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Abstract—We investigate the coordination of groups of au- using the tools in [4], [5], [6]. Although this flow has some
tonomous robots performing spatially-distributed sensing tasks. convergence properties, it is not amenable to a distributed
We present facility location functions from geometric optimiza- implementation. Drawing connections with quantizatioe-th

tion and study their differentiable properties. We then design . s o
distributed coordination algorithms and analyze them as nons- ory [7], [8], [9], we consider two distributed coordination

mooth gradient flows. The resulting control laws correspond to ~ @lgorithms: a novel strategy based on the generalizedegradi
basic interaction behaviors between the robots. The technical and a strategy similar to the well-known Lloyd algorithm.

approach relies on concepts from computational geometry, Both coordination algorithms are guaranteed to continu-
nonsmooth analysis, and the dynamical system approach to 4 5ly improve the network performance. We investigaterthei
algorithms. . . . . .
asymptotic behavior. In the journal version of this work][10
I. INTRODUCTION we provide the proofs for all statements in this note. Two

The deployment of large groups of autonomous vehicles @f our results are related to well-known conjectures in the
rapidly becoming possible because of technological acagnclocational optimization literature [11], [12]: (i) thatefmulti-
in computing, networking, and miniaturization. Future tiaul Ccenter problem is equivalent to a disk covering problem, and
vehicle networks will coordinate their actions to perform(ii) that the generalized Lloyd strategy converges to thte se
challenging spatially-distributed tasks (e.g., searchracov-  Of center Voronoi configurations.
ery, exploration, and environmental monitoring for patat The paper is organized as follows. Section |l establishes
detection and estimation). This scenario motivates thdystuthe key concepts on Voronoi partitions, multi-center prob-
of algorithms for autonomy, adaptation, and coordinatibn dems, nonsmooth and stability analysis. Section Il presen
multi-vehicle networks. Our approach is to design networka complete treatment for the 1-center problem. Section IV
wide performance measures which encode meaningful sermiscusses the differentiable properties and the critic#htp
ing tasks. At the same time, we consider all constraints oof the multi-center function. Section V introduces various
the network behavior. Coordination algorithms need to beoordination algorithms (distributed and non-distrilajtand
adaptive and distributed in order for the resulting networkliscusses their correctness. We gather our conclusions in
to be scalable, to tolerate failures, and to adapt to changifsection VI.
environments, topologies and tasks.

In this paper, we consider a facility location function
encoding a coverage performance criteria. A multi-vehicle
network provides optimal coverage of a domain of interest
if it minimizes the largest distance from any point in the Let |- || denote the Euclidean distance function &Y
domain to one of the vehicle locations. In other words, igfnd letv - w denote the scalar product of,w € RY.
(pl’ L. 7pn) are the vehicles locations in a domw}] we Let versus(v) denote the unit vector in the direction of

Il. PRELIMINARIES AND PROBLEM SETUP

minimize themulti-center function 0 # v € RY, ie, versus(v) = v/||v]. Given S C RY,
co(S) and int S denote its convex hull and interior set,
max | min g — pil?] - respectively. IfS is convex, letprojq: RN — S denote
qeQ |ie{1,...,n}

the orthogonal projection ont$ and letDg: RY — R
We study its differentiable properties via nonsmooth analydenote the distance function % For R > 0, By (p, R) =
sis [1]. We show it is locally Lipschitz and regular, and com-{q € R" | [[p — ¢|| < R} and By (p,R) = int By(p, R).
pute its generalized gradient. Under a technical conditien Let Q be a convex polygon ifiR?. We denote byEd(Q) =
show that the local minima of the multi-center function ardley,...,ep} and Ve(Q) = {v1,...,vr} the set of edges
center Voronoi configurationsNext, we design distributed and vertices ofQ, respectively. LetP = (p1,...,pn) €
algorithms following a dynamical systems approach; sege [2™ C (R?)" denote the location of. generators Q. Let
[3]. We study the corresponding nonsmooth gradient flow; : Q™ — @ be the canonical projection onto thid factor.



A. Voronoi partitions distance of any point id) to one of the generators’ locations,
We refer the reader to [13], [14] for comprehensive-&- 10 minimize,

treatments on \oronoi diagrams. Theoronoi partition .
V(P) = (W(P).....V,(P)) of Q generated by the points Hoc(P) =max{ _min_la—pil}
(p1,-..,pn) is defined by s
; ; = max max ||q — p; .
Vi(P) ={a € Q| llg—pill < llg—p;ll, Vi #i}. et {V la=» }

For simplicity, we refer toV;(P) asV;. SinceQ is a convex It is conjectured in [11] that this problem can be restated as
polygon, the boundary of eacl; is the union of a finite a disk-covering problem: how to cover a region with disks
number of segments. IV; and V; share an edge, thes, ~ of minimum radius. In Theorem 4.3 we provide a positive
is a (Voronoi) neighborof p; (and vice-versa). All Voronoi answer to this question. Given a polytopg in RN, its
neighboring relations are encoded in the mappiig Q™ x  circumcenterCC(W), is the center of the minimum-radius

{1,...,n} — 2L} where N'(P,4) is the set of indexes sphere that containg/’. We say thatP is a circumcenter
of the Voronoi neighbors of;. We will often omit P and Voronoi configurationif p; = CC(V;(P)), for all i €
instead write\/ (7). {1,...,n}.

We refer to (2) as the multi-incenter problem. It corre-
] sponds to the situation where the network tries to maximize
. the coverage of) so that the sensing radius do not overlap.
We then consider the maximization of

v, Vg v,

— ; 1y, o .
Fig. 1. A Voronoi partition with degenerate and nondegeteexartices. HSP(P) - ijer{riln n} {2 ”p’t pJH’ De(pl)}
Vertices vq, vp, and v, are nondegenerate vertices of type (a), (b), (c), iy’éj’ee’l;j('l’(@

respectively. Vertices,; andv. are degenerate.
A similar conjecture is that this is a sphere-packing prob-

For P € Qm, the verticesv of V(P) are classified as lem: how to maximize the coverage of a region with non-
follows: v is of type (a)if it is the center of the circle passing overlapping disks of minimum radius. Here we confine
through three generators (say, p;, andpy), v is of type (b) ourselves to the multicenter problem.
if it is the intersection between an edge®@fand the bisector
determined by two generators (sa&y,p;, andp;), andv is
of type (c)if it is a vertex ofQ, i.e., it is determined by two = Here we review some facts on nonsmooth analysis [1].
edges of@Q and the generator of a cell containing it (say,The right directional derivativeof f at z in the direction of
e, f, andp;). Correspondingly, we write(i, j, k), v(e,i,7), ve€RNis
gryd.v(af, i). .The vertexv € Ve(V;(P)) is nondegengratg . / . fr+tv) — f(z)
if it is determined by exactly three elements, otherwisesit i fiz,v) = fl_lgg / )
degenerateThe configurationP is nondegenerate at thih )
generatorif all verticesv ¢ VG(V;(P)) are nondegenerate' when this limits exists. Thgeneralized directional derivative
otherwiseP is degenerate at théth generator Finally, P is  ©f f atz in the direction ofv € RV is
nqndegenerat'ef all its yertices are nondegenerate, otherwise o fly+t) — fly)
it is degeneratdsee Fig. 1). fo(xsv) = 11}}2511110 —

(t~>0+

Definition 2.1: f : RV — R is regular atz € RY if for
all v e RY, f/(x;v) exists andf?(x;v) = f/(z;v).

. {max{ min g —P'|}} 0 From Rademacher’s Theorem [1], locally Lipschitz func-
pi,pn | q€Q |i€{1,...,n} ! ’ tions are differentiable almost everywhere{lf denotes the
set of points iNRY where f fails to be differentiable, the
generalized gradientf f is

C. Nonsmooth analysis

B. Disk-covering and sphere-packing problems
We are interested in the facility location problems

i L i — Pj 7De % . 2
| iy GlP I D) @
i#j, e€Ed(Q) af(;p) = CcO { 1121 df(xL) | Ty — T, Ty g S U Qf} y

The problem (1) is referred to as thecenter problem

in [12], [11]. Along paper, we refer to it as the multi- whereu(S) = 0 (1 denotes the usual Lebesgue measure). A
center problem. In the context of coverage control for m®bilpoint z € RY with 0 € 9f(x) is acritical point of f.

networks [15], it corresponds to the worst case scenario, in Proposition 2.2: Let {fk RN - R|ke{l,... ,m}}
which no information is available on the events taking placee a collection of locally Lipschitz functions atc RY. Let

in Q. The network then tries to minimize the largest possiblg (') = min {fix(z)| k € {1,...,m}}. Then, f is locally



Lipschitz atx, and if I(2') denotes the set of indexésfor ~ with nonsmooth Lyapunov functions. The formulation is

which fi(2') = f(2'), we have taken from [5], and slightly generalizes the one presented
. in [6].
0f(z) Cco{dfi(w) i € I(x)}, ©) Theorem 2.5 (LaSalle principle)et f: RY — R be
and if eachf; is regular atz for i € I(x), then equality @ locally Lipschitz and regular function. Let, € RN
holds andf is regular atz. and let f~1(< f(xg),70) be the connected component

Proposition 2.3:Let f be a locally Lipschitz function at of {z € RY | f(z) < f(z)} containingzo. Assume either
r € RN If f attains a local minimum or maximum at maxLxf(z) < 0 or Lxf(z) = 0 for all z € f71(<
then0 € 0f(z), i.e., x is a critical point. f(x0),20), and that this set is bounded. Thefr!(<
Let Ln : 28" — 28" pe the set-valued mapping thatf(zo),zo) is strongly invariant for (4). Let
associates to each C R" the set of its least-norm elements N ~
Ln(S). If the setS is convex, therLn(S) = projg(0). For Zx.f = {x ceRTJ0€ ‘CXf(x)} :
a locally Lipschitz functionf, we consider theyeneralized Then, any solution: : [t, +o0) — RN of (4) starting from
gradient vector fieldLn(9f) : RV — RY given byz — converges to the largest weakly invariant étcontained
Ln(0f)(z) = Ln(0f(x)). in Zx.; N (< flxo), xo).
Theorem 2.4:Let f be a locally Lipschitz function at. ' T
Assume0 ¢ df(z). Then, there existd” > 0 such that for E- Nonsmooth gradient flows

alo<t<T Finally, we are in a position to present the nonsmooth
t ) analogue of well-known results on gradient flows. Given a
f(z =t In(9f)(x)) < f(z) - §|| Ln(0f) ()" locally Lipschitz and regular functiorf, consider
The vector— Ln(df)(x) is called adirection of descent #(t) = —Ln(of)(x(t)) . (6)

D. Stability analysis via nonsmooth Lyapunov functions Theorem 2.4 guarantees that, unless the flow is at a critical

For differential equations with discontinuous right-hand?0int, — Ln(df)(z) is a direction of descent at In general,
sides, solutions are defined in terms of differential incluthe vector fieldLn(0f) is discontinuous, and therefore its
sions [4]. LetF : RN — oRY phe a set-valued map. A solution must be understood in the Filippov sense. Sifice
solution to the differential inclusion € F(x) on an interval s locally Lipschitz,Ln(0f) = df a.e. The following result
[to,#1] C R is defined as an absolutely continuous functioguarantees the convergence to the set of critical points of

z : [to,t1] — RN such thati(t) € F(x(t)) for almost all  Proposition 2.6:Let zo € RY and f~(< fl\gﬂﬁo)awo) is

t € [to, t1]. Now, consider the equation bounded. Then, any solution: [ty, +00) — R™ of eq. (6)
] starting fromz converges asymptotically to the set of critical
i(t) = X(z(1)), (4)  points of f contained inf~1(< f(xo), zo).

where X : RV — R¥ is measurable and essentially locally [Il. THE 1-CENTER PROBLEM

bounded. The solution of (43Vhas to be understood in the | this section we consider the disk-covering problem with
Filippov sense. For each € R™, consider a single generator, i.en, = 1. This treatment will give us
K[X](z) = m n co{ X (Bn(z,5)\ 9)}. the necessary insight to tackle later the more involvedimult
center problem. Whem = 1, the minimization of Hpc
consists of finding the center of the minimum-radius sphere
enclosing the polygor. Let us therefore define the function

>0 pu(S)=0
A Filippov solution of (4) on an intervalty,t;] C R is
defined as a solution of the differential inclusion

i€ K[X](@). g (e =maxili-pllac@)

_ o o = max {[[v — p||| v € Ve(Q)} = Hoc(p) . (7)
A setM is weakly mvanan_t(resp.strongly lnvan_an) for (4) Since the functiorig, is the maximum of a (finite) set of
i for_ each zo < M, contains a maximal S(.J|utIOI:1 (reSp'.a”convex functions inp, it is also a convex function [16].
maxmal solut|on.s) of (4). Given a Io_caIIy l."pS.Ch'tz f“@”" Therefore, any local minimum ofg,, is also global. Fur-
f:R _’;1?’ define theset-valued Lie derivative of with thermore, one can show that the functiep, has a unique
respect toX atz as global minimum, which is the circumcenter of the polygon
L ={eeR|Ive KX such that Q. " : . . .
xf(x) = {a 3 [X]() su Proposition 3.1: The functionlg,(p) is locally Lipschitz
¢rv=a, ¥CeIf(x)}. and regular, and its generalized gradient is

For eachr € RV, EXf(x) is a closed and bounded interval lep (p) = co {versus(p — v) |
in R, possibly empty. The following result is a generalization Q
of LaSalle principle for differential equations of the foi#) v e Ve(Q), lggp) = p—vll} (8)



Moreover,0 € dlg,(p) <= p = CC(Q). where P, is the orthogonal projection onto the edgesee
Next, let us study the generalized gradient flow arisingrig. 3. One can see that(e,i,j) + A\(e,j,7) = 1. If e is a
from the 1-center function. An immediate consequence afegment in the linez+by+c =0, (Az;;, Ayij) = pj — i,
Propositions 2.6 and 3.1 is the following result. (T, Ym) = (pi + p4)/2, then one can show
Proposition 3.2: The gradient flow oflg,, @(t) = B B
—Ln(d1gg)(x(t)) converges asymptoticallycio the circum- (e, i,5) = % _ (alay + bAAy”)(ZZm +§ym +9) .
center CC(Q). If 0 € intdlg,(CC(Q)), then the flow (alyij — bAzij)
reachedCC(Q) in finite time. Given a vertex of type (a)y = v(i, 7, k), determined by
Note that if0 € 0lg,(CC(Q)) \ int d1gy (CC(Q)), then
generically convergence is achieved over an infinite time
horizon. Fig. 2 shows an example of the implementation of
the gradient descent df,. If CC(Q) is first computed of- n |
fline, the strategy of directly going toward it would converg Fig. 3. To illustrate eq. (9) we draw the vectassoj, (p; — v(e, 4, 7)) and

in a less “erratic” way. proj.(p; — ps) for various locations op;, p;, ande. The left, center and
right figures correspond ta(e,,j) > 0, A(e,i,5) = 0, A(e,4,5) < O,
resp.

the three generators;, p;, andp;, we consider the scalar
function p(4, j, k) defined by

pI‘Ojejk (pf - U(ivjv k)) = M(i’j7 k) projejk(pé - pi)

whereej;, is the bisector ofp; andp, and wherep, = p;

. . _ if p; belongs to the half-plane defined ley, containing
Fig. 2. lllustration of the gradient descent lef,. The points where the

curvet — p(t) fails to be differentiable correspond to points where ttiere Pi: anq be = Pk OtherWise- O_ne can see thﬁ(iaj? k) =
a new vertexv of Q such that][p(t) — v|| = lgg (p(t)). The circumcenter (i, k, j) and thatu(i, j, k) +u(j, k,4) + p(k, 7, j) = 1. From

is attained in finite time according to Proposition 3.2. the expression of\, one can obtain the next expression for
pli, j, k),
IV. ANALYSIS OF THE MULTI-CENTER FUNCTION 1 (Azij;Axj, + Ay Aye) (Azip Az, + AyinAyix)
We characterize the smoothness propertiek/gf (gener- 2 2(xk Ay — 2 Ayik + i Ay;)? '

alized gradient, critical points) for arbitrary numbersgei- | general,\ and . are not positive functions.
erators. We start by providing some alternative expression proposition 4.2:Let P € Q™. Then
and useful quantities. We write
0G;(P) = 0,G;(P) € (R?)"
Hoc(P) = max G,;(P), (P) = co{8,G:(P) € RY)" |
i€{1,...,n} v € Ve(V;(P)) such thatG;(P) = ||p; — v||}

where G;(P) = max,cvy,(p) l¢ — pil|- Note thatG;(P) = where we consider separately the following cases K
lgy,(p)(pi), where, fori € {1,...,n}, lgy, : Vi — R. (4,4 k) is a nondegenerate vertex of type (a), then
Proposition 3.1 provides an explicit expression for the-gen

eralized gradient ofg,, whenV; is held fixed. Despite the  0,(; j 1) Gi(P) = Oy(1,i,j) G (P) = Oy(j,k,i) G5 (P) =
slight abuse of notation, it is convenient to gy, p)(p:) (0, ..., u(i, j, k) versus(p; — v), ..., u(j, k, 1) versus(p; — )
denoted Igy (p;)|v—v,(p). In contrast to this analysis at fixed

Voronoi partition, the properties af; are strongly affected ith place o gth place
by the dependence o(P). Our objective is to characterize voeos pulks i, ) versus(py — v), ..., 0)
these properties in order to stu@pc. kth place

Proposition 4.1: The functionsG; : Q" — R are locally
Lipschitz and regular. As a consequeng;c : Q" — R is
locally Lipschitz and regular.

We now introduce some quant_ities thaF are useful in By(e.i.j)Gi(P) = Byej.iyGs(P)
characterizing the generalized gradient®f Given a vertex ” s
of type (b),v = v(e, i, 7), determined by the edgeand two
generatorg; and p;, consider the scalar functioh(e, 4, j) ith place
defined by (e, §,4) versus(p; — v),...,0)

where, without loss of generality, we lét< j < k. If v =
v(e,,7) iIs a nondegenerate vertex of type (b), then

=(0,..., (e, i,7) versus(p; — v),...,

proje(pj - U(@,i,j)) = A(@,i,j) proje(pj - pz) (9) jth place



k € {1,...,m}. We refer to [15] for more details on the
distributed character of Voronoi neighborhood relatiopsh

A. Nonsmooth gradient dynamical systems

Consider the generalized gradient descent flow (6) for the
locational optimization function®{pc,

P = —Ln(dHpc)(P).

Fig. 4. Local extrema of the disk-covering function in a conpelygonal  Alternatively, we may write for eache {1,...,n},
environment. The configuration corresponds to a local minimdrHgc
with 0 € dHpc(P) andint dHpc(P) = 0. The 4th generator is inactive pi = —mi(Ln(OHpe)(p1, -+ - 0n)) - (12)

and non-centered.
As noted in Section II-D, this vector field is discontinu-
ous, and its solution must be understood in the Filippov
sense. Eq. (10) and Proposition 4.2 provide an expression
of OHpc(P). One needs to first compute the generalized
gradient, then compute the least-norm element, and finally
Ov(e,£,)Gi(P) = (0,...,0,versus(p; — v),0,...,0). project to each of the components. Note that the least-norm
— element of convex sets can be computed efficiently, see [16],
however closed-form expressions are not available in géner

Finally, if the vertexv is degenerate, i.e., if is determined One can also see that the compaci@ets strongly invariant
by d > 3 elements (generators or edges), then thereédabrb) for — Ln(@Hpc) (cf. [10])

pairs of elements which determine the vertetogether with

tahe genecr;atoppi.fln trl]lls dc_alseﬁvcv;]i(l?)lls the convex hull of - ¢ o6rs' locationP = (pi, ..., p,) converges asymptotically
(6. Gi(P) for all (57) such triplets(a, 3, 7). to the set of critical points oHpc.

As a consequence of Propositions 2.2 and 4.1, we have Remark 5.2:The gradient dynamical systems enjoy con-
OHpc(P) = co{dG(P)|i e I(P)} . (10) vergence guarantees, but their implementation is cendali
because of two reasons. First, all functiofg(P) need to
Theorem 4.3 (Minima of{pc): Let P € Q" be nonde- phe compared in order to determine which generator is active.
generate and € int 9Hpc(P). Then, P is a strict local second, the least-norm element of the generalized gradient
minimum of Hpc, all generators are active anft is a  depends on the relative position of the active generatas wi
circumcenter Voronoi configuration. respect to each other and to the environment. Moreover, as
Remark 4.4:Theorem 4.3 provides the interpretation ofjystrated in Fig. 5, the evolution of the gradient systemym

the multicenter problem that we gave in Section II-B: sinceyot |eave fixed even the generators that are circumcenters.
all generators are active, they share the same radius. If one

drops the hypothesi§ € int 9Hpc(P), one can think of

simple examples wher® is a local minimum ofHp¢, and

there are generators which are inactive and non-centeigpd, e

Fig. 4.

V. DYNAMICAL SYSTEMS FOR THE MULTI-CENTER
PROBLEM

where, without loss of generality, we lét < j. If v =
v(e, f,4) is @ nondegenerate vertex of type (c), then

ith place

Proposition 5.1: For the dynamical system (12), the gen-

Here, we describe three algorithms that (locally) extremiz
the multi-center function for the disk-covering probleng&W Fig. 5. lllustration of the gradient descent. Thih generator is in the

present continuous-time versions of the algorithms and digircumcenter of its own Voronoi region, but the control lav2)Mrives it
toward the vertex.

cuss their convergence properties. The generators’ tcati

obeys a first order dynamical behavior described by
B. Nonsmooth dynamical systems based on distributed

pi=ui(p1,...,pn), 1€{l,...,n}. (1) gradients
The dynamical system (11) is said to bentralizedif there In this section, we propose a distributed implementation
exists at least ahe {1,...,n} such thatu;(pi,...,p,) can- of the previous gradient dynamical system and explore its
not be written as a function of the form (p;, p;,,...,pi,, ), relation with behavior-based rules in multiple-vehicleoco

with m < n — 1. The dynamical system (11) is said to bedination. Consider
Voronoi-distributedf eachu;(p1, . .., p,) can be written as a )
function of the formu; (p;, pi,, - - -, pi,, ), With i, € N'(P, 1), pi = = 1n(3lgy,(p))(P), (13)



for i € {1,...,n}. Note that the system (13) is D. Simulations

Voronoi-distributed, sinceln(dlgy,p))(P) is determined 1o jjlustrate the performance of the distributed coordi-
only by p; and the position of its Voronoi neigh- nation algorithms, we include some simulation results. The
bors NV (P,i). For future reference, lein(dlgy)(P) = algorithms are implemented ikt hemat i ca as a single

(Ln(algvl(P))(P)’ e ,Ln(algvn’(P))(P)), and put P = centralized program. Measuring displacements in metegs, w

—Ln(d1gy)(P). Note also thaln(dlgy)(P) is discontinu-  consider the domain determined by the vertices
ous, and therefore its solutions must be understood in the

Filippov sense. One can see that the compact(¥etis {(0,0),(2.5,0), (3.45,1.5),(3.5,1.6), (3.45,1.7),
stron.gly mvar.lant using 'the expression for the generdlize (2.7,2.1), (1.,2.4), (.2,1.2)}.
gradient oflg in Proposition 3.1.

Proposition 5.3:Let P € Q™. Then the solutions of the In Figs. 6 and 7, we illustrate the performance of the
dynamical system (13) starting & is unique. dynamical systems (13) and (14), resp., minimizing the
Remark 5.4:(Relation with behavior-based robotics: Multi-circumcenter functiori{pc. Observing the final con-
move toward the furthest-away vertex) The distributedigurations in the two figures, one can verify, visually and
gradient control law (13) has an interesting interpretationumerically, that the active generators are asymptoyicall

in the context of behavior-based robotics. Consider thgentered as forecast by our analysis.
ith generator. If the maximum ofg, ) is attained at
a single vertexv of V;, then lgy, p is differentiable
at that configuration, and its derivative corresponds to
versus(p; — v). Therefore, the law (13) corresponds to the
behavior “move toward the furthest vertex in own Voronoi
cell.” If there are two or more vertices df; where the
value 1.gVi(P)(pi) s a_lttained, then (13) prOVides. an aVerag‘lazig 6. “Toward the furthest” algorithm fot6 generators in a convex
behavior by computing the least-norm element in the Conv%lygdnal environment. The left (resp., right) figure ilhages the initial
hull of all versus(p; —v) such that|p; — v|| = lgy,p)(pi).  (resp., final) locations and Voronoi partition. The cenfigiire illustrates the
Proposition 5.5: For the dynamical system (13), the gen_network evolution. After2s, the value ofHpc is approximately.39504m.
erators’ locationP converges asymptotically to the largest
weakly invariant set contained in the closure Afc(Q) =
{PeQ|ieI(P) = p; = CC(V)}.

C. Distributed dynamical systems based on geometric cent-
tering

Here, we propose an alternative distributed dynamical
system for the mu'“'?emer function. Our de3|.g.n IS d!"feCtl Fig. 7. “Move-toward-the-circumcenter” algorithm fas generators in a
inspired by the result in Theorem 4.3 on the critical poirfts oconvex polygonal environment. The left (resp., right) figiltestrates the

he multi-center functi _Fori 1. .. nsider initial (resp., final) locations and Voronoi partition. Thentral figure illus-
the mult C.e ter functiortipc. Fori € {1,...,n}, conside trates the network evolution. Aft&X0s, the value ofHpc is approximately
the dynamical system 0.43273m.

pi = CC(Vi) —pi . (14)

VI. CONCLUSIONS

Alternatively, we may writeP = CC(V(P)) — P. Note We have introduced a multi-center function that provide
that this system is Voronoi-distributed and that the vectaguality-of-service measures for mobile networks. We have
field (14) is continuous, since the circumcenter of a polygoanalyzed its nonsmooth properties and characterized,runde
depends continuously on the location of its vertices, anecertain technical conditions, its critical points as cente
the location of the vertices of the Voronoi partition dependVoronoi configurations and as solutions of disk-covering
continuously on the location of the generators; see [14problems. We have also considered various (distributed and
Having established the existence of solutions, one can alaen-distributed) algorithms that extremize the multiteen
see that the compact s€)” is strongly invariant for the function. We have unveiled the remarkable geometric in-
vector fieldCC(V)—Id. Next, we characterize the asymptoticterpretations of these algorithms, discussed their Histed
convergence. character and analyzed their asymptotic behavior using-non
Proposition 5.6: For the dynamical system (14), the gen-mooth stability analysis. For futher details we refer theder
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to the largest weakly invariant set contained in the closunesearch include: (i) sharpening the asymptotic convergen
of Apc(Q). results for the proposed dynamical systems, (ii) consideri
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