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Abstract. Controllability and kinematic modelling notions are investigated for a class of me-
chanical control systems. First, low-order controllability results are given for the class of mechanical
control systems. Second, a precise connection is made between those mechanical systems which are
dynamic (i.e., have forces as inputs) and those which are kinematic (i.e., have velocities as inputs).
Interestingly and surprisingly, these two subjects are characterised and linked by a certain intrinsic
vector-valued quadratic form that can be associated to an affine connection control system.
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1. Introduction. The determination of useful necessary and sufficient condi-
tions for local controllability of nonlinear systems remains an open problem, although
significant progress has been made [2, 4, 19, 20, 34, 36]. In this paper, we investigate
local controllability for a class of nonlinear systems with a rich geometric structure,
namely affine connection control systems. For these systems, we provide first-order
(in the sense that the conditions involve first derivatives of the system data) local
controllability conditions. The results use a certain intrinsic vector-valued quadratic
form. The use of vector-valued quadratic forms in control theory has been noticed in
the context of optimal control (which has, of course, a relationship with controllabil-
ity) by Agrachev [3], and they have been utilised explicitly for providing conditions
for local controllability by Basto-Gonçalves [6] and Hirschorn and Lewis [21]. Other
uses of vector-valued quadratic forms in control are outlined in the paper [10]. The
controllability conditions we provide in Section 4 bear strong resemblance to the more
general conditions of Hirschorn and Lewis [21], but we are able to provide more de-
tail in this case because of the additional structure of the class of systems under
consideration.

Affine connection control systems are a slight generalisation of a class of me-
chanical control systems, namely those which are Lagrangian with kinetic energy
Lagrangian, and possibly with nonholonomic constraints. An initial systematic inves-
tigation of the local controllability properties of this class of systems was undertaken
by Lewis and Murray [27]. The conditions for local accessibility in this work are char-
acterised geometrically by the same authors [28] by utilising the characterisation of
the so-called symmetric product provided by Lewis [24]. However, the sufficient condi-
tions for local controllability provided by Lewis and Murray, following Sussmann [36],
are not entirely satisfactory. One of the reasons for this is that these conditions are
not feedback-invariant. The consequences of the lack of feedback invariance can be
seen even in very simple examples, where a system can fail the sufficient condition
test, but still be controllable. This points out the need to better understand local
controllability, and one way to do this is to obtain conditions which are not depen-
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dent on a choice of basis for the input distribution. It is this that we do in this paper,
at least for systems whose controllability can be determined by brackets of low-order.

A second objective of this paper is to characterise affine connection control sys-
tems in terms of equivalent lower-dimensional kinematic (or driftless) systems. The
interest in low-complexity representations of affine connection control systems can be
related to numerous previous efforts, including work on hybrid models for motion con-
trol systems [9], motion description languages [30], consistent control abstractions [32],
hierarchical steering algorithms [31], and maneuver automata [18]. The key advantage
of a low-complexity or reduced-order representation is the subsequent simplification
of various control problems, including planning, stabilisation, and optimal control.

In Section 5, we introduce and characterise the notion of kinematic reductions
as a reduced-order modelling technique adapted to affine connection control systems.
This novel concept extends and unifies previous results by Lewis [25] and Bullo and
Lynch [13]; see also the motivating work [5, 29, 15]. A kinematic model for an affine
connection control system is one such that every controlled trajectory for the kine-
matic model can be realised as a trajectory, with a possible reparameterisation, of the
full affine connection control system with some appropriate control. We also introduce
and characterise the notion of maximally reducible affine connection control systems.
For such systems, every trajectory of the affine connection control system, starting
from initial velocities in the input distribution, can be implemented as a controlled
trajectory of a maximal kinematic reduction. Some open problems concerning in-
verse kinematics and sufficient conditions for controllability are presented by Cortés,
Mart́ınez, and Bullo [16].

As a third contribution of this paper, the existence of, and the controllability
properties of, kinematic reductions are related to the low-order controllability prop-
erties of the corresponding affine connection control system. Interestingly, all these
concepts are characterised in terms of the vector-valued quadratic form mentioned
above. Insightful relationships are established and presented in Figure 5.4. We illus-
trate our results with some example systems. For instance, it appears that numerous
(but not all) interesting mechanical devices satisfying the low-order sufficient con-
trollability condition are also kinematically controllable. This is surprising because
the concept of kinematic controllability is not a priori related to the conditions for
low-order controllability. We refer to [12] for a catalog of examples.

One of the byproducts of the intrinsic formulation of the controllability and kine-
matic reduction results we give is that they give a fairly complete characterisation of
what can be done. The incompleteness of the characterisations we give results from
a possible degeneracy of the vector-valued quadratic forms. Here, one will generally
have to go to higher-order conditions for controllability. Sometimes it is possible to
give results using quadratic forms, even in degenerate cases, and this is being explored
in a paper by Tyner and Lewis [39], currently in preparation.

Let us briefly describe the layout of the paper. We begin in Section 2 with a
general discussion of affine connection control systems, giving clear statements of the
results of Lewis and Murray [27]. Background on vector-valued quadratic forms is
presented in Section 3, along with the construction of a vector-valued quadratic form
that can be associated with an affine connection control system. Our controllability
results are motivated, stated, and proved in Section 4. Similarly, our kinematic reduc-
tions are discussed in Section 5. In this section are also presented a couple of physical
examples, and a discussion of the relationships between low-order controllability and
kinematic reductions.
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2. Affine connection control systems. The basic differential geometric nota-
tion we use is that of [1]. When it is convenient to do so, we shall use the summation
convention where summation over repeated indices is implied. For a vector bundle
π : E → Q, 0q will denote the zero vector in the fibre Eq. Objects will be assumed
real analytic (which we simply call “analytic”) unless otherwise stated. We denote by
Γ(E) the set of analytic sections of the vector bundle π : E → Q. Thus, in particular,
Γ(TQ) is the set of analytic vector fields on a manifoldQ. The set of analytic functions
on a manifold Q we denote by F(Q). We will assume the reader to be familiar with
affine differential geometry to the extent that it is used in [27]. An excellent reference
is [22]. Affine connection control systems represent a class of mechanical control sys-
tems. We shall not devote any space to the physics involved in this representation,
but refer to [27] for a few words along these lines. These issues are addressed also in
the books [8, 11].

We begin with the essential definitions for affine connection control systems, and
provide definitions for what Lewis and Murray call “configuration controllability.”
Then we give the results of those authors which provide a launching point for what
we do in the present paper. We provide fairly strong statements of the results of Lewis
and Murray; stronger in fact than the original statements. All that we say, however,
is readily implicit in the calculations of their original work.

2.1. Basic definitions. In this paper, an affine connection control system is a
5-tuple Σ = (Q,∇,D,Y , U) where

1. Q is a analytic, finite-dimensional, manifold,
2. ∇ is an analytic affine connection on Q,
3. D is a constant rank analytic distribution on Q having the property that ∇

restricts to D (i.e., ∇XY ∈ Γ(D) for all Y ∈ Γ(D) and for all X ∈ Γ(TQ)),
4. Y = {Y1, . . . , Ym} is a collection of analytic vector fields on Q taking values

in D, and
5. U ⊂ Rm.

The distribution D will not concern us much here, and we allow it in order to
correctly model systems with nonholonomic constraints [26]. The essential geometry
of our results are captured by thinking of D = TQ. We will frequently be interested
only in 4-tuples (Q,∇,D,Y ) satisfying the above conditions. Let us therefore agree
to call this an affine connection pre-control system. This notion will be useful in
discussions of properties of affine connection control systems that are independent of
the control set U .

Associated with an affine connection control system Σ = (Q,∇,D,Y , U) is the
set of second-order control equations

(2.1) ∇γ′(t)γ
′(t) =

m
∑

a=1

ua(t)Ya(γ(t))

on Q. Thus a controlled trajectory for Σ is taken to be a pair (γ, u) where
1. γ : I → Q and u : I → U are both defined on the same interval I ⊂ R,
2. u is locally integrable,
3. γ′(t) ∈ Dγ(t) for a.e. t ∈ I, and
4. (γ, u) together satisfy (2.1).

We denote by conv(U) and aff(U) the convex hull and affine hull, respectively, of
U ⊂ Rm. Thus conv(U) is the smallest convex set in Rm containing U , and aff(U)
is the smallest affine subspace (i.e., shifted subspace) containing U . The control set



4 F. BULLO AND A. D. LEWIS

U is proper (resp. almost proper) if 0 ∈ int(conv(U)) (resp. if aff(U) = Rm and
0 ∈ conv(U)). (One may verify that for a control-affine system the property of the
control set being almost proper is exactly that which ensures that the Lie algebra rank
condition is equivalent to the reachable set having nonempty interior.) We denote by
Y the input distribution, so that

Yq = span
R
{Y1(q), . . . , Ym(q)}.

More generally if V ⊂ Γ(TQ) then we denote by V the distribution generated by
the vector fields V : Vq = span

R
{X(q)| X ∈ V }. We also denote by Γ(V) the set of

analytic vector fields taking values in V . We make no a priori assumptions on the
constancy of the rank of any of the distributions we encounter, including the input
distribution Y.

Remark 2.1. Our allowing a distribution to have variable rank has consequences
for the choice of generators. Let us make some comments on this. Consider a family
Y of analytic vector fields, letting Y be the distribution generated as above. Then
Γ(Y) is a submodule of Γ(TQ). If Y has constant rank, then it is true that the vector
fields Y generate this submodule. This is essentially due to a theorem of Swan [38].
However, if the rank of Y is not constant (more precisely, locally constant), then it can
be the case that the vector fields Y are not generators for Γ(Y). However, we shall
require always ask that our families of vector fields have the property that they are
generators for the submodule of sections of the induced distribution. Locally, and in
the analytic setting, this can be done without loss of generality, due to the Noetherian
property of the ring of analytic functions. •

Let us clearly state our controllability definitions. First we provide notation for
the reachable sets. For T > 0 and q0 ∈ Q, let

RΣ
TQ(q0, T ) = {γ′(T )| (γ, u) is a controlled trajectory on [0, T ] with γ′(0) = 0q0

}

and let RΣ
TQ(q0,≤ T ) =

⋃

0≤t≤T RΣ
TQ(q0, t). These are therefore reachable states in

TQ starting from zero initial velocity at the configuration q0. We also consider the
reachable configurations which we denote by

RΣ
Q(q0, T ) = τQ(RΣ

TQ(q0, T )), RΣ
Q(q0,≤ T ) = τQ(RΣ

TQ(q0,≤ T )),

where τQ : TQ→ Q is the tangent bundle projection. Note that, since D is invariant
under ∇ and since the input vector fields are D-valued, solutions of (2.1) with initial
conditions in D remain in D. In the following definition, intD(·) means the interior
in the relative topology on D ⊂ TQ.

Definition 2.2. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
and let q0 ∈ Q.

(i) (Q,∇,D,Y ) is accessible from q0 if, for every almost proper control set,
there exists T > 0 such that intD(RΣ

TQ(q0,≤ t)) 6= ∅ for t ∈ (0, T ].
(ii) (Q,∇,D,Y ) is configuration accessible from q0 if, for every almost proper

control set, there exists T > 0 such that int(RΣ
Q(q0,≤ t)) 6= ∅ for t ∈ (0, T ].

(iii) Σ is small-time locally controllable (STLC ) from q0 if there exists T > 0
such that 0q0

∈ intD(RΣ
TQ(q0,≤ t)) 6= ∅ for t ∈ (0, T ].

(a) (Q,∇,D,Y ) is properly small-time locally controllable (properly
STLC ) from q0 if Σ is STLC from q0 for every proper control set U .

(b) (Q,∇,D,Y ) is small-time locally uncontrollable (STLUC ) from q0
if Σ is not STLC from q0 for any compact control set U .
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(iv) Σ is small-time locally configuration controllable (STLCC ) from q0 if there
exists T > 0 such that 0q0

∈ int(RΣ
Q(q0,≤ t)) 6= ∅ for t ∈ (0, T ].

(a) (Q,∇,D,Y ) is properly small-time locally configuration controllable
(properly STLCC ) from q0 if Σ is STLCC from q0 for every proper control
set U .

(b) (Q,∇,D,Y ) is small-time locally configuration uncontrollable (STL-
CUC ) from q0 if Σ is not STLCC from q0 for any compact control set U . •

Remarks 2.3.
1. Note that we are careful in these definitions to distinguish those notions of

controllability that depend only on the geometry of the affine connection pre-control
system (Q,∇,D,Y ), and those that also depend on the character of the control set
U . Hirschorn and Lewis [21] illustrate various situations where the exact nature of
the control set must be accounted for in the controllability analysis. For this reason
we try to be careful about the exact manner in which the control set is considered.

2. A consequence of the classical theory of accessibility [37] is that for an affine
connection pre-control system (Q,∇,D,Y ), the reachable sets for (Q,∇,D,Y , U)
have nonempty interior for all almost proper control sets if and only if the reachable
sets have nonempty interior for some almost proper control set.

3. It is clear that STLC implies STLCC and that STLCUC implies STLUC.
The converse implications are generally false. What’s more, even the relationships
between STLCC and STLC on the reachable set are not completely understood at
this time. •

2.2. Review of existing results. Let us briefly review the results of [27]. These
results rely for their statement on the symmetric product defined by the affine con-
nection ∇ by 〈X : Y 〉 = ∇XY + ∇XY . First let us provide a description of the
set of points accessible from the zero vector 0q in the tangent space TqQ. We let
Σ = (Q,∇,D,Y , U) be an affine connection control system. As above, we denote by
Y the distribution generated by the vector fields Y , and we now define a sequence
Sym(k)(Y), k ∈ N, of distributions by

Sym(1)(Y)q = Yq + span
R
{〈Ya : Yb〉| a, b ∈ {1, . . . ,m}},

Sym(k)(Y)q = Sym(k−1)(Y)q

+ span
R
{〈Ya : Yb〉| Ya ∈ Γ(Sym(k1)(Y)), Yb ∈ Γ(Sym(k2)(Y)), k1 + k2 = k − 1}.

The smallest distribution containing these distributions we denote by Sym(∞)(Y), and

we note that 〈X : Y 〉 ∈ Γ(Sym(∞)(Y)) for each X,Y ∈ Γ(Sym(∞)(Y)). The integrable

distribution generated by Sym(∞)(Y) we denote by Lie(∞)(Sym(∞)(Y)). Since this
distribution is integrable, through each point q0 ∈ Q there is an immersed maximal
integral manifold Λq0

with the property that TqΛq0
= Lie(∞)(Sym(∞)(Y))q for each

q ∈ Λq0
. Note that since we are only thinking of local controllability, we may shrink

Q so that Λq0
is an embedded submanifold, and thus TqΛq0

has its usual definition.
With this notation, we have the following theorem which describes the reachable

set from 0q0
∈ TQ. Note that the description we provide here is a little more complete

than that originally given by Lewis and Murray, but what we state here is certainly
implicit in the original paper.

Theorem 2.4. Let Σ = (Q,∇,D,Y , U) be an affine connection control system

with U almost proper. Let Λq0
be the maximal integral manifold of Lie(∞)(Sym(∞)(Y))

through q0 ∈ Q, which we assume without loss of generality to be an embedded sub-
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manifold of Q. Let S(Y, q0) be the vector bundle over Λq0
whose fibre at q ∈ Λq0

is

Sym(∞)(Y)q. We have the following statements.
(i) There exists T > 0 such that for each t ∈ (0, T ], RΣ

TQ(q0,≤ t) is contained
in S(Y, q0), and contains a nonempty open subset of S(Y, q0).

(ii) In particular, there exists T > 0 such that for each t ∈ (0, T ], RΣ
Q(q0,≤ t)

is contained in Λq0
and contains a nonempty open subset of Λq0

.
Theorem 2.4 obviously leads to the following corollary.
Corollary 2.5. An affine connection pre-control system (Q,∇,D,Y ) is

(i) accessible from q0 if and only if Sym(∞)(Y)q0
= Dq0

, and is

(ii) configuration accessible from q0 if and only if Lie(∞)(Sym(∞)(Y))q0
= Tq0

Q.
Now we turn to local configuration controllability. Let P (Y ) denote the set of

iterated symmetric products of vector fields in Y . A product P0 ∈ P (Y ) is bad when
it is comprised of an even number of each of the vector fields from Y , and is otherwise
good . The degree of P0 ∈ P (Y ) is the total number of vector fields from Y which
participate in P0, counting multiplicities. Thus, for example, 〈Ya : 〈Yb : Yb〉〉 is good
and of degree 3, and 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4. Let Sm be the
symmetric group on m symbols. For P0 ∈ P (Y ) and σ ∈ Sm, let σ(P0) ∈ P (Y ) be
obtained by permuting the occurrences of the vector fields from Y by σ. For example,
if P0 = 〈Ya : 〈Yb : Yc〉〉 and if σ = ( 1 2 3

2 3 1 ) then σ(P0) = 〈Yb : 〈Yc : Ya〉〉. With this
notation, we have the following definition.

Definition 2.6. An affine connection pre-control system (Q,∇,D,Y ) satisfies
the good/bad hypothesis at q0 if, for each bad symmetric product P0 ∈ P (Y ), there
exist good symmetric products P1, . . . , Pk ∈ P (Y ) of degree strictly less than P0 and
such that

∑

σ∈Sm

σ(P0)(q0) =
k

∑

j=1

cjPj(q0),

for some c1, . . . , ck ∈ R. •
The following result of Lewis and Murray [27] is derived from a result of Suss-

mann [36]. Again, we provide a somewhat more thorough statement of the result than
is given in [27].

Theorem 2.7. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
with U proper, and let q0 ∈ Q. If (Q,∇,D,Y ) satisfies the good/bad hypothesis at
q0 ∈ Q then there exists T > 0 such that for each t ∈ (0, T ] the set RΣ

TQ(q0,≤ t)
contains a neighbourhood of 0q0

in the vector bundle S(Y , q0) over Λq0
.

The result essentially says that when the good/bad hypothesis is satisfied, the
system is locally controllable when restricted to its reachable set. In particular, we
have the following corollary.

Corollary 2.8. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
with U proper and such that the pre-control system (Q,∇,D,Y ) satisfies the good/bad
hypotheses at q0 ∈ Q. Then

(i) Σ is locally controllable at q0 if it is locally accessible at q0, and
(ii) Σ is locally configuration controllable at q0 if it is locally configuration ac-

cessible at q0.
The above results all follow from a detailed analysis of the Lie algebra of vector

fields associated with the control system (2.1) when it is thought of as a control-affine
system with state manifold TQ. The results reflect the fact that, when evaluated
at zero velocity points, this Lie algebra structure simplifies enormously. We shall
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exploit this further when we prove our main results in Section 4. We remark that
the structure of the Lie algebra at points of nonzero velocity is not currently well
understood.

3. Vector-valued quadratic forms. In our controllability analysis we are led
to investigate symmetric bilinear maps B : V × V → W from a finite-dimensional R-
vector space V into a finite-dimensional R-vector spaceW . In this section we first look
at such objects in general, and then we construct a specific such object associated to an
affine connection control system. Some other control theoretic problems where vector-
valued quadratic forms arise are given by Bullo, Cortés, Lewis, and Mart́ınez [10].

3.1. Basic definitions and properties. Let V and W be finite-dimensional
R-vector spaces and let Σ2(V ;W ) denote the set of symmetric R-bilinear maps from
V × V to W . For B ∈ Σ2(V ;W ), we define QB : V → W by QB(v) = B(v, v). For
λ ∈ W ∗, we define λB : V × V → R by λB(v1, v2) = 〈λ;B(v1, v2)〉.

Definition 3.1. Let B ∈ Σ2(V ;W ).

(i) B is definite if there exists λ ∈ W ∗ such that λB is positive-definite.
(ii) B is essentially indefinite if, for each λ ∈W ∗, λB is either

(a) zero or
(b) neither positive nor negative-semidefinite.

The following properties of symmetric bilinear maps will be important for us.
The proof follows more or less directly from the definitions.

Lemma 3.2. Let V and W be finite-dimensional R-vector spaces with B ∈
Σ2(V ;W ). Suppose that V 6= {0}. The following statements hold:

(i) if W = {0}, then B is essentially indefinite;
(ii) if W 6= {0}, then B is essentially indefinite if and only if

0 ∈ intaff(image(QB))(conv(image(QB)));

(iii) if W 6= {0}, then B is definite if and only if there exists a hyperplane P
through 0 ∈W such that

(a) image(QB) lies on one side of P and
(b) image(QB) ∩ P = {0}.

The matter of deciding whether a vector-valued quadratic form is essentially in-
definite is known to be NP-complete, at least in the case when dim(W ) > 1.1

The following result gives some properties of R-valued quadratic forms that will
be useful in our discussion. We refer to Hirschorn and Lewis [21] for a proof.

Lemma 3.3. Let V be a finite-dimensional R-vector space and let B ∈ Σ2(V ; R).
For a basis V = {v1, . . . , vn} for V , let [B]V be the n × n matrix representation of
B. The following statements are equivalent:

(i) there exists a basis V for V for which the sum of the diagonal entries in
the matrix [B]V is zero;

(ii) there exists a basis V for V for which the diagonal entries in the matrix
[B]V are all zero;

(iii) B is essentially indefinite.

3.2. Vector-valued quadratic forms and affine connection control sys-

tems. Let Σ = (Q,∇,D,Y , U) be an affine connection control system and let q ∈ Q.

1This was pointed out to the authors by a reviewer for [10].
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If Sq ⊂ TqQ is a subspace, then we define BYq
(Sq) : Yq ×Yq → TqQ/Sq as the TqQ/Sq-

valued symmetric, bilinear mapping on Yq given by

(3.1) BYq
(Sq)(v1, v2) = πSq

(〈V1 : V2〉(q)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq, and where πSq
: TqQ →

TqQ/Sq is the canonical projection. Note that BYq
(Sq) is not necessarily well-defined.

Lemma 3.4. If Yq ⊂ Sq then BYq
(Sq) is well-defined.

Proof. We need to show that the definition in (3.1) does not depend on the
extensions V1 and V2 of v1 and v2. This will follow if πSq

(〈V1 : V2〉(q)) depends only
on the values of V1 and V2 at q, and not on their derivatives. Let φ1, φ2 ∈ F(Q) and
compute

〈φ1V1 : φ2V2〉 = φ1φ2〈V1 : V2〉 + φ1(LV1
φ2)V2 + φ2(LV2

φ1)V1.

Thus πSq
(〈φ1V1 : φ2V2〉(q)) = φ1(q)φ2(q)πSq

(〈V1 : V2〉(q)), showing that πSq
(〈V1 :

V2〉(q)) does not depend on the derivatives of V1 and V2 at q, and so the result
follows. �

Remark 3.5. Note that (TqQ/Sq)
∗ ' ann(Sq). Therefore, the definition of

λBYq
(Sq), λ ∈ (TqQ/Sq)

∗ is concrete, in that one need to worry about objects in the
quotient. •

If Y has constant rank, then one can define a TQ/Y-valued quadratic form BY

globally by

BY(V1, V2) = πY(〈V1 : V2〉)

for V1, V2 ∈ Γ(Y) where πY : TQ→ TQ/Y is the projection.

4. Controllability results. In this section we undertake the formulation and
discussion of novel controllability results. Our objective is to obtain controllability
conditions that are independent of the basis for the input distribution Y. We achieve
this by means of controllability tests that do not entail good/bad conditions, but
rather are expressed in terms of properties of a vector-valued quadratic form. Before
we state the results we need some preliminary constructions.

4.1. Constructions concerning vanishing input vector fields. We let Σ =
(Q,∇,D,Y , U) be an analytic affine connection control system and we let q0 ∈ Q.
One of the generalisations we wish to allow is the case when q0 may not a regular
point for the distribution Y generated by Y . In this case the vector fields Y cannot be
linearly independent at q0. It may also happen that, even if q0 is a regular point for Y,
the vector fields may still not be linearly independent. For example, if one wishes to
globally define a control system for which the input distribution Y has constant rank,
but is not trivial, then one will necessarily have to choose more input vector fields
than rank(Y), implying that the input vector fields will never be linearly independent.
It will be convenient to organise the vector fields in Y in a manner consistent with
these possibilities. The following result gives a useful way of doing this.

Lemma 4.1. Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection
pre-control system with q0 ∈ Q. There exists T ∈ GL(m; R) with the property that, if
Ỹa = T b

aYa, a ∈ {1, . . . ,m}, then
(i) {Ỹ1(q0), . . . , Ỹk(q0)} form a basis for Yq0

and

(ii) the vector fields Ỹk+1, . . . , Ỹm vanish at q0.
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Proof. We let k = dim(Yq0
). Since Y generates Y, we may find R ∈ GL(m; R)

with the property that, if Xa = Rb
aYb, a ∈ {1, . . . ,m}, then {X1(q0), . . . , Xk(q0)}

form a basis for Yq0
. Now let Lq0

: Rm → Yq0
be defined by Lq0

(u) =
∑m

a=1 u
aXa(q0).

Let uk+1, . . . ,um ∈ Rm be a basis for ker(Lq0
) and define S ∈ GL(m; R) by

S =
[

e1 · · · ek uk+1 · · · um

]

.

It is then clear that if we take Ỹa = Sb
aXb, a ∈ {1, . . . ,m}, then {Ỹ1(q0), . . . , Ỹk(q0)}

form a basis for Yq0
, and that Ỹk+1, . . . , Ỹm vanish at q0. Now we take T = RS. �

Remarks 4.2.
1. If the vector fields Y are linearly independent at q0 then one may take

T = Im in the lemma.
2. Suppose that we have a control set U for (Q,∇,D,Y ). If we take T ∈

GL(m; R) and Ỹ = {Ỹ1, . . . , Ỹm} as in the lemma, and if we define Ũ = {T−1
u| u ∈

U}, this gives an affine connection control system Σ̃ = (Q,∇,D, Ỹ , Ũ). Clearly
the controlled trajectories for Σ = (Q,∇,D,Y , U) and Σ̃ agree, so we can without
loss of generality assume that the input vector fields for an affine connection control
system satisfy conditions (i) and (ii) of the lemma. Input vector fields satisfying these
conditions at q0 will be said to be adapted at q0. •

Let X,Y ∈ Γ(Q). If X(q0) = 0q0
then the expression 〈X : Y 〉(q0) may be verified

(in coordinates, for example) to depend only on the value of Y at q0. That is to say,
we may define a linear map symX : Tq0

Q→ Tq0
Q by v 7→ 〈X : V 〉(q0) where V is any

extension of v ∈ Tq0
Q. If Y is adapted at q0, then we denote by Zq0

(Y ) the set of
linear maps symYa

, a ∈ {k + 1, . . . ,m}, where k = dim(Yq0
). For a R-vector space

W , an arbitrary subset L of linear transformations of W , and a subspace S ⊂W , we
denote by 〈L , S〉 the smallest subspace of W containing S and which is an invariant
subspace for each of the linear maps from L . One readily verifies that 〈L , S〉 is
generated by vectors of the form

(4.1) L1 ◦ · · · ◦ Lk−1(v), L1, . . . , Lk−1 ∈ L , v ∈ S, k ∈ N.

We will be interested in subspaces of the form 〈Zq0
(Y ), Sq0

〉 where Sq0
is a subspace

of Tq0
Q. In order for such constructions to make sense (in that they are independent

of the choice of adapted family of vector fields) the subspace Sq0
should have some

properties.
Lemma 4.3. Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connec-

tion control systems satisfying
(i) Y = Ỹ and
(ii) Y and Ỹ are adapted at q0.

Then 〈Zq0
(Ỹ ), Sq0

〉 = 〈Zq0
(Y ), Sq0

〉 for any subspace Sq0
containing Yq0

.

Proof. We write Y = {Y1, . . . , Ym} and Ỹ = {Ỹ1, . . . , Ỹm̃}. Since Y = Ỹ, we
must have

Ỹα =
m

∑

a=1

Λa
αYa, α ∈ {1, . . . , m̃}

for functions Λa
α : Q → R, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. (Here we make use

of the assumption stated in Remark 2.1.) Assume that dim(Yq0
) = k so that both

{Y1(q0), . . . , Yk(q0)} and Ỹ1(q0), . . . , Ỹk(q0)} are bases for Yq0
and so that Yk+1, . . . , Ym

and Ỹk+1, . . . , Ỹm̃ all vanish at q0. Note that 〈Zq0
(Y ), Sq0

〉 is generated by those
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tangent vectors at q0 of the form

symYa`−1
◦ · · · ◦ symYa1

(v), a1, . . . , a`−1 ∈ {k + 1, . . . ,m}, ` ∈ N, v ∈ Sq0
.

We will show by induction on ` that each of these generators lies in 〈Zq0
(Ỹ ), Sq0

〉.
This is clearly true for ` = 1, so suppose it true for ` = j and let aj ∈ {k+ 1, . . . ,m}.
Then. for any V ∈ Γ(TQ), we have

〈Yaj
: V 〉 = 〈Λα

aj
(Ỹα) : V 〉 = Λα

a 〈Ỹα : V 〉 +

m̃
∑

α=1

(LV Λα
aj

)Ỹα,

from which we ascertain that

symYaj
=

m̃
∑

α=k+1

Λα
aj

(q0)symỸα
+

k
∑

α=1

Ỹα(q0) ⊗ d
α
aj

(q0),

since Λα
a (q0) = 0 for α ∈ {1, . . . , k} and a ∈ {k + 1, . . . ,m}. Therefore, by the

induction hypothesis, we conclude that

symYaj
◦ symYaj−1

◦ · · · ◦ symYa1
(v) ∈ 〈Zq0

(Ỹ ), Sq0
〉.

This shows that 〈Zq0
(Y ), Sq0

〉 ⊂ 〈Zq0
(Ỹ ), Sq0

〉. The opposite inclusion follows as

above, but swapping Y and Ỹ . �

The preceding result shows the invariance of the definition of a subspace on the
choice of adapted generators for Y. The next result gives the same conclusion for a
vector-valued quadratic form.

Lemma 4.4. Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connec-
tion control systems satisfying

(i) Y = Ỹ and
(ii) Y and Ỹ are adapted at q0.

If Sq0
⊂ Tq0

Q is a subspace containing Yq0
, then B

Ỹq0
(Sq0

) = BYq0
(Sq0

).

Proof. As in the proof of Lemma 4.3 we have

Ỹα =
m

∑

a=1

Λa
αYa, α ∈ {1, . . . , m̃},

for functions Λa
α : Q→ R, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. We then compute

〈Ya : Yb〉 = Λα
aΛβ

b 〈Ỹα : Ỹβ〉 +
m̃

∑

α,β=1

Λβ
b (LỸβ

Λα
a )Ỹα

+
m̃

∑

α,β=1

Λα
a (LỸα

Λβ
b )Ỹβ + Λα

aΛβ
bS

δ(Ỹα, Ỹβ)Ỹδ.

The lemma follows directly from this formula since the terms in Γ(Y) will go to zero
when projected by πSq0

since Yq0
⊂ Sq0

. �
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4.2. Main results. Our main results may now be stated. Let us first state a
sufficient condition for controllability.

Theorem 4.5. Let (Q,∇,D,Y ) be an analytic affine connection pre-control
system, and suppose that Y is adapted at q0 ∈ Q. Suppose that

(i) Sym(∞)(Y)q0
= 〈Zq0

(Y ), Sym(2)(Y)〉, and that
(ii) BYq0

(〈Zq0
(Y ), Yq0

〉) is essentially indefinite.
Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0, and is properly
STLCC from q0 if it is configuration accessible from q0.

Proof. The proof essentially follows from Theorem 2.7. However, the extension
to allow singular points for the input distribution Y does not follow directly from
Theorem 2.7, but requires some manipulations with the variational cone that we will
not go through here. The idea, in essence, is that if an input vector field vanishes
at the reference point, then directions generated by symmetric products using these
vector fields come “for free.” Since these symmetric products are simply applications
of a linear map, this explains the presence of the invariant subspace characterisations
of the tangent space to the reachable set. We refer to [21, Lemma 7.2] for the details
behind this, noting that the discussion in that paper builds on concepts presented
in [36, 7]. A consequence of these discussions, once they are specialised to our setting,
is the following result.

Lemma 4.6. Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection
pre-control system for which Y is adapted at q0 ∈ Q. Assume the following:

(i) Sym(∞)(Y) = 〈Zq0
(Y ), Sym(2)(Y)q0

〉;

(ii) there exists m̃ ≥ m and a full rank matrix T ∈ Rm×m̃ such that if Ỹα =
T a

αYα then

m̃
∑

a=1

〈Ỹα : Ỹα〉(q0) ∈ 〈Zq0
(Y ), Yq0

〉.

Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0, and is properly
STLCC from q0 if it is configuration accessible from q0.

We shall show that if the hypotheses of Theorem 4.5 are satisfied at q0, then the
hypotheses of Lemma 4.6 are satisfied for some possibly different collection of input
vector fields. From this the conclusion of Theorem 4.5 will follow.

For brevity let us denote Sq0
= 〈Zq0

(Y ), Yq0
〉 and B = BYq0

(Sq0
). First we

need to find an appropriate collection of input vector fields. Choose v1, . . . , v` ∈ Yq0

such that 0q0
+ Sq0

∈ Sym(∞)(Y)q0
/Sq0

lies in the interior of the convex hull of the
vectors B(v1, v1), . . . , B(v`, v`). That this is possible is guaranteed by the hypotheses
of Theorem 4.5 and by Lemma 3.2. If necessary, add vectors v`+1, . . . , vk̃ such that
the vectors v1, . . . , vk̃ span Yq0

. It now follows that the vectors B(v1, v1), . . . , B(vk̃, vk̃)

contain 0q0
+ Sq0

∈ Sym(∞)(Y)q0
/Sq0

in the interior of their convex hull. Thus the
vectors v1, . . . , vk̃ may be rescaled by strictly positive constants (for simplicity, let us
denote the rescaled vectors also by v1, . . . , vk̃) so that

(4.2)

k̃
∑

α=1

B(vα, vα) = 0q0
+ Sq0

∈ Sym(∞)(Y)q0
/Sq0

.

It is now possible to define vector fields Ỹ = {Ỹ1, . . . , Ỹm̃} such that, if dim(Yq0
) = k,

then
1. Ỹk̃+a = Yk+a, a ∈ {1, . . . ,m− k} and
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2. Ỹα =
∑k

a=1 T̃
a
αYa, α ∈ {1, . . . , k̃}, for a full-rank matrix T̃ ∈ R

k×k̃.
Clearly this then implies the existence of a full rank matrix T ∈ Rm×m̃ such that
Ỹα = T a

αYa, α ∈ {1, . . . , m̃}. From (4.2) it immediately follows that (Q,∇,D,Y )
satisfies the hypotheses of Lemma 4.6, and so Theorem 4.5 follows. �

Remark 4.7. Our use of the vector fields Zq0
(Y ) from Y that vanish at q0 is

similar in spirit to how the vanishing of the drift vector appears in the work of Suss-
mann [36] and Bianchini and Stefani [7]. The idea is that brackets generated by such
vanishing vector fields can be achieved “for free,” without invoking bad brackets.•

A necessary condition for controllability is the following.
Theorem 4.8. Let (Q,∇,D,Y ) be an analytic affine connection pre-control

system for which Y is adapted at q0 ∈ Q. Suppose that
(i) q0 is a regular point for Y and that
(ii) BYq0

(Yq0
) is definite.

Then (Q,∇,D,Y ) is STLCUC from q0.
Proof. We work locally. Therefore, we may assume that the vector fields

{Y1, . . . , Yk} are linearly independent in a neighbourhood of q0. First we show that
the system is not STLC from q0 using calculations of Hirschorn and Lewis [21]. We
will not provide here a self-contained justification for all of our computations, since
they take considerable space, but we refer to the paper [21]. The calculation uses the
Chen–Fliess–Sussmann series [14, 17, 35]. For an analytic control-affine system

ξ′(t) = f0(ξ(t)) +
m

∑

a=1

ua(t)fa(ξ(t)), ξ(t) ∈M

on a manifold M with a compact control set, and for an analytic function φ, the
Chen–Fliess–Sussmann series gives the following formula for the value of φ along a
controlled trajectory (ξ, u):

φ(ξ(t)) =
∑

J

UJ(t)fJφ(ξ(0)).

The sum is over multi-indices J = (a1, . . . , ak) in {0, 1, . . . ,m},

UJ(t) =

∫ t

0

uak
(tk)

∫ tk

0

uak−1
(tk−1) . . .

∫ t2

0

ua1
(t1) dt1 . . . dtk−1 dtk.

and

fJφ = fa1
fa2

· · · fak
φ.

We adopt the convention that u0 = 1. We also regard an affine connection control
system as a control-affine system in the usual manner by taking f0 to be the geodesic
spray for ∇ and f1, . . . , fm to be the vertical lifts of Y1, . . . , Ym [27].

The function we evaluate is defined as follows. We let λ be an analytic covector
field defined in a neighbourhood of q0 with the following properties:

1. λ annihilates the distribution Y;
2. λ(q0)BYq0

|Yq0
is negative-definite.

By a linear input transformation one can ensure that the input vector fields diagonalise
λ(q0)BYq0

with the diagonal entries being −1. We assume this input transformation
to have been made. We then define a function φλ : TQ → R by φλ(vq) = λ(q) · vq,
and we also define

Φ+
λ = {vq ∈ TQ| φλ(vq) > 0}, Φ−

λ = {vq ∈ TQ| φλ(vq) < 0}.
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Note that, in any neighbourhood V of 0q0
in TQ, the sets V ∩ Φ−

λ and V ∩ Φ+
λ will

be nonempty, since φλ is linear on the fibres of TQ. Therefore, we can show that
(Q,∇,D,Y ) is STLUC from q0 by showing that φλ has constant sign along any
controlled trajectory. One may directly verify that φλ has the following properties:

1. faφλ, a ∈ {1, . . . ,m}, is zero in a neighbourhood of 0q0
;

2. adk
f0
faφλ(0q0

) = 0, a ∈ {1, . . . ,m}, k ∈ N;
3. [fa, [f0, fa]]φλ(0q0

) = −1, a ∈ {1, . . . ,m} (this and the next fact use the
formula [fa, [f0, fb]] = verlift(〈Ya : Yb〉), a, b ∈ {1, , . . . ,m});

4. [fa, [f0, fb]]φλ(0q0
) = 0, a, b ∈ {1, . . . ,m}, a 6= b.

For an input u : [0, T ] → U , let us define

‖u‖2,t = max
{(

∫ t

0

|ua(t)|2
)1/2∣

∣

∣
a ∈ {1, . . . , k}

}

.

The calculations of Hirschorn and Lewis [21] now immediately give the following
inequality for φλ(γ′(t)) along a controlled trajectory (γ, u) for an affine connection
control system like that under consideration here:

φλ(γ′(t)) ≥ 1
2 (‖u‖2,t)

2 − |E(t)|.

According to the analysis in Hirschorn and Lewis, the map t 7→ E(t) satisfies the
bound |E(t)| ≤ tE0(‖u‖2,t)

2, for some E0 > 0. For t sufficiently small, this shows
that φλ(γ′(t)) has constant sign. This shows that (Q,∇,D,Y ) is STLCUC from q0.

Now let us show that our above constructions also preclude the system from being
locally configuration controllable. Choose a coordinate chart (V, χ) for Q around q0
with the following properties: (1) χ(q0) = 0 and (2) dqn(q0) = λ(q0). Let us define a
function ψλ on the coordinate domain V by ψλ(q) = qn such that the sets

Ψ+
λ = {q ∈ Q| ψλ(q) > 0}, Ψ−

λ = {q ∈ Q| ψλ(q) < 0}

each intersect any neighbourhood of q0 ∈ Q. Along any nontrivial trajectory t 7→ γ(t)
we have

dψλ(γ(t))

dt

∣

∣

∣

t=0
= dψλ(γ′(0)) = φλ(γ′(0)) < 0,

Since ψλ(q0) = 0, this means that, for sufficiently small t, ψλ(γ(t)) < 0, and this
shows that the points in Ψ+

λ are not reachable in small time, and so Σ is not locally
configuration controllable. �

Remark 4.9. The spirit of the preceding proof is that of the single-input neces-
sary condition appearing as Proposition 6.3 in the paper of Sussmann [35]. However,
the modifications to the multi-input case by Hirschorn and Lewis [21] require some
care. •

Let us provide an example that nicely illustrates Theorems 4.5 and 4.8. This
example is a slight modification of an example in [33].

Example 4.10. We take Q = R2 with (x, y) the usual Cartesian coordinates.
We choose the affine connection on R2 with all vanishing Christoffel symbols except
for Γy

xx = x. We choose the single input vector field Y = ∂
∂x . We also take D = TQ.

One then readily computes

〈Y : Y 〉 = 2x
∂

∂y
, 〈Y : 〈Y : Y 〉〉 = 2

∂

∂y
.

We consider two cases.
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1. q0 = (0, y), y ∈ R: We readily see that BYq0
(〈Zq0

(Y ), Yq0
〉) is identically

zero, and so essentially indefinite. We also have Sym(2)(Y)q0
= Tq0

Q. Therefore,
Theorem 4.5 shows that (Q,∇,D, {Y }) is properly STLC from q0.

2. q0 6= (0, y), y ∈ R: Here we use span
R
{ ∂

∂y} as a model for Tq0
Q/Yq0

. Thus

both Yq0
and Tq0

Q/Yq0
are one-dimensional, and so BYq0

(Yq0
) is essentially a quadratic

function on R. This quadratic function is then exactly ξ 7→ 2xξ2. This function is
definite, so Theorem 4.8 implies that the system is STLCUC from q0.

Thus this example has the rather degenerate feature of being controllable on
the y-axis but being uncontrollable at every point in a neighbourhood of the y-axis.
Note that this example is also a counterexample to a single-input result of one of the
authors [23]. There it was stated that a single-input affine connection control system
is STLCC if and only if the dimension of the configuration space is one. We see here
that this is false. However, what is true is that a single-input affine connection control
system is STLCC at all points in an open subset of configuration space if and only if
the configuration space has dimension one. •

5. Reductions of affine connection control systems. The controllability
results of Section 4 turn out to apply to a great many examples. That is to say, many
interesting physical examples may be shown to be controllable or uncontrollable using
these results. What is not obvious is that many of these systems are describable, in
some sense, by a driftless system. This effectively simplifies the system, making certain
control design tasks, especially motion planning, considerably simpler. In this section
we introduce the framework for discussing these simplifications.

The objective in this section is then to relate second-order systems to first-order
systems. In order to do this, one must be aware that the allowable inputs for the
two classes of systems cannot be the same. For example, a trajectory for a first-order
system using a discontinuous input will be continuous in configuration, but not in
velocity. These velocity discontinuities are not allowed for second-order systems with
bounded inputs. Therefore, we need to fix a set of inputs to use in each case, and
they need to differ, essentially, by one integration. To be specific, we let Ukin be the
collection of locally absolutely continuous controls and we let Udyn be the collection
of locally integrable controls. The former will be used for first-order systems and the
latter for second-order systems. In all cases, we allow controls to be defined on an
arbitrary interval I ⊂ R.

5.1. Kinematic reductions. In this section, in order to emphasise the differ-
ence between the two kinds of systems we are comparing, we shall denote an affine
connection control system by Σdyn = (Q,∇,D,Y ,Rm). A driftless system is a triple
Σkin = (Q,X = {X1, . . . , Xm̃}, U ⊂ Rm̃). The associated control system is then

(5.1) γ′(t) =

m̃
∑

α=1

ũα(t)Xα(γ(t)),

so that a controlled trajectory is a pair (γ, ũ) where
1. γ : I → Q and ũ : I → U are both defined on the same interval I ⊂ R,
2. ũ ∈ Ukin, and
3. (γ, ũ) together satisfy (5.1).

A driftless system (Q,X , U) is STLC from q0 if the set of points reachable from q0
contains q0 in its interior, and a pair (Q,X ) is properly STLC from q0 if (Q,X , U) is
STLC from q0 for every proper U . With our underlying assumption of analyticity, it is
well-known that (Q,X ) is properly STLC from q0 if and only if Lie(∞)(X)q0

= Tq0
Q.
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First we define what we mean by a kinematic reduction.
Definition 5.1. Let Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) be an affine

connection control system with Y having constant rank. A driftless system Σkin =
(Q,X = {X1, . . . , Xm̃},Rm̃) is a kinematic reduction of Σdyn if

(i) X is a constant-rank subbundle of D and
(ii) for every controlled trajectory (γ, ukin) for Σkin with ukin ∈ Ukin, there

exists udyn ∈ Udyn such that (γ, udyn) is a controlled trajectory for Σdyn.
The rank of the kinematic reduction Σkin is the rank of X. •

Thus kinematic reductions are driftless systems whose controlled trajectories,
at least for controls in Ukin, can be followed by controlled trajectories of Σdyn.
Let us characterise kinematic reductions. To do so, recall that with our con-
stant rank assumptions, given an affine connection ∇ and a family of vector fields
Y = {Y1, . . . , Ym} on Q, we may globally define BY as at the end of Section 3.2.
This also allows us to define a map QBY

: Γ(TQ) → Γ(TQ/Y) by QBY
(X)(q) =

BY(q)(X(q), X(q)). With this notation, we have the following result.
Theorem 5.2. Let Σdyn = (Q,∇,D,Y ,Rm) be an affine connection control

system with Y of constant rank and let Σkin = (Q,X ,Rm̃) be a driftless system with
X of constant rank. The following statements are equivalent:

(i) Σkin is a kinematic reduction of Σdyn;

(ii) Sym(1)(X) ⊂ Y;
(iii) X ⊂ Y and QBY

|X = 0.
Proof. (i) =⇒ (ii) Let X ∈ Γ(X) such that X = φαXα for some φ1, . . . , φm̃ ∈

F(Q). For q ∈ Q, define controls ũ1, ũ2 ∈ Ukin by ũ1 = (φ1(q), . . . , φm̃(q)) and
ũ2 = (1 + t)ũ1. Let (γ1, ũ1) and (γ2, ũ2) be the corresponding controlled trajectories

of Σkin satisfying γ1(0) = γ2(0) = q. Thus γ′i(t) =
∑m̃

α=1 ũ
α
i (t)Xα(γi(t)), i ∈ {1, 2}.

We compute

∇γ′

1(t)
γ′1(t) =

m̃
∑

α,β=1

∇ũα
1 (t)Xα(γ1(t))ũ

β
1 (t)Xβ(γ1(t))

=

m
∑

α,β=1

ũα
1 (t)ũβ

1 (t)∇Xα(γ1(t))Xβ(γ1(t)) + ˙̃uβ
1 (t)Xβ(γ1(t)).

Evaluating this at t = 0 gives

∇γ′

1(t)γ
′
1(t)

∣

∣

t=0
=

m̃
∑

α,β=1

ũα
1 (0)ũβ

1 (0)∇Xα
Xβ(q) + ˙̃uβ

1 (0)Xβ(q) = ∇XX(q).

Similarly, for γ2 we have

∇γ′

2(t)γ
′
2(t)

∣

∣

t=0
= ∇XX(q) +X(q).

Therefore, since Σkin is a kinematic reduction of Σdyn, we have ∇XX(q),∇XX(q) +
X(q) ∈ Yq, or simply X,∇XX ∈ Γ(Y) since the above constructions can be performed
for all X ∈ Γ(X) and q ∈ Q. Therefore, for X,Y ∈ Γ(X) we have the polarisation
identity,

(5.2) 〈X : Y 〉 =
1

2

(

〈X + Y : X + Y 〉 − 〈X : X〉 − 〈Y : Y 〉
)

∈ Γ(Y),

which gives (ii).
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(ii) =⇒ (iii) From the definition of BY we readily see that QBY
|X = 0 exactly

means that 〈X : X〉 = 2∇XX ∈ Γ(Y) for each X ∈ Γ(X). From this observation, the
current implication follows easily by employing the formula for 〈X : Y 〉 in (5.2).

(iii) =⇒ (i) As in the preceding step, we saw that the condition QBY
|X = 0 is

equivalent to asserting that ∇XX ∈ Γ(Y) for each X ∈ Γ(X). By (5.2) this implies
that 〈Xα : Xβ〉 ∈ Γ(Y) for α, β ∈ {1, . . . , m̃}. Let ukin ∈ Ukin and let (γ, ukin) be the
corresponding controlled trajectory for Σkin. We then have

∇γ′(t)γ
′(t) = uα

kin(t)u
β
kin(t)∇Xα(γ(t))Xβ(γ(t)) + u̇α

kin(t)Xα(γ(t)).

We note that

uα
kin(t)u

β
kin(t)∇Xα(γ(t))Xβ(γ(t)) =

1

2
uα

kin(t)u
β
kin(t)〈Xα(γ(t)) : Xβ(γ(t))〉.

Since Xα, 〈Xα : Xβ〉 ∈ Γ(Y) it now follows that ∇γ′(t)γ
′(t) ∈ Yγ(t), implying that

there exists a control udyn ∈ Udyn such that (γ, udyn) is a controlled trajectory for
Σdyn. �

Of particular interest are kinematic reductions of rank one: (Q, {X1},R). In this
case, any vector field of the form X = φX1, where φ ∈ F(Q) is nowhere vanishing, is
called a decoupling vector field . From Theorem 5.2 we have the following description
of a decoupling vector field.

Corollary 5.3. A vector field X is a decoupling vector field for Σdyn =
(Q,∇,D,Y ,Rm) if and only if X,∇XX ∈ Γ(Y).

It is the notion of a decoupling vector field that was initially presented by Bullo
and Lynch [13], and which is generalised by our idea of a kinematic reduction.

Remark 5.4. While in general, even when a kinematic reduction exists, it will
not be easy to find, it turns out that in practice many examples exhibit kinematic
reductions in a more or less obvious way. We shall see this in the examples below.
Note that condition (iii) of Theorem 5.2 provides a set of algebraic equations that
can, in principle, be solved to identify decoupling vector fields. This is discussed by
Bullo and Lynch [13]. •

Next, let us consider affine connection control systems endowed with multiple
kinematic reductions. It is interesting to characterise when the concatenation of
controlled trajectories of the kinematic reductions gives rise to a controlled trajectory
for the affine connection control system. Given two curves γ1 and γ2 on Q, let γ1 ∗ γ2

be their concatenation. The following lemma follows immediately from the definition
of a kinematic reduction.

Lemma 5.5. Consider an affine connection control system Σdyn =
(Q,∇,D,Y ,Rm) with two kinematic reductions Σkin,1 = (Q,X1,R

m1) and Σkin,2 =
(Q,X2,R

m2). For i ∈ {1, 2}, let (γi, ukin,i) be a controlled trajectory for Σkin,i defined
on the interval [0, Ti] with ukin,i ∈ Ukin. There exists a control udyn ∈ Udyn such that
(γ1 ∗ γ2, udyn) is a controlled trajectory for Σdyn if and only if γ′1(T1) = γ′2(0).

Motivated by this result we make the following definition.
Definition 5.6. An affine connection control system Σdyn = (Q,∇,D,Y ,Rm)

is kinematically controllable from q0 ∈ Q (KC from q0 ∈ Q) if there exists a finite
collection

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

of kinematic reductions for Σdyn such that (Q,X1 ∪ · · · ∪Xk) is properly STLC from
q0. •

Remarks 5.7.
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1. For analytic systems, the condition that (Q,X1∪· · ·∪Xk) be properly STLC

from q0 is equivalent to the condition that Lie(∞)(X1 + · · · + Xk)q0
= Tq0

Q, where
X1 + · · · + Xk denotes the fibrewise sum of the distributions X1, . . . ,Xk.

2. If an affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is kinemat-
ically controllable from q0, then it is STLCC from q0. This fact is proved in Propo-
sition 5.16 below, and we refer to Section 5.3 for a discussion of the relationships
between the various notions of controllability introduced in this paper.

3. Suppose the affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is
kinematically controllable from all q ∈ Q. A standard control problem is to find a
controlled trajectory connecting two given configurations q1, q2 ∈ Q, starting and end-
ing with zero velocity. Lemma 5.5 says that this can be done for Σdyn by concatenating
integral curves of decoupling vector fields where each segment is reparameterised to
start and end at zero velocity. This is the viewpoint of Bullo and Lynch [13]. •

Example 5.8. We consider a planar rigid body with a variable-direction thruster
as shown in Figure 5.1. The system has configuration manifold SE(2). We use

e2

e1
O

f1

f2F

h

Fig. 5.1. Planar rigid body with thruster

coordinates (x, y, θ) defined as follows. Let {e1, e2} be an orthonormal frame in E2

fixed at O ∈ E2, and let {f1, f2} be a body orthonormal frame attached to the
centre of mass and with the property that the vector f1 points in the direction of
the line connecting the centre of mass with the point of application of the force (see
Figure 5.1). Then (x, y) denote the position of the centre of mass with respect to O,
and θ is defined so that f1 = R(θ)e1 with R(θ) the matrix giving a positive rotation
by θ in E2. With respect to these coordinates, the kinetic energy of the system is
determined by the Riemannian metric

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ,

where m is the mass of the body, and J is its inertia about the centre of mass. Since
the coefficients of this Riemannian metric are independent of the coordinates, the
Christoffel symbols for the corresponding Levi-Civita affine connection are zero. As
shown by Lewis and Murray [27], Newton’s law with the force F as shown in Figure 5.1
is equivalent to equation (2.1), if the affine connection ∇ is the Levi-Civita connection
associated with g and if the vector fields {Y1, Y2} are chosen as follows:

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
, Y2 = −

sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
−
h

J

∂

∂θ
.

The system is unconstrained so we take D = TQ.
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We claim that the vector fields X1 = mY1 and X2 = mY2 are decoupling vector
fields. Clearly, they are sections of Y. We also compute

∇X1
X1 = 0, ∇X2

X2 =
mh cos θ

J

∂

∂x
+
mh sin θ

J

∂

∂y
.

Therefore ∇X1
X1,∇X2

X2 ∈ Γ(Y), showing that X1 and X2 are indeed decoupling
vector fields.

Let us explore the implications of the existence of these decoupling vector fields.
Since X1 and X2 are decoupling vector fields, we may follow their integral curves.
In Figure 5.2 we show motions of the body along sample integral curves of X1 and

Fig. 5.2. Decoupling motions for the planar rigid body: X1 on the left and X2 on the right

X2. In actuality, one can follow not only the integral curves of the decoupling vector
fields, but any reparameterisation of these vector fields. With this in mind, one has
the following possible methodology for moving the body around in the plane.

1. Given q1, q2 ∈ Q, find a concatenation of the integral curves of X1 and X2

that connects q1 with q2. (This is possible since Lie(∞)(X) = TQ.)
2. Reparameterise each segment of the preceding concatenated curve so that

each segment has zero initial and final velocity.
3. Because of Lemma 5.5, the resulting reparameterised curve can be followed

by controlled trajectories of Σdyn.
This method for motion planning is explained in detail in [11, Chapter 13]. •

5.2. Maximally reducible systems. If Σkin = (Q,X = {X1, . . . , Xm̃},Rm̃) is
a kinematic reduction of Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym,R

m), then, by definition,
any controlled trajectory of Σkin may be followed by a controlled trajectory of Σdyn.
In this section we wish to consider the possibility of the converse statement. The
following definition, and the attendant Theorem 5.11 below, are due to Lewis [25].

Definition 5.9. An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym},Rm) with Y constant-rank is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if Σkin is a kinematic reduction of Σdyn and if for every controlled
trajectory (γ, udyn) for Σdyn satisfying γ′(0) ∈ Xγ(0), there exists a control ukin ∈ Ukin

such that (γ, ukin) is a controlled trajectory for Σkin. •
Before we proceed to characterise maximally reducible systems, let us illustrate

that a system may not be maximally reducible to a given kinematic reduction.
Example 5.10 (Example 5.8 cont’d). We claim that the affine connection con-

trol system corresponding to the planar rigid body with a thruster is not maxi-
mally reducible to either of the kinematic reductions Σkin,1 = (Q,X1 = {X1},R)
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or Σkin,2 = (Q,X2 = {X2},R) exhibited in Example 5.8. We shall exhibit this ex-
plicitly for Σkin,1, and leave the other case to the reader.

Consider the control t 7→ u(t) = (0, 1) ∈ Udyn, along with the initial condition
γ′(0) = ((0, 0, 0), (1, 0, 0)) ∈ TQ. We have γ′(0) ∈ X1,γ(0), where X1 is the distribution
generated by the vector field X1. If Σdyn is to be maximally reducible to Σkin,1, then
we should have γ′(t) ∈ X1,γ(t) for each t > 0. To show that this is not the case,
consider the governing equations for the system with the given control:

ẍ = −
sin θ

m
, ÿ =

cos θ

m
, θ̈ = −

h

J
.

Clearly the solution to this ordinary differential equation is not a reparameterisation
of the integral curve for X1 through γ(0) since the latter is given by t 7→ (t, 0, 0).
Thus it cannot be that γ′(t) ∈ X1,γ(t) for each t > 0. •

Now let us establish when an affine connection control system is in fact maxi-
mally reducible to some driftless system. Note that in the statement of the following
theorem, the driftless systems to which Σdyn is maximally reducible are characterised
sharply.

Theorem 5.11. An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym,R

m), with Y constant rank, is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if and only if the following two conditions hold:

(i) X = Y;

(ii) Sym(∞)(Y) = Y.
Proof. In the proof it is convenient to understand that the second-order sys-

tem (2.1) on Q is equivalent to the first-order system on TQ given

(5.3) Υ′(t) = Z(Υ(t)) +

m
∑

a=1

ua(t)verlift(Ya)(Υ(t)),

for a curve Υ on TQ, where Z is the geodesic spray for ∇ and verlift(Ya) ∈ Γ(TTQ)
denotes the vertical lift of Ya. This is discussed in Lewis and Murray [27]. Further,
one may easily verify that a vector field X is a section of a distribution D if and
only if verlift(X) is tangent to D ⊂ TQ. Also, Lewis [24] shows that condition (ii) is
equivalent to the assertion that Y be geodesically invariant, by which we mean that
geodesics γ : I → Q satisfying γ′(t0) ∈ Yγ(t0) for some t0 ∈ I satisfy γ′(t) ∈ Yγ(t)

for all t ∈ I. Clearly, geodesic invariance of Y is equivalent to Y being an invariant
submanifold for Z.

First suppose that Σdyn is maximally reducible to a driftless system Σkin. Let
γ : [0, T ] → Q be a geodesic so that (γ′, 0) is a controlled trajectory for Σdyn. If we
ask that γ′(0) ∈ X, then Definition 5.9 implies that there exists ukin ∈ Ukin such that
(γ, ukin) is a controlled trajectory of Σkin. Indeed, ukin is defined by

γ′(t) =

m̃
∑

α=1

uα
kin(t)Xα(γ(t)),

and so is smooth. Further, this implies that X is geodesically invariant. The remainder
of this part of the proof will be directed towards showing that X = Y.

Let ea be the ath standard basis vector for Rm and let ua : [0, T ] → Rm be the
control defined by ua(t) = ea. Let Υ: [0, T ] → TQ be an integral curve for the vector
field Z + verlift(Ya), so that (Υ, ua) satisfies (5.3). By Definition 5.9, Υ must be
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tangent to X. Since X is geodesically invariant, Z is tangent to X, therefore verlift(Ya)
must be tangent to X. This implies that Y ⊂ X.

To show that X ⊂ Y we employ the following lemma.
Lemma 5.12. If a distribution D is geodesically invariant for an affine connection

∇, then for each q ∈ Q and each X ∈ Dq there exists T > 0 and a smooth curve
γ : [0, T ] → Q with the following properties:

(i) γ′(t) ∈ Dγ(t) for t ∈ (0, T ];
(ii) ∇γ′(0)γ

′(0) = X.
Proof. Let (U, χ) be a normal coordinate chart [22, Proposition 8.4] with

χ(q) = 0. In such a chart the Christoffel symbols for ∇ satisfy Γi
jk(0) + Γi

kj(0) = 0,

i, j, k ∈ {1, . . . , n}. Let T̃ > 0 be small if necessary and let γ̃ : [0, T̃ ] → Q be the
geodesic satisfying γ̃′(0) = X . Let us denote the local representative of γ̃ in our
normal coordinate chart by t 7→ (q̃1(t), . . . , q̃n(t)). We must then have ¨̃qi(0) = 0,
i ∈ {1, . . . , n}, since γ̃ is a geodesic and we are using normal coordinates. Since D

is geodesically invariant, γ̃′(t) ∈ Dγ̃(t) for t ∈ (0, T̃ ]. Now define τ : [0, T̃ ] → [0, 1
2 T̃

2]

by τ(t) = 1
2 t

2. Let T = 1
2 T̃

2, define γ : [0, T ] → Q by γ = γ̃ ◦ τ , and denote by
t 7→ (q1(t), . . . , qn(t)) the local representative of γ. Then we have

q̇i(t) =
2t ˙̃qi(t)

T
, i ∈ {1, . . . , n},

q̈i(0) = ˙̃qi(0), i ∈ {1, . . . , n}.

Since γ̃′(0) = X the result follows. O

Now let q ∈ Q and X ∈ Xq. Choose a curve γ : [0, T ] → Q as in the lemma.
Define a smooth map ukin : [0, T ] → Rm̃ by asking that it satisfy

γ′(t) =
m̃

∑

α=1

uα
kin(t)Xα(γ(t)).

Then (γ, ukin) is a controlled trajectory for Σkin. Therefore, by Definition 5.9, there
exists a map udyn : [0, T ] → R

m such that (γ′, udyn) is a controlled trajectory for
(TQ,XΣdyn

,Rm). Indeed, since γ′ is smooth, udyn will also be smooth. Furthermore,
we have

X = ∇γ′(0)γ
′(0) =

m
∑

a=1

ua
dyn(0)Ya(γ(0)).

This shows that X ⊂ Y which completes the proof of the “only if” part of the theorem.
Now suppose that parts (i) and (ii) of the theorem hold. Let us work locally, so we

may as well assume that the vector fields {Y1, . . . , Ym} and {X1, . . . , Xm̃} are linearly
independent (and so m̃ = m). First, part (ii) implies Y is an invariant submanifold
for the system (TQ,XΣdyn

,Rm), since verlift(Ya), a ∈ {1, . . . ,m}, is tangent to Y.
If (Υ, udyn) is a controlled trajectory of (TQ,XΣdyn

,Rm), then Υ: [0, T ] → TQ is

absolutely continuous, and so γ , τQ ◦ Υ is also absolutely continuous. In fact,
Υ = γ′ and so not only is γ absolutely continuous, but γ′ is absolutely continuous. If
we further suppose that γ′(0) ∈ Yγ(0), then γ′(t) ∈ Yγ(t) for t ∈ [0, T ]. We may then
define ukin : [0, T ] → Rm̃ by γ′(t) = uα

kin(t)Xα(γ(t)) which uniquely defines ukin since
(TQ,XΣdyn

,Rm) leaves Y, and hence X, invariant. It is clear that ukin is absolutely
continuous.
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Finally, let (γ, ukin) be a controlled trajectory for Σkin. Thus γ′ is absolutely
continuous. Since Y, and therefore X, is geodesically invariant, ∇γ′(t)γ

′(t) ∈ Yγ(t) for
t ∈ [0, T ]. Thus we may write

∇γ′(t)γ
′(t) =

m
∑

a=1

ua
dyn(t)Ya(γ(t)),

which defines udyn : [0, T ] → Rm. It is clear that u is locally integrable, and this
completes the proof. �

Remark 5.13. Note that all driftless systems to which a given affine connection
control system Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) is maximally reducible are
essentially the same, by which we mean that for two such driftless systems, Σkin =
(Q,X = {X1, . . . , Xm},Rm) and Σ̃kin = (Q, X̃ = {X̃1, . . . , X̃m̃},Rm̃), we have
X = X̃. Thus, without loss of generality, we may take (Q, {Y1, . . . , Ym},Rm) as the
system to which Σdyn is maximally reducible. For this reason, it makes sense to
simply say that Σdyn is maximally reducible if it is maximally reducible to some
driftless system. •

Let us give an example of a system that is maximally reducible.
Example 5.14. We consider the robotic leg system depicted in Figure 5.3. The

ψ

θ

r

F 1

F 2

Fig. 5.3. The robotic leg

configuration space for the system is Q = R+ × S1 × S1, and the coordinates we use
are (r, θ, ψ) as indicated in Figure 5.3. The Riemannian metric for the system is

g = m(dr ⊗ dr + r2dθ ⊗ dθ) + Jdψ ⊗ dψ,

where m is the mass of the particle on the end of the extensible massless leg, and J
is the moment of inertia of the base rigid body about the pivot point. The nonzero
Christoffel symbols for the associated affine connection are Γr

θθ = −r and Γθ
rθ = Γθ

θr =
1
r . Lewis and Murray [27] show that if we define Y1 and Y2 by

Y1 =
1

mr2
∂

∂θ
−

1

J

∂

∂ψ
, Y2 =

1

m

∂

∂r
,

then the equations of motion for the system are of the form (2.1), where ∇ is the
Levi-Civita connection associated with g. There are no constraints on the system so
we take D = TQ.
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One readily computes

〈Y1 : Y1〉 = −
2

m2r3
∂

∂r
, 〈Y1 : Y2〉 = 0, 〈Y2 : Y2〉 = 0.

This shows that Y is geodesically invariant. Thus the corresponding affine connection
control system Σdyn is maximally reducible to (Q, {Y1, Y2},R2). •

Since Sym(∞)(Y) = Y for an affine connection control system that is maximally
reducible to a driftless system, by Remark 5.7–2 such an affine connection control
system, if analytic, is STLCC from q ∈ Q if and only if Lie(∞)(Y)q = TqQ. Thus we
make the following definition.

Definition 5.15. A maximally reducible affine connection control system
Σdyn = (Q,∇,D,Y ,Rm) is maximally reducibly kinematically controllable from
q0 ∈ Q (MR-KC from q0) if (Q,Y ) is properly STLC from q0. •

5.3. Relationships to controllability. The appearance in Theorem 5.2 of the
vector-valued quadratic form BY raises questions about how the notion of kinematic
reductions are related to the low-order controllability results of Section 4. In this
section we describe the proper relationships. In [12] counterexamples are provided to
show that one cannot generally improve on the relationships presented here.

Let Σdyn = (Q,∇,D,Y ,Rm) be an affine connection control system. First let us
list the various types of controllability we have at hand for Σdyn from a point q0 ∈ Q:

1. small-time local controllability (STLC);
2. small-time local configuration controllability (STLCC);
3. kinematic controllability (KC);
4. maximal reducible kinematic controllability (MR-KC).

The relationships between these concepts are demonstrated in Figure 5.4. Let us show

STLC

STLCC

KC MR-KC

Fig. 5.4. Relationships between various forms of controllability for affine connection control

systems

that these implications do indeed hold.
Proposition 5.16. For an analytic affine connection control system Σdyn =

(Q,∇,D,Y ,Rm) and for q0 ∈ Q, the implications of Figure 5.4 hold.
Proof. The implications STLC =⇒ STLCC and MR-KC =⇒ KC follow directly

from the definitions of the various notions of controllability involved. Thus we need
only show that KC =⇒ STLCC. We let

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

be a collection of kinematic reductions for which Lie(∞)(X1 + · · · + Xk)q0
= Tq0

Q,
where X1 + · · · + Xk denotes the fiberwise sum of the distributions X1, . . . ,Xk. Let
X = X1 ∪ · · · ∪Xk. Note that since Xi ⊂ Y, Σdyn is STLCC from q0 if (Q,∇,D,X )
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is properly STLCC from q0. Select vector fields Xa1
, . . . , Xa`

from the family X

such that {Xa1
(q0), . . . , Xa`

(q0)} is a basis for Xq0
. For brevity, let us denote by

B ∈ Σ2(Yq0
;Tq0

Q/Yq0
) the vector-valued quadratic form BY(q0). By Theorem 5.2

we know that QB|Xi,q0
= 0, i ∈ {1, . . . , k}. It therefore follows that, for each λ ∈

ann(Yq0
), λB(Xaj

(q0), Xaj
(q0)) = 0, j ∈ {1, . . . , `}. From Lemma 3.3 this means that

λB is essentially indefinite, and since this holds for every λ ∈ ann(Yq0
), B is itself

essentially indefinite. Therefore, by Theorem 4.5, (Q,∇,D,X ) is properly STLCC if

Lie(∞)(X)q0
= Tq0

Q. The result now follows directly. �

Remark 5.17. Note that all implications in Figure 5.4 are local. There are
implications for global notions of controllability that follow from the local notions,
but we do not consider this in a systematic way, as the understanding of global
controllability of affine connection control systems is, as yet, poorly understood. •
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