
Trajectory Design for Mechanical Control Systems:

from Geometry to Algorithms

Francesco Bullo

Mechanical and Environmental Engineering

University of California at Santa Barbara

Santa Barbara, CA 93106

bullo@engineering.ucsb.edu, http://www.me.ucsb.edu/bullo

European Journal of Control, Vol 10:5, pages 397-410, 2004
Special Issue on ”Lagrangian and Hamiltonian Methods for Nonlinear Control”

This version compiled on September 7, 2007

Abstract

Trajectory design is a key problem in a vast array of
robotic applications including the design of autonomous
agile vehicles and of minimalist manipulators. This prob-
lem can be accurately formalized within the language of
affine connections and of geometric control theory. This
paper surveys recent results on kinematic controllability
and on oscillatory controls. The treatment emphasizes
how to translate geometric controllability conditions into
algorithms for generating and tracking trajectories.

Keywords: mechanical systems, trajectory planning,
controllability, differential geometric methods, robotics

1 Introduction

Problem description and motivation

One of the most fundamental capabilities for an au-
tonomous or semi-autonomous robotic system is the abil-
ity to quickly plan and reliably execute its own motions.
This low-level primitive is crucial for any high-level robot
programming and controlling system. Unfortunately,
motion planning and trajectory optimization problems
are generically non-convex and have exponential com-
plexity in the accuracy of the system and environment
model.

This paper addresses trajectory analysis and design
problems for dynamical systems with Lagrangian struc-
ture. This structure is shared by (i) robotic manipulators
and mobile platforms, (ii) vehicles in space, land, air, sea
and other environments, and (iii) mechanisms that loco-
mote exploiting nonholonomic constraints and impacts
(e.g., snake-like and legged robots). For such systems,

typical motion planning challenges include underactua-
tion (fewer control inputs than degrees of freedom) and
complex nonlinear dynamics. This work is further moti-
vated by the scientific interest and by the unifying math-
ematical language underlying geometric mechanics and
geometric control theory.

Paper organization and literature review

This survey paper describes various geometric structures
of mechanical systems and their relevance in trajectory
design problems. The paper presents a subset of the
material developed in the upcoming text [12]. This text
presents a comprehensive collection of modeling, analysis
and design results based on Riemannian geometry tools.
Central to the presentation is the notion of affine connec-
tions and its computational implications. The presenta-
tion in this article is inspired by and relies in part on the
recent results in [4, 6, 7, 17, 30, 33, 35].

The classic structure of mechanical systems exploited
in stabilization problems is passivity. Indeed, numerous
important control problems rely in their essence on the
existence of a total energy function and its use as a can-
didate Lyapunov function, see for example [3, 43, 50].
In contrast, this paper focuses on different geometric
properties of mechanical systems including homogene-
ity, controllability, kinematic reductions, symmetry, and
response to oscillatory controls.

Section 2 presents affine connection models of simple
mechanical control systems subject to constraints. Most
concepts we describe are standard; e.g., see [1]. The
interest in Riemannian geometry concepts in the study
of mechanical control systems can be seen for example
in [7, 19, 23, 33]. Regarding the modeling of nonholo-
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nomic systems, we follow the treatment in [30]. Sym-
metric product and geodesic invariance were originally
introduced in [19, 29].

The modeling results are important in the study of
novel biomimetic locomotion systems. Example devices
include the snakeboard [34, 45], the G-snakes and roller
racer models in [26, 27], the roller-walker [21], carangi-
form [25] and eel robots [18].

Section 3 introduces and characterizes the notion of
kinematic reductions as a reduced-order modeling tech-
nique adapted to simple mechanical control systems. The
treatment follows the lines of [11, 13], and was originally
motivated in [2, 35].

Section 4 reviews the important results of [33] on con-
trollability and configuration controllability. We include
a catalog of prototype example systems characterized by
their controllability properties and kinematic reductions.

Section 5 presents an averaging analysis for mechan-
ical control systems subject to oscillatory input forces,
i.e., input forces of large amplitude and high frequency.
Building on classic averaging theory we characterize the
averaged system as a simple mechanical control system.
The treatment is taken from [9, 38]. Our treatment also
naturally leads to the notion of averaged potential as a
means to characterize the average behavior; see [4, 24].

Section 6 presents trajectory design algorithms for con-
trollable kinematic reductions of mechanical control sys-
tems. In other words, we design motion plans for kine-
matic models that can switch between specified sets of
admissible vector fields. Note that the literature on in-
verse kinematics suggests numerous techniques, includ-
ing the inverse kinematics approach described in [41], and
the general polynomial programming approach in [36].
Since no general treatment can lead to analytic closed-
form expressions, this section discusses an interesting ex-
ample system from [39].

Section 7 presents trajectory design algorithms that
rely on oscillatory controls and an approximate inversion
algorithm. This work was originally presented in [38] and
is inspired by numerous previous works on such matters
including for example [28, 48].
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2 Models of Mechanical Systems

In this section we review a modeling framework for me-
chanical control systems. We consider the class of sim-
ple mechanical control systems with constraints, that is,
systems whose total energy is the sum of kinetic and
potential energy. This class includes multi-body manip-
ulators, aerospace and underwater vehicles, and mobile
mechanisms; see Figure 1. We model these systems as
affine connection control systems, and study their repre-
sentations in various local bases of vector fields.

2.1 Simple mechanical control systems

with constraints

A simple mechanical control system (with constraints) is
a sixtuple (Q,G, V, Fdiss,D,F) comprised of the following
objects:

(i) an n-dimensional configuration manifold Q,

(ii) a Riemannian metric G on Q describing the kinetic
energy,

(iii) a function V on Q describing the potential energy,

(iv) a dissipative force Fdiss,

(v) a distribution D of feasible velocities describing the
linear velocity constraints, and

(vi) a set ofm covector fields F = {F 1, . . . , Fm} defining
the control forces.

For simplicity of presentation, we shall assume all
quantities to be analytic and we shall assume regular-
ity of all relevant distributions. Given the metric G and
the distribution D, we define the following objects. We
let P : TQ → TQ be the orthogonal projection onto the
distribution D with respect to the metric G. We let G∇
be the Levi-Civita connection on Q induced by the metric
G. We let ∇ be the constrained affine connection defined
by

∇XY = G∇XY −
(

G∇XP
)
(Y ),

for any vector fields X and Y . When the vector field Y
takes value in D, we have

∇XY = P (G∇XY ).

Given the Riemannian metric G, we let G : TQ → T ∗Q

and G−1 : T ∗Q → TQ denote the isomorphisms associ-
ated with G. For a ∈ {1, . . . ,m}, we define the input
vector fields Ya = P (G−1(F a)), the family of input vec-
tor fields Y = {Y1, . . . , Ym}, and the input distribution Y

with Yq = spanR{Y1(q), . . . , Ym(q)}. The gradient of the
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Figure 1: Simple mechanical control systems include multi-body robots, aerospace and underwater vehicles, and
mobile mechanisms.

function V is the vector field gradV defined implicitly by
G(gradV,X) = LXV , where LXf is the Lie derivative
of the scalar function f with respect to the vector field
X.

A controlled trajectory for the simple mechanical con-
trol system with constraints (Q,G, V, Fdiss,D,F) is a pair
(γ, u) with γ : [0, T ] → Q and u = (u1, . . . , um) : [0, T ] →
Rm satisfying the controlled Euler-Lagrange equations
(sometimes also referred to as the controlled geodesic
equations):

∇γ′(t)γ
′(t) = −P (gradV (γ(t)))

+ P (G−1(Fdiss(γ
′(t)))) +

m∑

a=1

Ya(γ(t))ua(t). (1)

Here we assume that γ′(0) ∈ Dγ(0); this implies that
γ′(t) ∈ Dγ(t) for all t ∈ [0, T ]. Furthermore, we assume
the input functions u = (u1, . . . , um) : [0, T ] → Rm take
values in the set of Lebesgue measurable functions Um

dyn.

2.2 Coordinate representations

On an open subset U ⊂ Q let X = {X1, . . . ,Xn} be a
basis for TQ. Let Gij be the (i, j) component of G and
let Gmk be the (m, k) component of G−1. We write the
covariant derivative of the vector fields in the basis X as

∇Xi
Xj = (XΓ)k

ijXk, (2)

where the n3 functions {(XΓ)k
ij | i, j, k ∈ {1, . . . , n}} are

called the generalized Christoffel symbols with respect to
X . Given vector fields Y and Z on U , we can write
Y = Y iXi and Z = ZiXi. The covariant derivative of Z
with respect to Y is

∇Y Z =
((

LXi
Zk
)
Y i + (XΓ)k

ijZ
iY j
)
Xk.

It is instructive to write the controlled Euler-Lagrange
equations with respect to the basis X . Let the velocity

curve γ′ : I → TU have components (v1, . . . , vn) with
respect to X , i.e.,

γ′(t) = vi(t)Xi(γ(t)).

The pair (γ, u) is a controlled trajectory for the con-
trolled Euler-Lagrange equations (1) if and only if it
solves the controlled Poincaré equations

v̇k + (XΓ)k
ij(γ)v

ivj = − (P gradV )
k
(γ)

+ P k
l G

li(Fdiss)i(γ
′) +

m∑

a=1

Y k
a (γ)ua. (3)

Remark 2.1. If the distribution D has rank p < n, it is
useful to construct a local basis for TQ by selecting the
first p vector fields to generate D, and the remaining n−p
to generate D⊥. In this case, one can see that vk(t) = 0
for all time t and all k ∈ {p+ 1, . . . , n}. �

Let (q1, . . . , qn) be a coordinate system for the open
subset U ⊂ Q. The curve γ : I → U has therefore com-
ponents (γ1, . . . , γn). The coordinate system on U in-
duces the natural coordinate basis { ∂

∂q1 , . . . ,
∂

∂qn } for the
tangent bundle TU . With respect to this basis, we write
the velocity curve γ′ : I → TU as

γ′(t) = γ̇i(t)
∂

∂qi
(γ).

In the coordinate system (q1, . . . , qn), we write γ =
(γ1, . . . , γn), γ′ = (γ̇1, . . . , γ̇n), and the controlled Euler-
Lagrange equations read

γ̈k + Γk
ij(γ)γ̇

iγ̇j = − (P gradV )
k
(γ)

+ P k
l G

li(Fdiss)i(γ
′) +

m∑

a=1

Y k
a (γ)ua. (4)

Here, the terms in the right-hand side and the Christof-
fel symbols Γk

ij , i, j, k ∈ {1, . . . , n}} are computed with
respect to the natural coordinate basis.
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2.3 Computational tools

Let [X,Y ] be the Lie bracket between the vector fields
X and Y . Given a collection of vector fields X =
{X1, . . . ,Xℓ}, consider the associated distribution X de-
fined by Xq = spanR{X1(q), . . . ,Xℓ(q)}. The distribu-
tion X is said to be involutive if it is closed under op-
eration of Lie bracket, i.e., if for all vector fields X and
Y taking values in X, the vector field [X,Y ] also takes
value in X. The involutive closure of the distribution X

is the smallest involutive distribution containing X, and
is denoted Lie{X}.

We define the symmetric product of two vector fields
X and Y as the vector field

〈X : Y 〉 = 〈Y : X〉 = ∇XY + ∇Y X,

or equivalently

〈X : Y 〉k =
∂Y k

∂qj
Xj +

∂Xk

∂qj
Y j + Γk

ij

(
Y jXi+Y iXj

)
.

A distribution X is said to be geodesically invariant if it
is closed under operation of symmetric product, i.e., if
for all vector fields X and Y taking values in X, the
vector field 〈X : Y 〉 also takes value in X. The symmet-
ric closure of the distribution X is the smallest geodesi-
cally invariant distribution containing X, and is denoted
Sym{X}.

3 Analysis of Kinematic Reduc-

tions

In this section we relate (i) controlled trajectories for the
(second-order) controlled Euler-Lagrange equation (1)
to (ii) controlled trajectories for driftless control systems
on Q. The purpose is to establish relationships between
the given simple mechanical control system and an ap-
propriate low-complexity kinematic representation.

Assumption 3.1. For the remainder of this section, we
restrict our attention to simple mechanical control sys-
tems subject to no potential energy and to no dissipative
forces, i.e., we set V = 0, and Fdiss = 0. �

Let us start by establishing some nomenclature. We
refer to second-order differential equations on Q of the
form (1) as dynamic models of mechanical systems; in
dynamic models the control inputs are accelerations.
In contrast to this, we refer to first-order differential
equations on Q as kinematic models of mechanical sys-
tems; in kinematic models the control inputs are veloc-
ity variables. Let V = {V1, . . . , Vℓ} be a family of vector
fields linearly independent at each q ∈ Q. For curves

γ : [0, T ] → Q and w : [0, T ] → Rℓ, consider the differen-
tial equation

γ′(t) =
ℓ∑

b=1

Vb(γ(t))wb(t). (5)

We shall assume that the control inputs to kinematic
systems take values in the set of absolutely continuous
functions Uℓ

kin. We shall say that the collection of vec-
tor fields V is a kinematic model or that it induces a
kinematic model.

3.1 Kinematic reductions and decou-

pling vector fields

The kinematic model induced by V = {V1, . . . , Vℓ} is said
to be a kinematic reduction of the dynamic model (1)
if, for any control input w ∈ Uℓ

kin and corresponding
controlled trajectory (γ,w) for equation (5), there exists
a control input u ∈ Um

dyn such that (γ, u) is a controlled
trajectory for the dynamic model (1). In other words, for
any curve γ : I → Q solving the equation (5) with w ∈
Uℓ

kin, there exists a control u ∈ Um
dyn such that (γ, u) is a

controlled trajectory for the dynamic model (1). Roughly
speaking, the curve γ : I → Q solving (5) can be lifted to
a solution to the second-order system (1).

The rank of a kinematic reduction is the rank of the
distribution generated by the vector fields V. Rank-one
kinematic reductions are particularly interesting. We
shall call a vector field V0 decoupling if the rank-one kine-
matic system induced by V = {V0} is a kinematic reduc-
tion. Hence, the second-order control system (1) can be
steered along any time-scaled integral curve of a decou-
pling vector field. For a dynamic control system with a
rank-m input distribution, there are at most m rank-one
kinematic reductions linearly independent at each q ∈ Q.

The following theorem characterizes kinematic reduc-
tions in terms of the affine connection and the input dis-
tribution of the given dynamic model.

Theorem 3.2. (Bullo and Lewis [11]). A kinematic
model induced by {V1, . . . , Vℓ} is a kinematic reduction of
the simple mechanical control system (Q,G, V=0, Fdiss=
0,D,F) if and only if the distribution generated by Vi

and 〈Vj : Vk〉, for i, j, k ∈ {1, . . . , ℓ} is a subdistribution
of the input distribution Y. �

3.2 Maximally reducible mechanical sys-

tems

We are here interested in characterizing when is a me-
chanical system kinematic? That is, we are interested in
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when the largest possible kinematic reduction will be at-
tained. By Theorem 3.2, any kinematic reduction must
be contained in the distribution Y, so one can do no bet-
ter than have the collection of vector fields Y itself as a
kinematic reduction. Formally, we say that the dynamic
model (1) is maximally reducible to the kinematic sys-
tem induced by V if, V is a kinematic reduction of (1)
and if, for any control input u ∈ Um

dyn, initial condition
γ′(0) ∈ V, and corresponding controlled trajectory (γ, u)
for equation (1), there exists a control input w ∈ Uℓ

kin

such that (γ,w) is a controlled trajectory for the kine-
matic system (5) induced by V. A dynamic system (1) is
maximally reducible to a kinematic system if there exists
one such collection of vector fields V.

The following theorem characterizes dynamic systems
which are maximally reducible.

Theorem 3.3. (Lewis [31]). A simple mechanical con-
trol system (Q,G, V=0, Fdiss=0,D,F) with input distri-
bution Y is maximally reducible to a kinematic system if
and only if

(i) the kinematic system is induced by Y, and

(ii) Y is geodesically invariant. �

3.3 Computing decoupling vector fields

According to Theorem 3.2, any decoupling vector field
V0 takes values in the input distribution Y. Therefore,
we lose no generality by writing

V0 = h1Y1 + · · · + hmYm,

where h1, . . . , hm are arbitrary scalar functions on Q.
Then, the vector field V0 is decoupling if and only if,
for all q ∈ Q and for all 1 ≤ c ≤ n−m,

0 =

m∑

a=1

m∑

b=1

(
hahb

G(Xc, 〈Ya : Yb〉)
)
(q), (6)

where {X1, . . . ,Xn−m} generates the G-orthogonal com-
plement of Y. A decoupling vector field is therefore iden-
tified by a set of functions h1, . . . , hm solution to the
n−m quadratic equations (6). Although these equations
may be difficult to treat analytically, solutions can be
found on a case-by-case basis by means of symbolic ma-
nipulation software. For example, in any three degrees-
of-freedom system with two control inputs, only one
quadratic equation needs to be solved as a function of
two unknown functions. It is sometimes possible to de-
sign possible decoupling vector fields by relying on phys-
ical intuition about the system’s behavior. For example,
a set of useful concepts comes from the theory of group
actions and symmetries; see Section 6.

4 Controllability Analysis

4.1 Controllable kinematic systems

We start by defining accessibility and controllability for
general kinematic systems. Here we let V = {V1, . . . , Vℓ}
be vector fields on Q giving rise to the driftless nonlinear
control system (5). For q0 ∈ Q, we let

RV(q0, T ) = {γ(T ) | (γ, u) is a controlled

trajectory for (5) defined on [0, T ] with γ(0) = q0},

and RV(q0,≤ T ) =
⋃

t∈[0,T ] RV(q0, t).

Definition 4.1. The system (5) is

(i) locally accessible from q0 if there exists T > 0 so
that int(RV(q0,≤ t)) 6= ∅ for t ∈ (0, T ], is

(ii) small-time locally controllable (STLC) from q0 if
there exists T > 0 so that q0 ∈ int(RV(q0,≤ t)) for
t ∈ (0, T ], and is

(iii) controllable if for every q1, q2 ∈ Q there exists a
controlled trajectory (γ, u) defined on [0, T ] for some
T > 0 with the property that γ(0) = q1 and γ(T ) =
q2. �

q0RV(� T; q0) q0RV(� T; q0) q0RV (� T; q0)
Figure 2: The left figure illustrates a system that is not
locally accessible: the reachable set is lower dimensional
than the state space. The central figure illustrates a sys-
tem that is accessible but for which the reachable set
does not contain a neighborhood of the initial configura-
tion. The right figure illustrates an STLC system where
the reachable set contains a neighborhood of the initial
configuration.

Let us state some well-known results concerning the
various types of controllability of (5).

Theorem 4.2. (Sussmann and Jurdjevic [49]). The sys-
tem (5) is STLC (and therefore accessible) from q0 if and
only if Lie{V}q0

= Tq0
Q. Furthermore, if Q is connected

and if Lie{V}q = TqQ for each q ∈ Q, then (5) is con-
trollable. �
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4.2 Kinematically controllable dynamic

systems

A dynamic mechanical system (1) described by
(Q,G, V = 0, Fdiss = 0,D,F) is kinematically control-
lable if there exists a sequence of kinematic reductions
{V1, . . . ,Vk} with rank {ℓ1, . . . , ℓk} with the property
that, for every q1, q2 ∈ Q, there are corresponding con-
trolled trajectories

{(γi, wi)| γi : [Ti−1, Ti] → Q, wi : [Ti−1, Ti] → R
ℓi ,

i ∈ {1, . . . , k}},
with γ1(T0) = q1, γk(Tk) = q2, and γi(Ti) = γi+1(Ti)
for all i ∈ {1, . . . , k − 1}. In other words, any q2 ∈ Q

is reachable from any q1 ∈ Q by concatenating motions
on Q corresponding to kinematic reductions of (1). The
dynamic system (1) is locally kinematically controllable
from q0 if, for any neighborhood of q0 on Q, the set of
reachable configurations by trajectories remaining in the
neighborhood and following motions of its kinematic re-
ductions contains q0 in its interior.

Theorem 4.3. (Bullo and Lynch [13]). A simple me-
chanical control system (Q,G, V = 0, Fdiss = 0,D,F) is
locally kinematically controllable if and only if it pos-
sesses a collection of decoupling vector fields (i.e., rank-
one kinematic reductions) whose involutive closure has
maximal rank everywhere in Q. �

4.3 Controllable dynamic systems

We consider again a dynamic model (1) derived from
(Q,G, V=0, Fdiss=0,D,F). For q0 ∈ Q we denote

RTQ(q0, T ) = {γ′(T ) | (γ, u) is a controlled

trajectory of (1) on [0, T ] satisfying γ′(0) = 0q0
}.

Here 0q0
∈ Tq0

Q is the zero vector. (Also recall
that the tangent vector γ′(T ) uniquely identifies the
base point γ(T ).) We also define RTQ(q0,≤ T ) =⋃

t∈[0,T ] RTQ(q0, t). With these notions of reachable sets,
we have the following definitions of controllability.

Definition 4.4. Consider a dynamic mechanical sys-
tem (1) described by (Q,G, V= 0, Fdiss= 0,D,F) and let
q0 ∈ Q. Suppose that the controls for (1) are restricted to
take their values in a compact set of Rm which contains
0 in the interior of its convex hull. The system (1) is

(i) locally accessible from q0 if there exists T > 0 so
that int(RTQ(q0,≤ t)) 6= ∅ for t ∈ (0, T ], and is

(ii) small-time locally controllable (STLC) from q0 if
there exists T > 0 so that 0q0

∈ int(RTQ(q0,≤ t))
for all t ∈ (0, T ]. �

Before proceeding, we need some notation concern-
ing iterated symmetric products in the vector fields
{Y1, . . . , Ym}. Such a symmetric product is bad if it
contains an even number of each of the vector fields
Y1, . . . , Ym, and otherwise is good. Thus, for example,
〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad for all a, b ∈ {1, . . . ,m} and
〈Ya : 〈Yb : Yc〉〉 and 〈Ya : 〈Yb : Yb〉〉 are good for any
a, b, c ∈ {1, . . . ,m}. The degree of a symmetric product
is the total number of input vector fields comprising the
symmetric product. For example, 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉
has degree 4 and 〈Ya : 〈Yb : Yc〉〉 has degree 3. If P
is a symmetric product in the vector fields {Y1, . . . , Ym}
and if σ ∈ Sm is an element of the permutation group
on {1, . . . ,m}, σ(P ) denotes the symmetric product ob-
tained by replacing each occurrence of Ya with Yσ(a).

We now state the main result concerning controllabil-
ity in state space of dynamic mechanical systems.

Theorem 4.5. (Lewis and Murray [33]). A simple me-
chanical control system (Q,G, V=0, Fdiss=0,D,F) is

(i) locally accessible from q0 ∈ Q if and only if
Sym{Y}q0

= Tq0
Q, and is

(ii) STLC from q0 ∈ Q if Sym{Y}q0
= Tq0

Q and if for
every bad symmetric product P we have

∑

σ∈Sm

σ(P )(q0) ∈ spanR{P1(q0), . . . , Pk(q0)},

where P1, . . . , Pk are good symmetric products of de-
gree less than P . �

4.4 Configuration controllable dynamic

systems

The preceding discussion concerned the set of reachable
states for a dynamic mechanical system. Let us now
restrict to descriptions of the set of reachable configura-
tions. For q0 ∈ Q we denote

RQ(q0, T ) = {γ(T ) | (γ, u) is a controlled

trajectory of (1) on [0, T ] satisfying γ′(0) = 0q0
}.

We also define RQ(q0,≤ T ) =
⋃

t∈[0,T ] RQ(q0, t). This
gives the following notions of controllability relative to
configurations.

Definition 4.6. Consider a dynamic mechanical sys-
tem (1) described by (Q,G, V= 0, Fdiss= 0,D,F) and let
q0 ∈ Q. The dynamic mechanical system (1) is

(i) locally configuration accessible from q0 if there exists
T > 0 so that int(RQ(q0,≤ t)) 6= ∅ for all t ∈ (0, T ],
and is
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(ii) small-time locally configuration controllable
(STLCC) from q0 if there exists T > 0 so that
q0 ∈ int(RQ(q0,≤ t)) for all t ∈ (0, T ] with the
controls restricted to take their values in a compact
subset of Rm that contains the origin in its convex
hull. �

Theorem 4.7. (Lewis and Murray [33]). Consider a
dynamic mechanical system (1) described by (Q,G, V =
0, Fdiss=0,D,F) and let q0 ∈ Q. The dynamic mechani-
cal system (1) is

(i) locally configuration accessible from q0 if and only if
Lie{Sym{Y}}q0

= Tq0
Q, and is

(ii) STLCC from q0 if Lie{Sym{Y}}q0
= Tq0

Q and if
for every bad symmetric product P we have

∑

σ∈Sm

σ(P )(q0) ∈ spanR{P1(q0), . . . , Pk(q0)},

where P1, . . . , Pk are good symmetric products of de-
gree less than P . �

4.5 Controllability inferences and exam-

ples

We summarize the relationships between the various con-
trollability concepts introduced up until here. In par-
ticular, Figure 3 illustrates the relationships between
small-time locally controllable (STLC), small-time lo-
cally configuration controllable (STLCC), locally kine-
matically controllable (LKC), and maximally reducible,
locally kinematically controllable (MR-LKC) systems.
All implications in the figure are clear from the theo-
retical treatment. Without further assumptions on the

STLC

STLCC

LKC MR-LKC

Figure 3: Inference between controllability notions for
mechanical control systems

dimension of the configuration space and on the rank
of the input distribution, no further implications can be
added to Figure 3.

Finally, we consider a number of instructive examples
and present a summary description of their kinematic
reductions and of their controllability properties. The
catalog is presented in Table 4.5 on page 8. The various
statements in the table are obtained in [10, 13, 14, 15,
30, 31, 35].

5 Averaging Analysis

In this section we characterize the controlled trajectories
for a simple mechanical system subject to oscillatory in-
put forces, i.e., input forces of large amplitude and high
frequency. To perform the averaging analysis, we start by
introducing certain useful iterated integrals of the input
functions.

For a ∈ {1, . . . ,m}, let ua : R̄+ × R̄+ → R be bounded
functions, T -periodic and zero-mean in their first argu-
ment, continuously differentiable in their second argu-
ment. These functions are the control inputs for the sim-
ple mechanical system and it is convenient to let them de-
pend on time in two different ways. For a, b ∈ {1, . . . ,m},
let

U(a)(τ, t) =

∫ t

0

ua(τ, s)ds,

U(a,b)(τ, t) =

∫ t

0

ub(τ, s2)

∫ s2

0

ua(τ, s1)ds1ds2,

and let U (a), U (a,b) : R̄+ → R be their averages over [0, T ]
with respect to their first argument. Let Λ be a curve of
n× n symmetric matrices given by

Λab(t) =
1

2

(
U (a,b)(t) + U (b,a)(t) − U (a)(t)U (b)(t)

)
.

One can show that, for all t ∈ R̄+, Λab(t) is positive
semi-definite. Furthermore, for any t0 ∈ R̄+ such that
all τ 7→ u1(τ, t0), . . . , um(τ, t0) are non zero, Λab(t0) is
positive definite.

For f, g : R → Rn, we write f(ǫ) ≈ g(ǫ) as ǫ → 0 if
‖f(ǫ) − g(ǫ)‖ → 0 in the limit as ǫ→ 0.

Theorem 5.1. (Mart́ınez et al. [38]). Consider the sim-
ple mechanical control system (Q,G, V, Fdiss,D,F) with
governing equation in γ : I → Q

∇γ′(t)γ
′(t) = −P

(
gradV (γ(t)) + G

−1(Fdiss(γ
′(t)))

)

+
m∑

a=1

1

ǫ
ua

(
t

ǫ
, t

)
Ya(γ(t)),

for ǫ > 0 and with initial condition γ′(0) ∈ D. Consider
the initial value problem in ξ : I → Q

∇ξ′(t)ξ
′(t) = −P

(
gradV (ξ(t)) + G

−1(Fdiss(ξ
′(t)))

)

−
m∑

a,b=1

Λab(t)〈Ya : Yb〉(ξ(t)),

with ξ′(0) = γ′(0)+
∑m

a=1 U (a)(0)Ya(γ(0)). Then, for all

7



Table 1: Catalog of low-dimensional simple mechanical control systems
System Picture Reducibility & Controllability

planar 2R robot
single torque at either joint:
(1, 0), (0, 1)
n = 2,m = 1

(1, 0): no reductions, accessible

(0, 1): decoupling v.f., maximally re-
ducible, not accessible or STLCC

roller racer
single torque at joint
n = 4,m = 1

no kinematic reductions, accessible, not
STLCC

planar body with single force
or torque
n = 3,m = 1

decoupling v.f., reducible, not accessible

planar body with single gen-
eralized force
n = 3,m = 1

no kinematic reductions, accessible, not
STLCC

planar body with two forces
n = 3,m = 2

two decoupling v.f., LKC, STLC

robotic leg
n = 3,m = 2

two decoupling v.f., maximally reducible
and LKC

planar 3R robot, two
torques:
(0, 1, 1), (1, 0, 1), (1, 1, 0)
n = 3,m = 2

(1, 0, 1) and (1, 1, 0): two decoupling v.f.,
LKC and STLC

(0, 1, 1): two decoupling v.f., maximally
reducible and LKC

rolling penny
n = 4,m = 2

maximally reducible and LKC

snakeboard
n = 5,m = 2

two decoupling v.f., LKC, STLCC

3D vehicle with 3 generalized
forces
n = 6,m = 3

three decoupling v.f., LKC, STLC
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time t in a finite interval [0, t̄]

γ(t) ≈ ξ(t),

γ′(t) ≈ ξ′(t) +

m∑

a=1

(
U(a)(t/ǫ, t) − U (a)(t)

)
Ya(ξ(t)),

as ǫ→ 0. �

In simple words, the theorem states that, with some
specified level of accuracy, the averaged evolution of a
simple mechanical control system subject to oscillatory
inputs is equal to that of a simple mechanical system
subject to an “appropriate” force. This “appropriate”
force is a linear combination of symmetric products of
the control vector fields with coefficients computed via
appropriate iterated integrals of the input functions.

Systems with potential control forces and the av-

eraged potential

Here we consider simple mechanical systems with po-
tential control forces. We will show how their averaged
behavior can be described as that of a simple mechanical
system with, as potential energy, the so-called averaged
potential.

Let (Q,G, V, Fdiss,D = TQ,F = {dϕ1, . . . ,dϕm}) be a
simple mechanical control system subject to dissipation
and with potential control forces. (Note the absence of
a constraint distribution.) The governing equations of
motion take the specific form

G∇γ′γ′ = − gradV (γ) + G
−1(Fdiss(γ

′))

+
m∑

a=1

ua(t) grad(ϕa)(γ).

The following result is useful to analyze this class of
systems.

Lemma 5.2. (Crouch [19]). Let 〈· : ·〉 be the symmetric
product induced by the Levi-Civita connection of (Q,G).
For any smooth ϕ1, ϕ2 : Q → R, the symmetric product
〈gradϕ1 : gradϕ2〉 is a gradient vector field. Addition-
ally, if one defines

〈ϕ1 : ϕ2〉 = G(gradϕ1, gradϕ2),

then

〈gradϕ1 : gradϕ2〉 = grad〈ϕ1 : ϕ2〉. �

In other words, this lemma stats that the set of gra-
dient vector fields is closed under the operation of sym-
metric product. Next, we apply Theorem 5.1 to simple
mechanical control systems with potential forces, and
simplify the averaged systems exploiting the result in
Lemma 5.2.

Theorem 5.3. (Bullo [9]). Consider the simple me-
chanical control system subject to dissipation and with
potential control forces (Q,G, V, Fdiss,D = TQ,F =
{dϕ1, . . . ,dϕm}). For i ∈ {1, . . . ,m}, let the functions
ui : R̄+ → R be bounded, T -periodic, and zero-mean.
Then, the averaged system satisfies the (unforced) equa-
tions of motion

G∇ξ′ξ′ = − gradVaveraged(ξ) + G
−1(Fdiss(ξ

′)) .

where the averaged potential Vaveraged : Q → R is

Vaveraged = V +
m∑

a,b=1

Λab〈ϕa : ϕb〉 . �

Here Λ is defined as above; however, the control in-
puts depend only on one time scale and therefore Λ is
constant.

6 Trajectory Design via Inverse

Kinematics

In this section we consider the problem of designing a
controlled trajectory for a simple mechanical control sys-
tem (Q,G, V=0, Fdiss=0,D,F) connecting two arbitrary
initial and target configurations qinitial and qtarget in Q.
We shall tackle this problem by introducing the notion
of infinitesimal generators and making an appropriate
assumption.

Let G be a Lie group, g be its Lie algebra and let
exp: g → G be the corresponding exponential map.
Given a configuration manifold Q, a right group action
is a smooth map Φ: Q × G → Q, such that Φ(q, e) = q
for all q ∈ Q, where e denotes the identity element in G,
and Φ(Φ(q, g), h) = Φ(q, gh) for all g, h ∈ G, q ∈ Q. For
ξ ∈ g, the infinitesimal generator Vξ is the vector field
on Q defined by

Vξ(q) =
d

dt

∣∣∣
t=0

Φ(q, exp(tξ)).

Note that the flow of infinitesimal generators can be com-
puted in closed form by means of the exponential map
and group action.

Group actions play an interesting role when paired
with kinematic reductions of simple mechanical control
systems. Numerous examples from Table 4.5 enjoy the
following property: the decoupling vector fields turn out
to be infinitesimal generators of some group action. In-
deed, oftentimes decoupling vector fields correspond to
infinitesimal rotations and translations (measured with
respect to the body-frame). In these cases, the group G
is a subgroup of SE(n) and the group action is a rigid

9



displacement of some components of the mechanical de-
vice.

Assumption 6.1. In what follows, we assume that the
dynamic mechanical control system (Q,G, V = 0, Fdiss=
0,D,F) is kinematically controllable and admits a set of
decoupling vector fields that are infinitesimal generators
of an appropriate group action Φ: Q × G → Q. Further-
more, we assume the motion planning problem satisfies

Φ(qinitial, gdesired) = qtarget

for some appropriate gdesired ∈ G. �

Note that these assumptions do not imply that the
mechanical system is invariant under the group action.

In summary, we are given a family of left-invariant
vector fields {V1, . . . , Vm} on G and we consider the as-
sociated driftless control system

ġ(t) =

m∑

i=1

Vi(g(t))wi(t) (7)

where t 7→ g(t) ∈ G and where t 7→ (w1, . . . , wm) ∈
{(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}. (As
common in matters of Lie group theory, we identify left-
invariant vector fields with their value at the identity.)

The design objective is to compute feasible mo-
tion plans for the control system (7) by concatenat-
ing a finite number of flows along the input vector
fields. Trajectory design is reduced to the problem
of selecting a finite-length combination of k maneuvers
{ (i1, . . . , ik) | ij ∈ {1, . . . ,m}} and computing appropri-
ate coasting times {t1, . . . , tk} that steer the system from
the identity in the group to any target configuration
gdesired ∈ G. In mathematical terms, we need to solve

gdesired = exp(t1Vi1) · · · exp(tkVik
),

k ∈ N, t1, . . . , tk ∈ R, i1, . . . , ik ∈ {1, . . . ,m}. (8)

Although no general methodology is available to treat
analytically problems of the form (8), it is possible to de-
velop a catalog of solutions for relevant example systems.
In what follows we provide planning algorithms for any
controllable system evolving on SO(3), and we refer to
[39] for a comprehensive catalog.

Solutions for kinematic systems on SO(3)

Let {êx, êy, êz} be the basis of so(3):

êx =




0 0 0
0 0 −1
0 1 0



, êy =




0 0 1
0 0 0
−1 0 0



, êz =




0 −1 0
1 0 0
0 0 0



.

Here we make use of the notation V̂ = aêx + bêy +

cêz ≡ ̂(a, b, c) based on the Lie algebra isomorphism
·̂ : (R3,×) → (so(3), [·, ·]). An expression of the exponen-
tial exp: so(3) → SO(3) is given in terms of Rodrigues’
Formula:

exp(η̂) = I3 +
sin ‖η‖
‖η‖ η̂ +

1 − cos ‖η‖
‖η‖2

η̂2 .

The commutator relations are [êx, êz] = −êy, [êy, êz] =
êx and [êx, êy] = êz.

Consider two left-invariant vector fields V1 =
(a1, b1, c1) and V2 = (a2, b2, c2) in so(3). Their Lie
closure is full rank if and only if c1a2 − a1c2 6= 0 or
b1c2−c1b2 6= 0 or b1a2−a1b2 6= 0. Therefore, without loss
of generality, we can assume V1 = ez (otherwise we per-
form a suitable change of coordinates), and ‖V2‖2 = 1.
In what follows, we let V2 = (a, b, c). Since ez and V2 are
linearly independent, necessarily a2 +b2 6= 0 and c 6= ±1.

Since dim(so(3)) = 3, at least three maneuvers along
the flows of {V1, V2} are required to plan a motion be-
tween any two arbitrary desired configurations. Thus,
we consider the map FK : R3 → SO(3)

FK(t1, t2, t3) = exp(t1êz) exp(t2V̂2) exp(t3êz) . (9)

In the following theorem, we design an inverse kine-
matic map IK that will compute appropriate coasting
times. In what follows, atan2 denotes the inverse tan-
gent map that discerns the appropriate quadrant.

Theorem 6.2. (Mart́ınez et al. [39]). Let V1 = (0, 0, 1)
and V2 = (a, b, c), with a2 + b2 6= 0 and c 6= ±1. Define
the neighborhood of the identity in SO(3)

U =
{
R ∈ SO(3) | R33 ∈ [2c2 − 1, 1]

}
.

Consider the map IK : U ⊂ SO(3) → R3 whose compo-
nents are

IK1(R) = atan2 (w1R13 + w2R23,−w2R13 + w1R23) ,

IK2(R) = acos

(
R33 − c2

1 − c2

)
,

IK3(R) = atan2 (v1R31 + v2R32, v2R31 − v1R32) ,

where, for z = (1 − cos(IK2(R)), sin(IK2(R)))T ,

[
w1

w2

]
=

[
ac b
cb −a

]
z ,

[
v1
v2

]
=

[
ac −b
cb a

]
z.

Then, IK is a local right inverse of FK, that is, it sat-
isfies FK ◦ IK = idU : U → U . �

We illustrate the performance of the algorithms in Fig-
ure 4.
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Figure 4: We illustrate the inverse-kinematic
planner on SO(3). The system parameters are
(a, b, c) = (0, 1/

√
2, 1/

√
2). The target final rotation

is exp(π/3, π/3, 0). To render the sequence of three
rotations visible, the body is translated along the inertial
x-axis.

7 Trajectory Design via Approxi-

mate Inversion

In this section we consider the problem of steering the
configuration of the simple mechanical control system
(Q,G, V, Fdiss,D,F) along a pre-specified target trajec-
tory. We do so by means of appropriate oscillatory con-
trols, that is, controls of large amplitude and high fre-
quency as considered in Section 5.

We consider the mechanical control system with con-
straints (Q,G, V, Fdiss,D,F) with governing equation in
γ : I → Q

∇γ′(t)γ
′(t) = −P

(
gradV (γ) + G

−1(Fdiss(γ
′))
)

+

m∑

a=1

uaYa(γ(t)), (10)

with initial condition γ′(0) ∈ D. We state the con-
trol objective as follows: given a desired smooth curve
γtarget : [0, T ] → Q with initial condition γ′target(0) =
γ′(0), find controls ua : TQ × [0, T ] → Rm such that the
controlled trajectory γ approximates γtarget up to O(ǫ)-
errors.

Assumption 7.1. We assume that spanR{Ya, 〈Yb :
Yc〉| a, b, c ∈ {1, . . . ,m}} is full rank and that, for all
a ∈ {1, . . . ,m}, the bad symmetric product 〈Ya : Ya〉
takes values in Y. �

This assumption has two immediate consequences.
First, there exist functions za

target, z
ab
target : [0, T ] → R,

a < b, with

∇γ′

target(t)
γ′target(t)

= −P (gradV (γtarget) + G
−1(Fdiss(γ

′
target)))

+
m∑

a=1

za
targetYa(γtarget(t))

+

m−1∑

a=1

m∑

b=a+1

zab
target〈Ya : Yb〉(γtarget(t)).

Second, for a, b ∈ {1, . . . ,m}, there exist functions
αa,b : Q → R such that

〈Ya : Ya〉 =

m∑

b=1

αa,bYb .

Roughly speaking, we regards the functions
za
target, z

ab
target : [0, T ] → R, a < b, as “virtual inputs”

that the control system can only in part realize.
Next, note that there are N = m(m − 1)/2 pairs of

elements (a, b) in {1, . . . ,m}, with a < b. Let (a, b) 7→
ω(a, b) ∈ {1, . . . , N} be an enumeration of these pairs,
and define the scalar functions

ψω(a,b)(t) =
√

2ω(a, b) cos(ω(a, b)t) .

We are now ready to state the main result of this sec-
tion on the design of oscillatory controls.

Theorem 7.2. (Mart́ınez et al. [38]). Consider the
mechanical control system (Q,G, V, Fdiss,D,F). Let
γtarget : [0, T ] → Q be a smooth reference trajectory. De-
sign the feedback and feedforward control laws ua accord-
ing to ua = va(t, q) + (1/ǫ)wa (t/ǫ, t) with

va(t, q) = za
target(t)

+
1

2

m∑

b=1

αa,b(q)

(
a− 1 +

m∑

c=a+1

(zbc
target(t))

2

)
,

wa(τ, t) =

m∑

c=a+1

zac
target(t)ψω(a,c)(τ) −

a−1∑

c=1

ψω(c,a)(τ).

If γ′target(0) = γ′(0), then the controlled trajectory γ, so-
lution to equation (10), follows γtarget with an error of
order ǫ over the time scale 1. �

Roughly speaking, we refer to Theorem 7.2 as an “ap-
proximate inversion” of the “averaging procedure” de-
scribed in Theorem 5.1: given a desired “appropriate
force” described by the virtual inputs, we design such
oscillatory controls that the average system will be sub-
ject to precisely the appropriate force. In other words,
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the simple mechanical system subject to controls ua as
designed in the theorem statement satisfies, on average,
the differential equation defining the virtual inputs. Note
that (1) the virtual inputs za

target are realized by means

of va terms, (2) the virtual inputs zab
target, a < b, are real-

ized by means of the wa terms via the multiplication with
appropriate oscillations, and (3) the second term in the
definition of va is responsible for removing the undesired
effects of bad symmetric products during the averaging
procedure. A more comprehensive explanation, as well as
the proof, of this result is provided in [38]. We illustrate
this control design with two example systems.

A second-order nonholonomic integrator

We consider a dynamical extensions of Brockett’s non-
holonomic integrator:

ẍ1 = u1 , ẍ2 = u2 , ẍ3 = u1x2 + u2x1 ,

and note that this system fulfills the controllability
Assumption 7.1. Following Theorem 7.2, we design
control inputs to track a desired trajectory, t 7→
(xd

1(t), x
d
2(t), x

d
3(t)), and obtain

u1 = ẍd
1 +

1√
2ǫ

(
ẍd

3 − ẍd
1x

d
2 − ẍd

2x
d
1

)
cos

(
t

ǫ

)
,

u2 = ẍd
2 −

√
2

ǫ
cos

(
t

ǫ

)
.

An illustration of the performance of these controls is
shown in Figure 5.
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Figure 5: Trajectory design for the second-order non-
holonomic integrator (ǫ = .05)

A PVTOL aircraft model

We consider the model of a simple planar vertical takeoff
and landing aircraft model with added viscous damp-
ing forces; see Figure 6. We parametrize its con-

z

x
θ

mg

u1 +mg
u2/2

π

4

u2/2

π

4

Figure 6: Diagram of the PVTOL aircraft model

figuration and velocity space via the state variables
(x, z, θ, vx, vz, ω). We let x and z be the horizontal and
vertical displacement of the aircraft, and θ be its roll an-
gle. The angular velocity is ω and the linear velocities in
the body-fixed x (respectively z) axis are vx (respectively
vz). The equations are written as:

ẋ = cos θvx − sin θvz,

ż = sin θvx + cos θvz,

θ̇ = ω,

v̇x = (−k1/m)vx − g sin θ + vzω + (1/m)u2,

v̇z = (−k2/m)vz − g(cos θ − 1) − vxω + (1/m)u1,

ω̇ = (−k3/J)ω + (h/J)u2.

(11)

Control u1 corresponds to the body vertical force minus
gravity, while u2 corresponds to coupled forces on the
wingtips with a net horizontal component. The other
forces depend upon the constants ki, which parameterize
a linear damping force, and g, the gravity constant. The
constant h is the distance from the center of mass to the
wingtip, while m and J are mass and moment of inertia,
respectively.

The PVTOL aircraft model fulfills the controllability
Assumption 7.1. We design control inputs to track a
desired trajectory (xd(t), zd(t), θd(t)) as

u1 =
J

h
θ̈d +

k3

h
θ̇d −

√
2

ǫ
cos

(
t

ǫ

)
,

u2 =
h

J
− f1 sin θd + f2 cos θd

− J
√

2

hǫ

(
f1 cos θd + f2 sin θd

)
cos

(
t

ǫ

)
,
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Figure 7: Trajectory design for the PVTOL aircraft
model (ǫ = .01)

where we let c = J
h
θ̈d + k3

h
θ̇d and

f1 = mẍd +
(
k1 cos2 θd + k2 sin2 θd

)
ẋd

+
sin(2θd)

2
(k1 − k2)ż

d +mg sin θd − c cos θd ,

f2 = mz̈d +
sin(2θd)

2
(k1 − k2)ẋ

d +
(
k1 sin2 θd

+k2 cos2 θd
)
żd +mg(1 − cos θd) − c sin θd .

The simulations are run with m = 20, J = 10, h = 5,
k1 = 12, k2 = 11, k3 = 10, g = 9.8. Figure 7 shows an
example of the behavior of these controls.

8 Conclusions

We conclude by briefly mentioning the numerous re-
sults on mechanical control systems on Riemannian man-
ifolds that are not presented here for reasons of brevity.
These include work on optimal control [16, 32, 42],
static and dynamic feedback linearization [5, 46], passiv-
ity [20, 40], energy-shaping methods studied for example
in [8, 22, 44], and small-amplitude algorithms for mo-
tion planning and stabilization [15, 37, 47]. An avenue
for interesting future research is to relate these areas to
the broad problem of geometric trajectory design for me-
chanical systems.
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MA, 1992. ISBN 0817636331.

[49] H. J. Sussmann and V. Jurdjevic. Controllability of non-
linear systems. Journal of Differential Equations, 12:
95–116, 1972.

[50] A. J. van der Schaft. L2-Gain and Passivity Techniques
in Nonlinear Control. Springer Verlag, New York, 2 edi-
tion, 1999. ISBN 1852330732.

15


