sqrt{4 - (\rho - l)^2} \right), \\
\mathcal{I} \mathcal{K}^A_5(\theta, x, y, z) &= \theta - \sum_{i=1}^{4} \mathcal{I} \mathcal{K}^A_4(\theta, x, y, z),
\end{align*}
$$

where $\rho = \sqrt{\alpha^2 + \beta^2}$, $\theta = \sin(\gamma/2)$, $c = \cos(\gamma/2)$ and

$$
l = \rho(1 + \rho) + \frac{\sinh(\gamma)}{\sqrt{4 + (1 + \rho)^2}}.
$$

The equation in $[x, y]^T$ can be rewritten as

$$
\left[\begin{array}{c} \alpha \\ \beta \end{array} \right] = \left[\begin{array}{c} \cos t_1 \\ \sin t_1 \end{array} \right] t_2 + \left[\begin{array}{c} \cos(t_1 + t_3) \\ \sin(t_1 + t_3) \end{array} \right] t_4.
$$

After some further computations, one can verify $\mathcal{F}(t_1, t_2, t_3, t_4, t_5) = (\theta, x, y, z)$.

B. Three-dimensional input distribution

Let V_1, V_2, V_3 satisfy the controllability condition in Lemma 4.2. Consider the map $\mathcal{F}(5): \mathbb{R}^4 \to \mathbb{R}^2$ defined by

$$
\mathcal{F}(5)(t_1, t_2, t_3, t_4) = \exp(t_1 V_1) \exp(t_2 V_2) \exp(t_4 V_3) \exp(t_5 V_4).
$$

Proposition 4.7 (Inversion for \mathcal{A}_3-systems on \mathbb{R}^2) Let $(V_1, V_2, V_3) \in \mathcal{A}_3$. Consider the map $\mathcal{I} \mathcal{K}^A_3: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^3$ whose components are

$$
\begin{align*}
\mathcal{I} \mathcal{K}^A_3(\theta, x, y, z) &= \arctan2 (\alpha, \beta) - \mathcal{I} \mathcal{K}^A_2(\theta, x, y, z), \\
\mathcal{I} \mathcal{K}^A_4(\theta, x, y, z) &= \rho - l - \sqrt{4 - (\rho - l)^2}, \\
\mathcal{I} \mathcal{K}^A_5(\theta, x, y, z) &= \theta - \arctan2 (\alpha, \beta),
\end{align*}
$$

where $\rho = \sqrt{\alpha^2 + \beta^2}$ and

$$
\left[\begin{array}{c} \alpha \\ \beta \end{array} \right] = \left[\begin{array}{c} \frac{1}{\sqrt{4 - l^2}} \\ \frac{1}{\sqrt{4 - l^2}} \end{array} \right] \left[\begin{array}{c} b_2 \\ c_2 \\ b_2 \\ c_2 \end{array} \right] \left(\left[\begin{array}{c} x \\ y \end{array} \right] - \left[\begin{array}{c} -c_1 \\ b_1 \\ c_1 \\ b_1 \end{array} \right] \left[\begin{array}{c} 1 - \cos \theta \\ \sin \theta \end{array} \right] \right).
$$

Then, $\mathcal{I} \mathcal{K}^A_3$ is a global right inverse of $\mathcal{F}(5)$, that is, it satisfies $\mathcal{F}(5) \circ \mathcal{I} \mathcal{K}^A_3 = \text{id}_{\mathbb{R}^2}$.

Proof: The proof follows from the expression for the map $\mathcal{F}(5)$. If $\mathcal{F}(5)(t_1, t_2, t_3, t_4) = (\theta, x, y, z)$, then

$$
\begin{align*}
\theta &= t_1 + t_2 + t_4, \\
z &= d_1 \theta + (d_2 - d_1)(t_2 + t_4), \\
\left[\begin{array}{c} \alpha \\ \beta \end{array} \right] &= \left[\begin{array}{c} \cos(t_1 + t_2) \\ \sin(t_1 + t_2) \end{array} \right] t_3,
\end{align*}
$$

which is solved by the selection given by $(t_1, t_2, t_3, t_4) = \mathcal{I} \mathcal{K}^A_3(\theta, x, y, z)$.

Consider the map $\mathcal{F}\mathcal{K}^{(6)}: \mathbb{R}^4 \to SE(2) \times \mathbb{R}$ defined by

$$\mathcal{F}\mathcal{K}^{(6)}(t_1, t_2, t_3, t_4) = \exp(t_1 V_1) \exp(t_2 V_2) \cdot \exp(t_3 V_3) \exp(t_4 V_4).$$

(8)

Proposition 4.8 (Inversion for Λ_4-systems on $SE(2) \times \mathbb{R}$): Let $(V_1, V_2, V_3, V_4) \in \Lambda_4$. Consider the map $IK^{A_4}: SE(2) \times \mathbb{R} \to \mathbb{R}^4$ given by

$$IK^{A_4}(\theta, x, y, z) = \left(\arctan2(\alpha, \beta), \rho, \theta - \arctan2(\alpha, \beta), \frac{z - d_1(\theta)^{\mathcal{F}^-} IK^{A_4}(t_1, t_2, t_3, t_4)}{d_3}\right),$$

where $\rho = \sqrt{\alpha^2 + \beta^2}$ and

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{b_2^2 + c_2^2} \begin{bmatrix} b_2 & c_2 \\ -c_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \frac{c_1}{b_1} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix}.$$

Then, IK^{A_4} is a global right inverse of $\mathcal{F}\mathcal{K}^{(6)}$, that is, it satisfies $\mathcal{F}\mathcal{K}^{(6)} \circ IK^{A_4} = 1_{SE(2) \times \mathbb{R}}$. As in the proof of Proposition 2.2, the selection $t_1 = \arctan2(\alpha, \beta)$, $t_2 = \rho$ solves it.

Proposition 4.9 (Inversion for Λ_5-systems on $SE(2) \times \mathbb{R}$): Let $(V_1, V_2, V_3, V_4) \in \Lambda_5$. Define the neighborhood of the identity in $SE(2) \times \mathbb{R}$

$$U = \{(\theta, x, y) \in SE(2) \times \mathbb{R} | \|(c_1 - c_2, b_1 - b_2)\|^2 \geq \max\{\|(x, y)\|^2, 2(1 - \cos \theta)\|(b_1, c_1)\|^2\}.$$

Consider the map $IK^{A_5}: U \subset SE(2) \times \mathbb{R} \to \mathbb{R}^4$ whose components are

$$IK^{A_5}_1(\theta, x, y, z) = \arctan2(\rho, \sqrt{4 - \rho^2}) + \arctan2(\alpha, \beta),$$

$$IK^{A_5}_2(\theta, x, y, z) = \arctan2(2 - \rho^2, \rho \sqrt{4 - \rho^2}),$$

$$IK^{A_5}_3(\theta, x, y, z) = \theta - IK^{A_5}_1(\theta, x, y) - IK^{A_5}_2(\theta, x, y),$$

$$IK^{A_5}_4(\theta, x, y, z) = \frac{z - d_1(\theta) IK^{A_5}_4(\theta, x, y, z)}{d_3},$$

and $\rho = \sqrt{\alpha^2 + \beta^2}$ and

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\|(c_1 - c_2, b_1 - b_2)\|^2} \begin{bmatrix} c_1 - c_2 & b_2 - b_1 \\ b_2 - b_1 & c_1 - c_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \frac{c_1}{b_1} \begin{bmatrix} 1 - \cos \theta \\ \sin \theta \end{bmatrix}.$$

Then, IK^{A_5} is a local right inverse of $\mathcal{F}\mathcal{K}^{(6)}$, that is, it satisfies $\mathcal{F}\mathcal{K}^{(6)} \circ IK^{A_5} = 1_U: U \to U$.

Proof: If $(\theta, x, y, z) \in U$, then one can see that $\rho = \|(\alpha, \beta)\| \leq 2$, and therefore IK^{A_5} is well-defined on U.

Let $IK^{A_5}(\theta, x, y, z) = (t_1, t_2, t_3, t_4)$. The components of $\mathcal{F}\mathcal{K}^{(6)}(t_1, t_2, t_3, t_4)$ are

$$\begin{bmatrix} F^{K^{A_5}}_1(t_1, t_2, t_3, t_4) \\ F^{K^{A_5}}_2(t_1, t_2, t_3, t_4) \\ F^{K^{A_5}}_3(t_1, t_2, t_3, t_4) \\ F^{K^{A_5}}_4(t_1, t_2, t_3, t_4) \end{bmatrix} = \begin{bmatrix} c_1 & b_1 & 1 - \cos \theta \\ b_1 & c_2 & -\sin \theta \end{bmatrix}$$

$$\begin{bmatrix} c_1 - c_2 & b_1 - b_2 & \cos t_1 - \cos(t_1 + t_2) \\ b_2 - b_1 & c_1 - c_2 & \sin t_1 - \sin(t_1 + t_2) \end{bmatrix}.$$