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Abstract— We investigate the coordination of groups of au-
tonomous robots performing spatially-distributed sensing tasks.
We present facility location functions from geometric optimiza-
tion and study their differentiable properties. We then design
distributed coordination algorithms and analyze them as nons-
mooth gradient flows. The resulting control laws correspond to
basic interaction behaviors between the robots. The technical
approach relies on concepts from computational geometry,
nonsmooth analysis, and the dynamical system approach to
algorithms.

I. I NTRODUCTION

The deployment of large groups of autonomous vehicles is
rapidly becoming possible because of technological advances
in computing, networking, and miniaturization. Future multi-
vehicle networks will coordinate their actions to perform
challenging spatially-distributed tasks (e.g., search and recov-
ery, exploration, and environmental monitoring for pollution
detection and estimation). This scenario motivates the study
of algorithms for autonomy, adaptation, and coordination of
multi-vehicle networks. Our approach is to design network-
wide performance measures which encode meaningful sens-
ing tasks. At the same time, we consider all constraints on
the network behavior. Coordination algorithms need to be
adaptive and distributed in order for the resulting network
to be scalable, to tolerate failures, and to adapt to changing
environments, topologies and tasks.

In this paper, we consider a facility location function
encoding a coverage performance criteria. A multi-vehicle
network provides optimal coverage of a domain of interest
if it minimizes the largest distance from any point in the
domain to one of the vehicle locations. In other words, if
(p1, . . . , pn) are the vehicles locations in a domainQ, we
minimize themulti-center function

max
q∈Q

[
min

i∈{1,...,n}
‖q − pi‖

2

]
.

We study its differentiable properties via nonsmooth analy-
sis [1]. We show it is locally Lipschitz and regular, and com-
pute its generalized gradient. Under a technical condition, we
show that the local minima of the multi-center function are
center Voronoi configurations. Next, we design distributed
algorithms following a dynamical systems approach; see [2],
[3]. We study the corresponding nonsmooth gradient flow

using the tools in [4], [5], [6]. Although this flow has some
convergence properties, it is not amenable to a distributed
implementation. Drawing connections with quantization the-
ory [7], [8], [9], we consider two distributed coordination
algorithms: a novel strategy based on the generalized gradient
and a strategy similar to the well-known Lloyd algorithm.
Both coordination algorithms are guaranteed to continu-
ously improve the network performance. We investigate their
asymptotic behavior. In the journal version of this work [10],
we provide the proofs for all statements in this note. Two
of our results are related to well-known conjectures in the
locational optimization literature [11], [12]: (i) that the multi-
center problem is equivalent to a disk covering problem, and
(ii) that the generalized Lloyd strategy converges to the set
of center Voronoi configurations.

The paper is organized as follows. Section II establishes
the key concepts on Voronoi partitions, multi-center prob-
lems, nonsmooth and stability analysis. Section III presents
a complete treatment for the 1-center problem. Section IV
discusses the differentiable properties and the critical points
of the multi-center function. Section V introduces various
coordination algorithms (distributed and non-distributed) and
discusses their correctness. We gather our conclusions in
Section VI.

II. PRELIMINARIES AND PROBLEM SETUP

Let ‖ · ‖ denote the Euclidean distance function onR
N

and let v · w denote the scalar product ofv, w ∈ R
N .

Let versus(v) denote the unit vector in the direction of
0 6= v ∈ R

N , i.e., versus(v) = v/‖v‖. Given S ⊂ R
N ,

co(S) and intS denote its convex hull and interior set,
respectively. IfS is convex, letprojS : R

N → S denote
the orthogonal projection ontoS and let DS : R

N → R

denote the distance function toS. For R > 0, BN (p,R) ={
q ∈ R

N | ‖p − q‖ ≤ R
}

and BN (p,R) = int BN (p,R).
Let Q be a convex polygon inR2. We denote byEd(Q) =
{e1, . . . , eM} and Ve(Q) = {v1, . . . , vL} the set of edges
and vertices ofQ, respectively. LetP = (p1, . . . , pn) ∈
Qn ⊂ (R2)n denote the location ofn generators inQ. Let
πi : Qn → Q be the canonical projection onto theith factor.



A. Voronoi partitions

We refer the reader to [13], [14] for comprehensive
treatments on Voronoi diagrams. TheVoronoi partition
V(P ) = (V1(P ), . . . , Vn(P )) of Q generated by the points
(p1, . . . , pn) is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i} .

For simplicity, we refer toVi(P ) asVi. SinceQ is a convex
polygon, the boundary of eachVi is the union of a finite
number of segments. IfVi and Vj share an edge, thenpi

is a (Voronoi) neighborof pj (and vice-versa). All Voronoi
neighboring relations are encoded in the mappingN : Qn ×
{1, . . . , n} → 2{1,...,n} whereN (P, i) is the set of indexes
of the Voronoi neighbors ofpi. We will often omit P and
instead writeN (i).

va

vb

vd vcve

Fig. 1. A Voronoi partition with degenerate and nondegenerate vertices.
Vertices va, vb, and vc are nondegenerate vertices of type (a), (b), (c),
respectively. Verticesvd andve are degenerate.

For P ∈ Qn, the verticesv of V(P ) are classified as
follows: v is of type (a)if it is the center of the circle passing
through three generators (say,pi, pj , andpk), v is of type (b)
if it is the intersection between an edge ofQ and the bisector
determined by two generators (say,e, pi, andpj), andv is
of type (c)if it is a vertex ofQ, i.e., it is determined by two
edges ofQ and the generator of a cell containing it (say,
e, f , andpi). Correspondingly, we writev(i, j, k), v(e, i, j),
and v(e, f, i). The vertexv ∈ Ve(Vi(P )) is nondegenerate
if it is determined by exactly three elements, otherwise it is
degenerate. The configurationP is nondegenerate at theith
generator if all vertices v ∈ Ve(Vi(P )) are nondegenerate,
otherwiseP is degenerate at theith generator. Finally, P is
nondegenerateif all its vertices are nondegenerate, otherwise
it is degenerate(see Fig. 1).

B. Disk-covering and sphere-packing problems

We are interested in the facility location problems

min
p1,...,pn

{
max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}}
, (1)

max
p1,...,pn





min
i,j∈{1,...,n}
i6=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}




. (2)

The problem (1) is referred to as thep-center problem
in [12], [11]. Along paper, we refer to it as the multi-
center problem. In the context of coverage control for mobile
networks [15], it corresponds to the worst case scenario, in
which no information is available on the events taking place
in Q. The network then tries to minimize the largest possible

distance of any point inQ to one of the generators’ locations,
i.e. to minimize,

HDC(P ) = max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}

= max
i∈{1,...,n}

{
max
q∈Vi

‖q − pi‖

}
.

It is conjectured in [11] that this problem can be restated as
a disk-covering problem: how to cover a region with disks
of minimum radius. In Theorem 4.3 we provide a positive
answer to this question. Given a polytopeW in R

N , its
circumcenter,CC(W ), is the center of the minimum-radius
sphere that containsW . We say thatP is a circumcenter
Voronoi configuration if pi = CC(Vi(P )), for all i ∈
{1, . . . , n}.

We refer to (2) as the multi-incenter problem. It corre-
sponds to the situation where the network tries to maximize
the coverage ofQ so that the sensing radius do not overlap.
We then consider the maximization of

HSP(P ) = min
i,j∈{1,...,n}
i6=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}

A similar conjecture is that this is a sphere-packing prob-
lem: how to maximize the coverage of a region with non-
overlapping disks of minimum radius. Here we confine
ourselves to the multicenter problem.

C. Nonsmooth analysis

Here we review some facts on nonsmooth analysis [1].
The right directional derivativeof f at x in the direction of
v ∈ R

N is

f ′(x, v) = lim
t→0+

f(x + tv) − f(x)

t
,

when this limits exists. Thegeneralized directional derivative
of f at x in the direction ofv ∈ R

N is

fo(x; v) = lim sup
y→x

t→0+

f(y + tv) − f(y)

t
.

Definition 2.1: f : R
N → R is regular at x ∈ R

N if for
all v ∈ R

N , f ′(x; v) exists andfo(x; v) = f ′(x; v).
From Rademacher’s Theorem [1], locally Lipschitz func-

tions are differentiable almost everywhere. IfΩf denotes the
set of points inR

N wheref fails to be differentiable, the
generalized gradientof f is

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,

whereµ(S) = 0 (µ denotes the usual Lebesgue measure). A
point x ∈ R

N with 0 ∈ ∂f(x) is a critical point of f .
Proposition 2.2:Let

{
fk : R

N → R | k ∈ {1, . . . ,m}
}

be a collection of locally Lipschitz functions atx ∈ R
N . Let

f(x′) = min {fk(x′) | k ∈ {1, . . . ,m}}. Then, f is locally



Lipschitz atx, and if I(x′) denotes the set of indexesk for
which fk(x′) = f(x′), we have

∂f(x) ⊂ co {∂fi(x) | i ∈ I(x)} , (3)

and if eachfi is regular atx for i ∈ I(x), then equality
holds andf is regular atx.

Proposition 2.3:Let f be a locally Lipschitz function at
x ∈ R

N . If f attains a local minimum or maximum atx,
then0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N

→ 2R
N

be the set-valued mapping that
associates to eachS ⊂ R

N the set of its least-norm elements
Ln(S). If the setS is convex, thenLn(S) = projS(0). For
a locally Lipschitz functionf , we consider thegeneralized
gradient vector fieldLn(∂f) : R

N → R
N given by x 7→

Ln(∂f)(x) = Ln(∂f(x)).
Theorem 2.4:Let f be a locally Lipschitz function atx.

Assume0 6∈ ∂f(x). Then, there existsT > 0 such that for
all 0 < t < T

f(x − t Ln(∂f)(x)) ≤ f(x) −
t

2
‖Ln(∂f)(x)‖2 .

The vector−Ln(∂f)(x) is called adirection of descent.

D. Stability analysis via nonsmooth Lyapunov functions

For differential equations with discontinuous right-hand
sides, solutions are defined in terms of differential inclu-
sions [4]. Let F : R

N → 2R
N

be a set-valued map. A
solution to the differential inclusioṅx ∈ F (x) on an interval
[t0, t1] ⊂ R is defined as an absolutely continuous function
x : [t0, t1] → R

N such thatẋ(t) ∈ F (x(t)) for almost all
t ∈ [t0, t1]. Now, consider the equation

ẋ(t) = X(x(t)) , (4)

whereX : R
N → R

N is measurable and essentially locally
bounded. The solution of (4) has to be understood in the
Filippov sense. For eachx ∈ R

N , consider

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)} .

A Filippov solution of (4) on an interval[t0, t1] ⊂ R is
defined as a solution of the differential inclusion

ẋ ∈ K[X](x) . (5)

A setM is weakly invariant(resp.strongly invariant) for (4)
if for each x0 ∈ M , contains a maximal solution (resp. all
maximal solutions) of (4). Given a locally Lipschitz function
f : R

N → R, define theset-valued Lie derivative off with
respect toX at x as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that

ζ · v = a , ∀ζ ∈ ∂f(x)} .

For eachx ∈ R
N , L̃Xf(x) is a closed and bounded interval

in R, possibly empty. The following result is a generalization
of LaSalle principle for differential equations of the form(4)

with nonsmooth Lyapunov functions. The formulation is
taken from [5], and slightly generalizes the one presented
in [6].

Theorem 2.5 (LaSalle principle):Let f : R
N → R be

a locally Lipschitz and regular function. Letx0 ∈ R
N

and let f−1(≤ f(x0), x0) be the connected component
of

{
x ∈ R

N | f(x) ≤ f(x0)
}

containingx0. Assume either
max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for all x ∈ f−1(≤
f(x0), x0), and that this set is bounded. Thenf−1(≤
f(x0), x0) is strongly invariant for (4). Let

ZX,f =
{

x ∈ R
N | 0 ∈ L̃Xf(x)

}
.

Then, any solutionx : [t0,+∞) → R
N of (4) starting from

x0 converges to the largest weakly invariant setM contained
in ZX,f ∩ f−1(≤ f(x0), x0).

E. Nonsmooth gradient flows

Finally, we are in a position to present the nonsmooth
analogue of well-known results on gradient flows. Given a
locally Lipschitz and regular functionf , consider

ẋ(t) = −Ln(∂f)(x(t)) . (6)

Theorem 2.4 guarantees that, unless the flow is at a critical
point,−Ln(∂f)(x) is a direction of descent atx. In general,
the vector fieldLn(∂f) is discontinuous, and therefore its
solution must be understood in the Filippov sense. Sincef
is locally Lipschitz,Ln(∂f) = df a.e. The following result
guarantees the convergence to the set of critical points off .

Proposition 2.6:Let x0 ∈ R
N and f−1(≤ f(x0), x0) is

bounded. Then, any solutionx : [t0,+∞) → R
N of eq. (6)

starting fromx0 converges asymptotically to the set of critical
points off contained inf−1(≤ f(x0), x0).

III. T HE 1-CENTER PROBLEM

In this section we consider the disk-covering problem with
a single generator, i.e.,n = 1. This treatment will give us
the necessary insight to tackle later the more involved multi-
center problem. Whenn = 1, the minimization ofHDC

consists of finding the center of the minimum-radius sphere
enclosing the polygonQ. Let us therefore define the function

lgQ(p) = max {‖q − p‖ | q ∈ Q}

= max {‖v − p‖ | v ∈ Ve(Q)} = HDC(p) . (7)

Since the functionlgQ is the maximum of a (finite) set of
convex functions inp, it is also a convex function [16].
Therefore, any local minimum oflgQ is also global. Fur-
thermore, one can show that the functionlgQ has a unique
global minimum, which is the circumcenter of the polygon
Q.

Proposition 3.1:The functionlgQ(p) is locally Lipschitz
and regular, and its generalized gradient is

∂ lgQ(p) = co {versus(p − v) |

v ∈ Ve(Q) , lgQ(p) = ‖p − v‖
}

(8)



Moreover,0 ∈ ∂ lgQ(p) ⇐⇒ p = CC(Q).
Next, let us study the generalized gradient flow arising

from the 1-center function. An immediate consequence of
Propositions 2.6 and 3.1 is the following result.

Proposition 3.2:The gradient flow of lgQ, ẋ(t) =
−Ln(∂ lgQ)(x(t)) converges asymptotically to the circum-
center CC(Q). If 0 ∈ int ∂ lgQ(CC(Q)), then the flow
reachesCC(Q) in finite time.

Note that if0 ∈ ∂ lgQ(CC(Q)) \ int ∂ lgQ(CC(Q)), then
generically convergence is achieved over an infinite time
horizon. Fig. 2 shows an example of the implementation of
the gradient descent oflgQ. If CC(Q) is first computed of-
fline, the strategy of directly going toward it would converge
in a less “erratic” way.

CC(Q)

{v1, v2}

{v1, v3}

{v1, v4}

v6

v7
v5

v2

v4

v1 v3

{v1, v4, v6}

{v2}

Fig. 2. Illustration of the gradient descent oflgQ. The points where the
curvet 7→ p(t) fails to be differentiable correspond to points where thereis
a new vertexv of Q such that‖p(t) − v‖ = lgQ(p(t)). The circumcenter
is attained in finite time according to Proposition 3.2.

IV. A NALYSIS OF THE MULTI-CENTER FUNCTION

We characterize the smoothness properties ofHDC (gener-
alized gradient, critical points) for arbitrary numbers ofgen-
erators. We start by providing some alternative expressions
and useful quantities. We write

HDC(P ) = max
i∈{1,...,n}

Gi(P ) ,

whereGi(P ) = maxq∈Vi(P ) ‖q − pi‖. Note thatGi(P ) =
lgVi(P )(pi), where, for i ∈ {1, . . . , n}, lgVi

: Vi → R.
Proposition 3.1 provides an explicit expression for the gen-
eralized gradient oflgVi

whenVi is held fixed. Despite the
slight abuse of notation, it is convenient to let∂ lgVi(P )(pi)
denote∂ lgV (pi)|V =Vi(P ). In contrast to this analysis at fixed
Voronoi partition, the properties ofGi are strongly affected
by the dependence onV(P ). Our objective is to characterize
these properties in order to studyHDC.

Proposition 4.1:The functionsGi : Qn → R are locally
Lipschitz and regular. As a consequence,HDC : Qn → R is
locally Lipschitz and regular.

We now introduce some quantities that are useful in
characterizing the generalized gradient ofGi. Given a vertex
of type (b),v = v(e, i, j), determined by the edgee and two
generatorspi and pj , consider the scalar functionλ(e, i, j)
defined by

proje(pj − v(e, i, j)) = λ(e, i, j) proje(pj − pi) (9)

wherePe is the orthogonal projection onto the edgee; see
Fig. 3. One can see thatλ(e, i, j) + λ(e, j, i) = 1. If e is a
segment in the lineax+by+c = 0, (∆xij ,∆yij) = pj −pi,
(xm, ym) = (pi + pj)/2, then one can show

λ(e, i, j) =
1

2
−

(a∆xij + b∆yij)(axm + bym + c)

(a∆yij − b∆xij)2
.

Given a vertex of type (a),v = v(i, j, k), determined by

pi

pj

e v e v

pi
pj

e v

pi

pj

Fig. 3. To illustrate eq. (9) we draw the vectorsproje(pj −v(e, i, j)) and
proje(pj − pi) for various locations ofpi, pj , ande. The left, center and
right figures correspond toλ(e, i, j) > 0, λ(e, i, j) = 0, λ(e, i, j) < 0,
resp.

the three generatorspi, pj , and pk, we consider the scalar
function µ(i, j, k) defined by

projejk
(p` − v(i, j, k)) = µ(i, j, k) projejk

(p` − pi)

whereejk is the bisector ofpj and pk and wherep` = pj

if pj belongs to the half-plane defined byejk containing
pi, and p` = pk otherwise. One can see thatµ(i, j, k) =
µ(i, k, j) and thatµ(i, j, k)+µ(j, k, i)+µ(k, i, j) = 1. From
the expression ofλ, one can obtain the next expression for
µ(i, j, k),

1

2
+

(∆xij∆xjk + ∆yij∆yjk)(∆xik∆xjk + ∆yik∆yjk)

2(xk∆yij − xj∆yik + xi∆yjk)2
.

In general,λ andµ are not positive functions.
Proposition 4.2:Let P ∈ Qn. Then

∂Gi(P ) = co
{
∂vGi(P ) ∈ (R2)n |

v ∈ Ve(Vi(P )) such thatGi(P ) = ‖pi − v‖}

where we consider separately the following cases. Ifv =
v(i, j, k) is a nondegenerate vertex of type (a), then

∂v(i,j,k)Gi(P ) = ∂v(k,i,j)Gk(P ) = ∂v(j,k,i)Gj(P ) =

(0, . . . , µ(i, j, k) versus(pi − v)︸ ︷︷ ︸
ith place

, . . . , µ(j, k, i) versus(pj − v)︸ ︷︷ ︸
jth place

, . . . , µ(k, i, j) versus(pk − v)︸ ︷︷ ︸
kth place

, . . . , 0)

where, without loss of generality, we leti < j < k. If v =
v(e, i, j) is a nondegenerate vertex of type (b), then

∂v(e,i,j)Gi(P ) = ∂v(e,j,i)Gj(P )

= (0, . . . , λ(e, i, j) versus(pi − v)︸ ︷︷ ︸
ith place

, . . . ,

λ(e, j, i) versus(pj − v)︸ ︷︷ ︸
jth place

, . . . , 0)



2

3

4
1

Fig. 4. Local extrema of the disk-covering function in a convex polygonal
environment. The configuration corresponds to a local minimum of HDC
with 0 ∈ ∂HDC(P ) and int ∂HDC(P ) = ∅. The 4th generator is inactive
and non-centered.

where, without loss of generality, we leti < j. If v =
v(e, f, i) is a nondegenerate vertex of type (c), then

∂v(e,f,i)Gi(P ) = (0, . . . , 0, versus(pi − v)︸ ︷︷ ︸
ith place

, 0, . . . , 0).

Finally, if the vertexv is degenerate, i.e., ifv is determined
by d > 3 elements (generators or edges), then there are

(
d−1
2

)

pairs of elements which determine the vertexv together with
the generatorpi. In this case,∂vGi(P ) is the convex hull of
∂v(α,β,γ)Gi(P ) for all

(
d−1
2

)
such triplets(α, β, γ).

As a consequence of Propositions 2.2 and 4.1, we have

∂HDC(P ) = co {∂Gi(P ) | i ∈ I(P )} . (10)

Theorem 4.3 (Minima ofHDC): Let P ∈ Qn be nonde-
generate and0 ∈ int ∂HDC(P ). Then, P is a strict local
minimum of HDC, all generators are active andP is a
circumcenter Voronoi configuration.

Remark 4.4:Theorem 4.3 provides the interpretation of
the multicenter problem that we gave in Section II-B: since
all generators are active, they share the same radius. If one
drops the hypothesis0 ∈ int ∂HDC(P ), one can think of
simple examples whereP is a local minimum ofHDC, and
there are generators which are inactive and non-centered, e.g.
Fig. 4.

V. DYNAMICAL SYSTEMS FOR THE MULTI-CENTER

PROBLEM

Here, we describe three algorithms that (locally) extremize
the multi-center function for the disk-covering problem.We
present continuous-time versions of the algorithms and dis-
cuss their convergence properties. The generators’ location
obeys a first order dynamical behavior described by

ṗi = ui(p1, . . . , pn) , i ∈ {1, . . . , n} . (11)

The dynamical system (11) is said to becentralizedif there
exists at least ani ∈ {1, . . . , n} such thatui(p1, . . . , pn) can-
not be written as a function of the formui(pi, pi1 , . . . , pim

),
with m < n − 1. The dynamical system (11) is said to be
Voronoi-distributedif eachui(p1, . . . , pn) can be written as a
function of the formui(pi, pi1 , . . . , pim

), with ik ∈ N (P, i),

k ∈ {1, . . . ,m}. We refer to [15] for more details on the
distributed character of Voronoi neighborhood relationships.

A. Nonsmooth gradient dynamical systems

Consider the generalized gradient descent flow (6) for the
locational optimization functionsHDC,

Ṗ = −Ln(∂HDC)(P ) .

Alternatively, we may write for eachi ∈ {1, . . . , n},

ṗi = −πi(Ln(∂HDC)(p1, . . . , pn)) . (12)

As noted in Section II-D, this vector field is discontinu-
ous, and its solution must be understood in the Filippov
sense. Eq. (10) and Proposition 4.2 provide an expression
of ∂HDC(P ). One needs to first compute the generalized
gradient, then compute the least-norm element, and finally
project to each of then components. Note that the least-norm
element of convex sets can be computed efficiently, see [16],
however closed-form expressions are not available in general.
One can also see that the compact setQn is strongly invariant
for −Ln(∂HDC) (cf. [10]).

Proposition 5.1:For the dynamical system (12), the gen-
erators’ locationP = (p1, . . . , pn) converges asymptotically
to the set of critical points ofHDC.

Remark 5.2:The gradient dynamical systems enjoy con-
vergence guarantees, but their implementation is centralized
because of two reasons. First, all functionsGi(P ) need to
be compared in order to determine which generator is active.
Second, the least-norm element of the generalized gradients
depends on the relative position of the active generators with
respect to each other and to the environment. Moreover, as
illustrated in Fig. 5, the evolution of the gradient system may
not leave fixed even the generators that are circumcenters.

v1

j

k

i

v2

Fig. 5. Illustration of the gradient descent. Thejth generator is in the
circumcenter of its own Voronoi region, but the control law (12) drives it
toward the vertexv.

B. Nonsmooth dynamical systems based on distributed
gradients

In this section, we propose a distributed implementation
of the previous gradient dynamical system and explore its
relation with behavior-based rules in multiple-vehicle coor-
dination. Consider

ṗi = −Ln(∂ lgVi(P ))(P ) , (13)



for i ∈ {1, . . . , n}. Note that the system (13) is
Voronoi-distributed, sinceLn(∂ lgVi(P ))(P ) is determined
only by pi and the position of its Voronoi neigh-
bors N (P, i). For future reference, letLn(∂ lgV)(P ) =
(Ln(∂ lgV1(P ))(P ), . . . ,Ln(∂ lgVn(P ))(P )), and put Ṗ =
−Ln(∂ lgV)(P ). Note also thatLn(∂ lgV)(P ) is discontinu-
ous, and therefore its solutions must be understood in the
Filippov sense. One can see that the compact setQn is
strongly invariant using the expression for the generalized
gradient oflg in Proposition 3.1.

Proposition 5.3:Let P ∈ Qn. Then the solutions of the
dynamical system (13) starting atP is unique.

Remark 5.4:(Relation with behavior-based robotics:
move toward the furthest-away vertex) The distributed
gradient control law (13) has an interesting interpretation
in the context of behavior-based robotics. Consider the
ith generator. If the maximum oflgVi(P ) is attained at
a single vertexv of Vi, then lgVi(P ) is differentiable
at that configuration, and its derivative corresponds to
versus(pi − v). Therefore, the law (13) corresponds to the
behavior “move toward the furthest vertex in own Voronoi
cell.” If there are two or more vertices ofVi where the
value lgVi(P )(pi) is attained, then (13) provides an average
behavior by computing the least-norm element in the convex
hull of all versus(pi − v) such that‖pi − v‖ = lgVi(P )(pi).

Proposition 5.5:For the dynamical system (13), the gen-
erators’ locationP converges asymptotically to the largest
weakly invariant set contained in the closure ofADC(Q) =
{P ∈ Qn | i ∈ I(P ) =⇒ pi = CC(Vi)}.

C. Distributed dynamical systems based on geometric cen-
tering

Here, we propose an alternative distributed dynamical
system for the multi-center function. Our design is directly
inspired by the result in Theorem 4.3 on the critical points of
the multi-center functionHDC. For i ∈ {1, . . . , n}, consider
the dynamical system

ṗi = CC(Vi) − pi . (14)

Alternatively, we may writeṖ = CC(V(P )) − P . Note
that this system is Voronoi-distributed and that the vector
field (14) is continuous, since the circumcenter of a polygon
depends continuously on the location of its vertices, and
the location of the vertices of the Voronoi partition depends
continuously on the location of the generators; see [14].
Having established the existence of solutions, one can also
see that the compact setQn is strongly invariant for the
vector fieldCC(V)−Id. Next, we characterize the asymptotic
convergence.

Proposition 5.6:For the dynamical system (14), the gen-
erators’ locationP = (p1, . . . , pn) converges asymptotically
to the largest weakly invariant set contained in the closure
of ADC(Q).

D. Simulations

To illustrate the performance of the distributed coordi-
nation algorithms, we include some simulation results. The
algorithms are implemented inMathematica as a single
centralized program. Measuring displacements in meters, we
consider the domain determined by the vertices

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6), (3.45, 1.7),

(2.7, 2.1), (1., 2.4), (.2, 1.2)}.

In Figs. 6 and 7, we illustrate the performance of the
dynamical systems (13) and (14), resp., minimizing the
multi-circumcenter functionHDC. Observing the final con-
figurations in the two figures, one can verify, visually and
numerically, that the active generators are asymptotically
centered as forecast by our analysis.

Fig. 6. “Toward the furthest” algorithm for16 generators in a convex
polygonal environment. The left (resp., right) figure illustrates the initial
(resp., final) locations and Voronoi partition. The centralfigure illustrates the
network evolution. After2s, the value ofHDC is approximately.39504m.

Fig. 7. “Move-toward-the-circumcenter” algorithm for16 generators in a
convex polygonal environment. The left (resp., right) figureillustrates the
initial (resp., final) locations and Voronoi partition. Thecentral figure illus-
trates the network evolution. After20s, the value ofHDC is approximately
0.43273m.

VI. CONCLUSIONS

We have introduced a multi-center function that provide
quality-of-service measures for mobile networks. We have
analyzed its nonsmooth properties and characterized, under
certain technical conditions, its critical points as center
Voronoi configurations and as solutions of disk-covering
problems. We have also considered various (distributed and
non-distributed) algorithms that extremize the multi-center
function. We have unveiled the remarkable geometric in-
terpretations of these algorithms, discussed their distributed
character and analyzed their asymptotic behavior using nons-
mooth stability analysis. For futher details we refer the reader
to the journal version of this work [10]. Future directions of
research include: (i) sharpening the asymptotic convergence
results for the proposed dynamical systems, (ii) considering



the setting of convex polytopes inRN , N > 2, and (iii)
analyzing other meaningful geometric optimization problems
and their relations with cooperative behaviors.
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