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Abstract—This paper presents control and coordination algo- network and coordinate their motion in response to local
rithms for groups of vehicles. The focus is on autonomous vehicle sensing information and to evolving global data. This m®bil
networks performing distributed sensing tasks where each vehicle sensing network is meant to provide the ability to sample

plays the role of a mobile tunable sensor. The paper proposes - . . . . .
gradient descent algorithms for a class of utility functions which the environment adaptively in space and time. By identgyin

encode optimal coverage and sensing policies. The resulting€Vvolving temperature and current gradients with higheuacc
closed-loop behavior is adaptive, distributed, asynchronous, @ racy and resolution than current static sensors, this tdogp

verifiably correct. could lead to the development and validation of improved

Index Terms—Coverage control, distributed and asynchronous 0ceanographic models.
algorithms, sensor networks, centroidal Voronoi partitions

Optimal sensor allocation and coverage problems

I. INTRODUCTION A fundamental prototype problem in this paper is that of
Mobile sensing networks characterizing and optimizing notions of quality-of-geev
provided by an adaptive sensor network in a dynamic en-
vitonment. To this goal, we introduce a notion sénsor

. . . AR . %overagethatformalizes an optimal sensor placement problem.
in networking and in miniaturization of electro—mecharhlcarrI
S

This spatial resource allocation problem is the subject of a
systems. In the near future, large numbers of robots WH b b )

dinate their acti th h ad-h icati ) cipline called locational optimization [5], [6], [7]8], [9].
coordinate their actions througn ad-noc communication NEL, ,:atignal optimization problems pervade a broad spectrum
works and will perform challenging tasks including searod a

recovery operations. maninulation in hazardous envirarigle of scientific disciplines. Biologists rely on locationaltopiza-
yop o P X ) "~ tion tools to study how animals share territory and to char-
exploration, surveillance, and environmental monitoriiog

. X T . terize th havior of animal ing the follgwi
pollution detection and estimation. The potential advgesaof acterize the behavior of animal groups obeying the follgyin

. ) i interaction rule: each animal establishes a region of danta
employing teams of agents are numerous. For mstancelrcertéahd moves toward its center. Locational optimization peotd
tasks are difficult, if not impossible, when performed by

_ : . , &re spatial resource allocation problems (e.g., whereaoepl
single vehicle agent. Further, a group of vehicles 'nh@entmailboxes in a city or cache servers on the internet) andalay

provides robustness to failures of single agents or ComMUAL 1 role in quantization and information theory (et

cation I!nks. . . to design a minimum-distortion fixed-rate vector quandizer
Working prototypes of active sensing networks have alrea her technologies affected by locational optimizatiociude

bgep develop(_ad; see [1], [2], [.3]’ [4]. In 3], launChabI?‘nesh and grid optimization methods, clustering analysita d
miniature mobile robots communicate through a wireless n%tt)mpression and statistical pattern recognition
work. The vehicles are equipped with sensors for vibrations Because Ié)cational optimization problems are so widely

acoustic, magnetic, and IR signals as well as an active Vid&%died it is not surprising that methods are indeed availa
module (i.e., the camera or micro-radar is controlled via ’

td tack blems; 5], [8], [10], [9]. How-
pan-tilt unit). A second system is suggested in [4] und ackle coverage problems; see [5], [8], [10], [9]. How

th £ AUt o hic S lina Net 'i/er, most currently-available algorithms are not appliea
€ name ol Autonomous ceanographic Sampling NEWOg ;e sensing networks because they inherently assume
In this case, underwater vehicles are envisioned measur

. . %entralized computation for a limited size problem in a
temperature, currents, and other distributed oceanograp own static environment. This is not the case in multi-gkhi

signals. The vehicles communicate via an acoustic loca are wworks which. instead rely on a distributed communizati

Submitted on November 4, 2002, revised on June 16, 2003. Appéeathe @Nd cOmputation architecture. Although an ad-hoc wireless
IEEE Transactions on Robotics and Automation, vol 20, issugedr 2004, network provides the ability to share some information, no

pages 243-255. This version contains minor corrections zesl generated global omniscient leader might be present to coordinate the
on April 24, 2008. Previous short versions of this paper apga in the

IEEE Conference on Robotics and Automation, Arlington, VAaw2002, 9roup. T_he _'nherent §p§tlally-dlstrlbut§d nature and tb!ﬂhl
and Mediterranean Conference on Control and AutomatiomdrisPortugal, communication capabilities of a mobile network invalidate
July 2002. _ classic approaches to algorithm design.
Jorge Corés, Timur Karatas and Francesco Bullo are with the Coor-
dinated Science Laboratory, University of lllinois at UnleaChampaign,
1308 W. Main St, Urbana, IL 61801, United States, Tels: ¥1-244- pjstributed asynchronous algorithms for coverage control
8734, +1-217-244-9414 and +1-217-333-0656, Fax: +1-44-7653, Emalil: _ _ s : .
{j cortes, tkaratas, bul | o}@i uc. edu In this paper we design coordination algorithms imple-
Sonia Marinez is with the Escola Universitia Poliecnica de Vilanova i mentable by a multi-vehicle network with limited sensinglan

la Gelti, Universidad Polécnica de Catafig, Av. V. Balaguer s/n, Vilanova .. . .
i 1a Geltr, 08800, Spain, Tel: +34-938967743, Fax: +34-93896776giE  COMMunication capabilities. Our approach is related to the

soni am@at . upc. es classic Lloyd algorithm from quantization theory; see [11]



for a reprint of the original report and [12] for a historical Section V-A considers vehicle models with more realistic
overview. We present Lloyd descent algorithms that take intlynamics. We present two formal results on passive vehicle
careful consideration all constraints on the mobile sansinynamics and on vehicles equipped with individual local-con
network. In particular, we design coverage algorithms #rat trollers. We present numerical simulations of passive alehi
adaptive, distributed, asynchronous, and verifiably aggtip models and of unicycle mobile vehicles. Next, Section V-B de
cally correct: scribes density functions that lead the multi-vehicle rmekito

predetermined geometric patterns. We present our condisisi
Adaptive: Our coverage algorithms provide the network witlind directions for future research in Section VI.

the ability to address changing environments, sensing
task, and network topology (due to agents departures, . L , )
arrivals, or failures). Review of distributed algorithms for cooperative control

Distributed: Our coverage algorithms are distributed in the Recent years have witnessed a large research effort focused
sense that the behavior of each vehicle depends only @m motion planning and coordination problems for multi-
the location of its neighbors. Also, our algorithms daehicle systems. Issues include geometric patterns [13], [
not require a fixed-topology communication graph, i.e[15], [16], formation control [17], [18], gradient climbin[19],
the neighborhood relationships do change as the netwankd conflict avoidance [20]. It is only recently, howeveatth
evolves. The advantages of distributed algorithms atelly distributed coordination laws for dynamic network a
scalability and robustness. being proposed; e.g., see [21], [22], [23].

Asynchronous: Our coverage algorithms are amenable to Heuristic approaches to the design of interaction rules and
asynchronous implementation. This means that the algemerging behaviors have been throughly investigated mvithi
rithms can be implemented in a network composed e literature on behavior-based robotics; see [24], [EHA],
agents evolving at different speeds, with different comp(26], [27], [28]. An example of coverage control is discubse
tation and communication capabilities. Furthermore, oim [29]. Along this line of research, algorithms have been
algorithms do not require a global synchronization andesigned for sophisticated cooperative tasks. However, no
convergence properties are preserved even if informatifarmal results are currently available on how to designtreac
about neighboring vehicles propagates with some delayntrol laws, ensure their correctness, and guarantee thei
An advantage of asynchronism is a minimized commuwptimality with respect to an aggregate objective.
nication overhead. The study of distributed algorithms is concerned with pro-

Verifiable Asymptotically Correct: Our algorithms guaran- viding mathematical models, devising precise specificatio
tee monotonic descent of the cost function encodirfgr their behavior, and formally proving their correctnessl
the sensing task. Asymptotically, the evolution of theomplexity. Via an automata-theoretic approach, the refer
mobile sensing network is guaranteed to converge to sences [30], [31] treat distributed consensus, resourceall
called centroidal Voronoi configurations (i.e., configuration, communication, and data consistency problems. From
tions where the location of each generator coincides with numerical optimization viewpoint, the works in [32], [33]
the centroid of the corresponding Voronoi cell) that ardiscuss distributed asynchronous algorithms as netwgrkin
critical points of the optimal sensor coverage problem.algorithms, rate and flow control, and gradient descent flows

Typically, both these sets of references consider netwawitks
Let us describe in some detail what are the contributions ged topology, and do not address algorithms over ad-hoc dy-
this paper. Section Il reviews certain locational optii@® namically changing networks. Another common assumption is
problems and their solutions as centroidal Voronoi parigi that any time an agent communicates its location, it brostdca

Section Il provides a continuous-time version of the dtassit to every other agent in the network. In our setting, thisitto

Lloyd algorithm from vector quantization and applies itk®t require a non-distributed communication set-up.

setting of multi-vehicle networks. In discrete-time, weopr  Fipally, we note that the terminology “coverage” is also

pose a family of Lloyd algorithms. We carefully characterizyseq in [34], [35] and references therein to refer to a différ

convergence properties for both continuous and disciete-t hroplem called theoverage path planning problerwhere a

versions (Appendix A collects some relevant facts on detscgqhgb robot equipped with a limited footprint sensor netds
flows). We discuss a worst-case optimization problem, Wgsit all points in its environment.

investigate a simple uniform planar setting, and we present

simulation results.
Il. FROM LOCATION OPTIMIZATION TO CENTROIDAL

Section IV presents two asynchronous distributed imple- VORONOI PARTITIONS
mentations of Lloyd algorithm for ad-hoc networks with . o
communication and sensing capabilities. Our treatmerg-caf* Locational optimization
fully accounts for the constraints imposed by the distedut In this section we describe a collection of known facts
nature of the vehicle network. We present two asynchronoaBout a meaningful optimization problem. References helu
implementations, one based on classic results on distdbuthe theory and applications of centroidal Voronoi partisp
gradient flows, the other based on the structure of the cgeeraee [10], and the discipline of facility location, see [6]oAg
problem. (Appendix B briefly reviews some known results othe paper, we interchangeably refer to the elements of the
asynchronous gradient algorithms.) network as sensors, agents, vehicles, or robots. WR Jebe



the set of nonnegative real numbeks be the set of positive  Remark 2.2:Note that if we interchange the positions

natural numbers any = N U {0}. of any two agents, along with their associated
Let Q be a convex polytope iR” including its interior, and regions of dominance, the value of the locational

let || - || denote the Euclidean distance function. We call a maptimization function H is not affected. Equivalently,

¢ : @ — R, adistribution density functionf it represents if X, denotes the discrete group of permutations

a measure of information or probability that some event také n elements, then H(p1,...,pn, Wh,...,W,,) =

place overQ. In equivalent words, we can consid@rto be H(po(1);- - - Po(n), Wo1),---» Womy) for al o € X,.

the bounded support of the functien Let P = (p1,...,p,) To eliminate this discrete redundancy, one could take ahtur

be thelocation of n sensors each moving in the spacg. action of%,, onQ", and conside™/%,, as the configuration

Because of noise and loss of resolution, Hemsing perfor- space for the positio® of the n vehicles.

manceat point ¢ taken fromith sensor at the positiop; ' -

degrades with the distandg; — p;|| betweeng and p;; we B. Voronoi partitions

describe this degradation with a non-decreasing diffeble One can easily see that, at fixed sensors location, the dptima

function f : R, — R.. Accordingly, f (|g — p;||) provides a partition of @ is the Voronoi partitionV(P) = {V,...,V,,}

quantitative assessment of how poor the sensing perfoenagenerated by the poin{®,...,p,):

is. ..
Vi={qe Q| llg—pill <llg—pjll, Vi # i}

We refer to [9] for a comprehensive treatment on Voronoi
diagrams, and briefly present some relevant concepts. The se
of regions{V4,...,V,} is called the Voronoi diagram for the
generators{py,...,p,}. When the two Voronoi region¥;
andV; are adjacent (i.e., they share an edgg)is called a
(Voronoi) neighborof p; (and vice-versa). The set of indexes
of the Voronoi neighbors ofy; is denoted byN(i). Clearly,
j € N(i) if and only if i € N'(5). We also define thei, j)-
face asA;; = V; N V;. Voronoi diagrams can be defined with
Fig. 1. Contour plot on a polygonal environment of the Gaussiansity €Spect to various distance functions, e.g., 1he2-, s-, and
function ¢ = exp(—z2 — y?). oco-norm over@ = R™, see [36]. Some useful facts about the
Euclidean setting are the following: @ is a convex polytope

Remark 2.1:As an example, considen mobile robots in a N-dimensional Euclidean space, the boundary of dgch
equipped with microphones attempting to detect, idensifid is the union of(V — 1)-dimensional convex polytopes.
localize a sound-sourcklow should we plan to robots’ motion  In what follows, we shall write
in order to maximize the. detection prqbabll|tyb\%sgm|ng thg Hy(P) = H(P,V(P)).
source emits a known signal, the optimal detection algarith
is a matched filter (i.e., convolve the known waveform withlote that using the definition of the Voronoi partition, we
the received signal and threshold). The source is detec@&eminie(1, .y f(llg —pil) = f(llg — p;l) for all g € V.
depending on the signal-to-noise-ratio, which is invarsell herefore,
proportional to the distance between the microphone and B .
the source. Various electromagnetic and sound sensors have Ho(P) = /Qie{r{lf.r.l,n}f(”q —pil)é(a)da, 2)
signal-to-noise ratios inversely proportional to dist&nc

Within the context of this paper, partition of Q is a = Eq.9) Le{qlinn}f(ﬂqmﬂ)} ;
collection of n polytopesW = {W,..., W, } with disjoint
interiors whose union i§). We say that two partition®) and
W' are equal ifiW; and W/ only differ by a set ofp-measure

that is, the locational optimization function can be intetpd
as an expected value composed with a min operation. This is
zero, for alli € {1,...,n}. the usual way in which the problem is presented in the fgcilit

We consider the task of minimizing the locational optimiza©¢ation and operations research literature [6]. Remaykab
tion function one can show [10] that

oMy, . OH

" 0
wew =3 [ sle-siooan @ (PP = [ St la=pil) o(a)da

i=1 Y Wi )
where we assume that thith sensor is responsible for meai.e., the partial derivative of{,, with respect to theth sensor
surements over its “dominance regiof?;. Note that the only depends on its own position and the position of its
function H is to be minimized with respect to both (1) thevoronoi neighbors. Therefore the computation of the dériea
sensors locatior, and (2) the assignment of the dominancef H,, with respect to the sensors’ location is decentralized
regionsW. The optimization is therefore to be performed wittin the sense of VoronoiMoreover, one can deduce some
respect to the position of the sensors and the partition @f ttmoothness properties off),: since the Voronoi partition
space. This problem is referred to as a facility locatiorbfgm V' depends at least continuously dh = (p1,...,pn), the
and in particular as a continuogsmedian problem in [6].  function H, is at least continuously differentiable.

(P)

i



C. Centroidal Voronoi partitions continuous-time version of the classic Lloyd algorithm.réje
Let us recall some basic quantities associated to a regifh the positions and partitions evolve in continuous fime

V ¢ RY and a mass density function The (generalized) Whereas Lloyd algorithm for vector quantization is desine

mass, centroid (or center of mass), and polar moment ofdnedf) discrete time. In Section 1II-B, we develop a family of

are defined as variations of Lloyd algorithm in discrete time. In both sags,
1 we prove that the proposed algorithms gmadient descent
My =/ p(g)dg, Cv = F/ qp(q)dg, flows
\74 v Jv
Jvp = /v lg — plI? plq) dg. A. A continuous-time Lloyd algorithm

Assume the sensors location obeys a first order dynamical

Additionally, by the parallel axis theorem, one can write, ; ]
behavior described by

Jvp = Jv,ey + My [p—Cv|? 4 ,
Di = Uj;-
where Jy ¢, € Ry is defined as the polar moment of inertia . . o .
of the regionV about its centroid’y, . ConsiderH,, a cost function to be minimized and impose

Let us consider again the locational optimization proghat the locatiorp; follows a gradient descent. In equivalent
lem (1), and suppose now we are strictly interested in ti§@ntrol theoretical terms, considét, a Lyapunov function

setting and stabilize the multi-vehicle system to one of its local
( i " minima via dissipative control. Formally, we set
HeW) =Y [ o-nlPo@de  ©

i=1 Y Wi U; = *kprop(pi - CVq,)v (6)
that is, we assumé(|lq — p;||) = [l¢ — ps||>. The parallel axis wherekpyop is a positive gain, and where we assume that the
theorem leads to simplifications for both the functiiy and  partition V(P) = {V4,...,V,} is continuously updated.
its partial derivative: Proposition 3.1 (Continuous-time Lloyd descerfEpr the

closed-loop system induced by equation (6), the sensors lo-

2 cation converges asymptotically to the set of critical p®in
of Hy, i.e., the set of centroidal Voronoi configurations @n

Hv(P) = Jv.ov, + > My, |pi = Cy,
=1 =1

OHy B Assuming this set is finite, the sensors location converges t
op; (P) = 2My.(pi = Cva)- a centroidal Voronoi configuration.
Here the mass density function jis= ¢. It is convenient to Proof: Under the control law (6), we have
define n
d OHy
n n —Hv(P(t) =) b
Hoa = Jvicy, s Hva=y_ Mylpi—Cvl®. dt = o
i=1 i=1 n
__ _ 2 _ _
Therefore, the (not necessarily unique) local minimum foin - 2kpf°PZMVi pi = Cvill” = —2ZkpropHy 2 (P(2))-

for the location optimization functiof{,, arecentroidsof their =1

Voronoi cells, i.e., each locatiop; satisfies two properties By LaSalle’s principle, the sensors location convergesh® t
simultaneously: it is the generator for the Voronoi délland largest invariant set contained H,, ,(0), which is precisely

it is its centroid the set of centroidal Voronoi configurations. Since thisiset
_ clearly invariant for (6), we get the stated result:Hf; % (0)

Cy, = argmin,, Hy(P). consists of a finite collection of points, thdp(t) converges
Accordingly, the critical partitions and points fét are called @ one of them, see Corollary A.2. u

centroidal Voronoi partitions We will refer to a sensors'’ Remark 3.2:If Hy,;(0) is finite, and P(t) — C, then a
configuration as @entroidal Voronoi configuratiorif it gives ~Sufficient condition that guarantees exponential convesges
rise to a centroidal Voronoi partition. Of course, centebid thf”‘t the Hessian dfty, be positive definite af’. Establishing _
Voronoi configurations depend on the specific distributien-d this property is a known open problem, see [10]. Note that thi
sity function ¢, and an arbitrary paifQ, ¢) admits in general gradient desce_nt is not guarantee_d to find the global minimum
multiple centroidal Voronoi configurations. This discussi FOr €xample, in the vector quantization and signal proogssi
provides a proof alternative to the one given in [10] for thiiterature [12], it is known that for bimodal distributioredsity

necessity of centroidal Voronoi partitions as solutionghe functions, the solution to the gradient flow reaches local
continuousp-median location problem. minima where the number of generators allocated to the two

region of maxima are not optimally partitioned.

[1l. CONTINUOUS AND DISCRETETIME LLOYD DESCENT
FOR COVERAGE CONTROL B. A family of discrete-time Lloyd algorithms

In this section, we describe algorithms to compute the Let us consider the following variations of Lloyd algorithm
location of sensors that minimize the cdst both in con- Let T be a continuous mapping : Q" — Q" verifying the
tinuous and in discrete-time. In Section IlI-A, we propose #llowing two properties:



(@ foralli € {1,...,n}, |T;(P)—Cvy,pll < |lpi— Lloyd algorithm. Now, ||LL;(P) — Cv,|| = 0 < |[p; — Cv, |,

Cv,(pll, whereT; denotes théth component off’, for all i € {1,...,n}. Moreover, if P is not centroidal, then
(b) if P is not centroidal, then there existsjasuch the inequality is strict for alp; # Cy,. Therefore,L L verifies
that [|T;(P) — Cv,(pyll < llpj — Cv,(p)ll- properties (a) and (b).

Property (a) guarantees that, if moved according’'tdhe
agents of the network do not increase their distance to its
corresponding centroid. Property (b) ensures that at kst C. Remarks
robot moves at each iteration and strictly approaches the ce
troid of its Voronoi region. Because of this property, thesfix
points of T" are the set of centroidal Voronoi configurations.

Proposition 3.3 (Discrete-time Lloyd descentet T
Q"™ — Q™ be a continuous mapping satisfying properties (a)
and (b). LetPy € Q™ denote the initial sensors’ location.
Then, the sequencgl™ (F,) | m € N} converges to the set
of centroidal Voronoi configurations. If this set is finitéen
the sequencdT™(P,) | m € N} converges to a centroidal
Voronoi configuration.

Proof: ConsiderHy, : Q™ — R, as an objective
function for the algorithmi". Using the parallel axis theorem,
H(P7 W) = Z?:l JWmai + Z?:l Mw, ||pi — Cw, ?, and
therefore

(i) Note that different sensor performance functiofisn
equation (1) correspond to different optimization prob-
lems. Provided one uses the Euclidean distance in the
definition of H (cf. equation (1)), the standard Voronoi
partition computed with respect to the Euclidean metric
remains the optimal partition. For arbitrayy it is not
possible anymore to decompogé, into the sum of
terms similar toHy ; and Hy . Nevertheless, it is
still possible to implement the gradient flow via the
expression for the partial derivative (3).

Proposition 3.5: Assume the sensors location obeys a
first order dynamical behaviop; = u;. Then, for the
closed-loop system induced by the gradient law (3),
u; = —OHy /dp;, the sensors locatioR = (p1,...,pn)

H(P', W) < H(P,W), (7 converges asymptotically to the set of critical points of
Hy. Assuming this set is finite, the sensors location
converges to a critical point.

(i) More generally, various distance notions can be used
to define locational optimization functions. Different
performance function gives rise to corresponding notions
of “center of a region” (any notion of geometric center,
mean, or average is an interesting candidate). These can

H(P,V(P)) < H(P,W), (8) then be adopted in designing coverage algorithms. We

refer to [36] for a discussion on Voronoi partitions based

on non-Euclidean distance functions and to [5], [8] for a

discussion on the corresponding locational optimization

H(T(P),V(P)) < H(P,V(P)) = Hy(P), problems.

and the inequal'it'y is strict if? is not centroidal by property i ﬁgftérlgéfjf',snc?gf ?nr?r:irr],tﬁzrﬁ]sgl?ﬁevggsgg;g fr:i],i‘,?rﬁhm

(b) of 7. In addition, distance functionH, in equation (2) is referred to
Hy(T(P)) = H(T(P),V(T(P))) < H(T(P),V(P)), as thecontinuousp-median problemlt is instructive

) to consider the worst-case minimum distance function,
because of (8). Hence{,(T'(P)) < Hy(F), and the inequal- corresponding to the scenario where no information is
ity is strict if P is not centroidal. We then conclude 17, is available on the distribution density function. In other
a descent function for the algorithih The result now fol_l(_)ws words, the network seeks to minimize the largest possi-
from the glpbal convergence Theorem A.3 and Proposition A4 p\o distance from any point i) to any of the sensor
in Appendix A. [ ]

. . L locations, i.e., to minimize the function
Remark 3.4:Lloyd algorithm in quantization theory [11],

as long aslp; — Cw, || < llpi — Cw, || for all i € {1,...,n},
with strict inequality if for anyi, ||p, — Cw, || < |lpi — Cw||-
In particular, H(Cw, W) < H(P,W), with strict inequality
if P # Cyy, where C), denotes the set of centroids of
the partition)V. Moreover, since the Voronoi partition is the
optimal one for fixedP, we also have

with strict inequality if W # V(P).
Now, because of property (a) @f, inequality (7) yields

[12] is usually presented as follows: given the locationnof )
agents,py. ..., p,, (i) construct the Voronoi partition corre- max | in lq —I%H} = epax [gg}fq —pi|] ~
sponding toP = (p1, ..., py); (i) compute the mass centroids

of the Voronoi regions found in step (I) Set the new location This Optimization is referred to as thecenter pr0b|em
of the agents to these centroids; and return to step (i).d_loy in [6], [7]. One can design a strategy for tpecenter
algorithm can also be seen as a fixed point iteration. Conside  problem analog to the Lloyd algorithm for themedian

the mappings.L; : Q" — Q fori € {1,...,n} problem: each vehicle moves, in continuous or discrete-
-1 time, toward the center of the minimum-radius sphere
LLi(p1,...,pn) = / o(q)dq / qd(q)dq . enclosing the' polytope. Wg refer t'o [37] for' a conver-
V;i(P) Vi(P) gence analysis of the continuous-time algorithms.

Let LL : Q™ — Q" be defined byLL = (LL4,...,LL,). In what follows, we shall restrict our attention to the
Clearly, LL is continuous (indeed(’'), and corresponds to median problem and to centroidal Voronoi partitions.



D. Computations over polygons with uniform density E. Numerical simulations

In this section, we investigate closed-form expressiortfer  To illustrate the performance of the continuous-time Lloyd
control laws introduced above. Assume the Voronoi redipn algorithm, we include some simulation results. The algo-
is a convex polygon (i.e., a polytope R?) with N; vertexes rithm is implemented inVat hemati ca as a single cen-
labeled{(zo,%0), ..., (zn,—1,Yn,—1)} such as in Fig. 2. Itis tralized program. For th&®? setting, the code computes the
convenient to definézy,,yn,) = (zo,yo). Furthermore, we bounded Voronoi diagram using théat hemat i ca package
assume that the density functionyi§y) = 1. By evaluating the Conput at i onal Geonet ry, and computes mass, centroid,

and polar moment of inertia of polygons via the numerical

integration routineNl nt egr at e. Careful attention was paid

to numerical accuracy issues in the computation of the \@ron
(4, y4) diagram and in the integration. We illustrate the perforoean
of the closed-loop system in Fig. 3.

(z3,y3)

(z2,y2)

(z1,91)

IV. ASYNCHRONOUS DISTRIBUTED IMPLEMENTATIONS

(wo,90) = (25, 3e In this section we show how the Lloyd gradient algorithm

can be implemented in an asynchronous distributed fashion.
Section IV-A we describe our model for a network of robotic
agents, and we introduce a precise notiounlistributedevolu-
Corresponding integrajs' one can obtain the fo"owing @lbs tion. Next, we prOVide two distributed algorithms for thedd
form expressions computation and maintenance of the Voronoi cells. Finally,
in Section IV-C we propose two distributed asynchronous

Fig. 2. Notation conventions for a convex polygon.

N;—1 . . . . h
Mo — 1 Z (@ . ) implementations of Lloyd algorithm: the first one is based on
ViT g pors Rk Ft 1Yk the gradient optimization algorithms as described in [33] a
N1 the second one relies on the special structure of the cozerag
1 N
Cvie = 53 N (@ + Tre)@xyrgr — zpams)  (9)  Problem.
k=0
1 Nt A. Modeling an asynchronous distributed network of mobile
Cy,y = oI, D Wk + Yrr1) (@Yrir — Trrayi) - robotic agents

=0 We start by modeling a robotic agent that performs sens-

To present a simple formula for the polar moment of inerti%g communication, computation, and control actions. We
letz, = 2, —Cv,.c andye = yp —Cv;y, fork € {0,.... Ni— 48 interested in the behavior of the asynchronous network

1}. Th%n, the %olar moment of inertia of a polygon about its,q 1ting from the interaction of finitely many robotic agen
centroid, Jy,,c becomes A framework to formalize the following concepts is the theor

L Vil of distributed algorithms; see [30].
Jv,.cy, = 5 Z (ZeTrt1 — Ths1Tk) - Let us. here introdu_ce _the notion a@bbotic ag_e_rjt with
k=0 computation, communication, and control capabilities the

ith element of a network. Théth agent has a processor

) ~with the ability of allocating continuous and discrete ssat
The proof of these formulas is based on decomposing thgq performing operations on them. Each vehicle has access
polygon into the union of disjoint triangles. We refer to [38tg jts unique identifieri. The ith agent occupies a location
for analog expressions ovér". p; € Q@ C RN and it is capable of moving in space, at any

Note also that the Voronoi polygon's vertexes can be €§me ¢ ¢ R for any period of timest € R.,, according to a
pressed as a function of the neighboring vehicles. Thex&ste first order dynamics of the form:

of the ith Voronoi polygon that lie in the interior of) are
the circumcenters of the triangles formed pyand any two Pi(s) = uy, Juill <1, Vselt,t+dt]. (11)
neighbors adjacent t@;. The circumcenter of the triangle

determined by, p;, andpy is mines thecontrol pair (5t, u;). The processor of thih agent
1 9 9 has access to a local clocke R, and ascheduling sequence
m(”a’ﬁ'” (eji - e )pi + [kl (ekj - ji)ps i.e., an increasing sequence of timgg , € R, | k € Ny}
+ ||OéjiH2(aik 'akj)pk-) . (10) such thatT;, = 0 and’O < timin _< Tigr1 — Tk < ti,mgx..
The processor of theth agent is capable of transmitting
where M is the area of the triangle, and, = p; — ps. information to any other agent within a closed disk of radius
Equation (9) for a polygon’s centroid and equation (10) fokR; € R.. We assume the communication radis to be a
the Voronoi cell's vertexes lead to a closed-foaigebraic quantity controllable by théth processor and the correspond-
expression for the control law in equation (6) as a functibn ing communication bandwidth to be limited. We represent
the neighboring vehicles’ location. the information flow between the agents by means of “send”

(ZF + Tprr1 + Thoy + Ui + Urbkr + Tor) -

The processor has access to the agent’s locati@nd deter-



Fig. 3. Lloyd continuous-time algorithm f@32 agents on a convex polygonal environment, with the Gaussasity function of Fig. 1. The control gain
in (6) is kprop = 1 for all the vehicles. The left (respectively, right) figuilustrates the initial (respectively, final) locations aviafonoi partition. The central
figure illustrates the gradient descent flow.

(within specified radiusk;) and “receive” commands with athe local computation and maintenance of Voronoi cells. The
finite number of arguments. algorithm is related to the synchronous scheme in [41] and is
We shall alternatively consider networks mbotic agents based on basic properties of Voronoi diagrams.
with computation, sensing, and control capabilitida this We present the algorithm for a robotic agent with sensing
case, the processor of thh agent has the same computatiogapabilities (as well as computation and control). The pro-
and control capabilities as before. Furthermore, we asshee cessor of theith agent allocates the information it has on
processor can detect any other agent within a closed disktlbé position of the other agents in the state variable The
radius R; € R,. We assume the sensing radifts to be a objective is to determine the smallest distattefor agent:
guantity controllable by the processor. which provides enough information to compute the Voronoi
Remark 4.1:We assume all communication between agentell V;. We start by noting thaV; is a subset of the convex
and all sensing of agents locations to be always accurate ed
instantaneous. -
Consider the closed-loop system formed by the evolution Wipl’R’) = Bei B) 0 (Njlpi-psi<ni Si5), (12)
of the n agents of a network according to equation (11yvhere B(p;,R;) = {¢ € Q | ll¢ — ps|| < R;} and the half
The network evolution is said to b¥oronoi-distributedif ~planess;; are
eachu;(p1,...,pn) can bg written gs a function of the form (G eRY | lqg—pill < llq — il
Wi (Diy Piys- -+ Pi )y With 4, € N(3), k € {1,...,m}. It ) _ _ _ _
is well known that there are at mo8t — 6 neighborhood Provided R; is twice as large as the maximum distance
relationships in a planar Voronoi diagram [9, see Sectig 2. Peétweenp; and the vertexes oV (p;, R;), one can show that
As a consequence, the number of Voronoi neighbors of eathVoronoi neighbors op; are within distance?; from p; and
site is on average less than or equabtd.e.,m < 6. (Recall the equalityV; = W(p;, ;) holds. The minimum adequate
that sites are Voronoi-neighbors if they share an edge, m@nsing radius is therefore, min = 2 maxeew (p,, R, i) [Pi—
just a vertex.) Accordingly, we argue that Voronoi-disatied ¢/ This argument guarantees the correctness of theusT
algorithms lead to scalable networks. Finally, note that tFENSING RADIUS ALGORITHMIN Table I. The execution of

set of indexes{ii,...,i,} for a specific generatop; of a this algorithm is illustrated in Fig. 4.
Voronoi-distributed dynamical system is not the same for al TABLE |
possible configurations of the network. In other words, the ADJUST SENSING RADIUS ALGORITHM
identity of the Voronoi neighbors changes along the evohyti
i.e., the topology of the closed-loop systemdigamic Name: ADJUST SENSING RADIUS ALGORITHM
Goal: distributed Voronoi cell
Requires:  sensor with controllable radiug;
B. Voronoi cell computation and maintenance At time ¢;, local agent performs:

A key requirement of the Lloyd algorithms presented ip1: initialize f;, detect allp; within radius 1z;
. is that h ¢ t be able t te it 2: updateP*(t;), computelV (p; (i), R:)

Sectlon [l is that each agent must be able to compute its OWB: while R; < 2maxgew (p,(t,).1, Ipi(ts) — gl do
Voronoi cell. To do so, each agent needs to know the relative:  setr; := 2R; _
location (distance and bearing) of each Voronoi neighbbe T| 5 detect allp; within radius 1t;

. . . . 6: updateP*(t;), computeW (p;(t;), R;)
ablllt)_/ of locating nt_aghbors plays a central rolg iN NUMEIO | 7. end while
algorithms for localization, media access, routing, and/gro | 8: setR; := 2max ey (p,(t;),r,) IIPs (t:) — qll
control in ad-hoc wireless communication networks; e.g.9: SetVi:=Wi(pi(t:), ki)
see [39], [40], [41] and references therein. Therefore, any
motion control scheme might be able to obtain this infororati A similar ADJUST COMMUNICATION RADIUS ALGORITHM
from the underlying communication layer. In what followsg w algorithm can be designed for a robotic agent with communi-

set out to provide a distributed asynchronous algorithm foation capabilities. The specifications go as in the previou




TABLE I
MONITORING ALGORITHM

Name: MONITORING ALGORITHM
Goal: Cell maintenance & event detection
Requires: (i) sensor with controllable radiug;
(i) positive realstq, 5t
(iii) A DJUST SENSING RADIUS
ALGORITHM

o | ®

Fig. 4. An execution (from left to right) of the BUUST SENSING RADIUS
ALGORITHM: the sensing diskB(p;, R;) is in light gray, and the Voronoi |Local agenti performs fort; € [to, to + 6t]:

cell estimateW (p;, R;) is the darker gray region. 1: initialize P?(to) and V;(to), setw := weight P (to))
2: while t; < tp + 6t do

3. run ADJUST SENSING RADIUS ALGORITHM

. ] 4: if for any j, |weight. (P(t;)) — w;| > 2 then
algorithm, except for the fact that steps and 7: are | g if weighg.(Pi(ti)E)—wj 22thén
substituted by 6 setevént:= t r ue

Lo . 7: end if
send(“request to reply;’pi(ti)) within radius R; 8: setw := weight(P?(t;))
receive (“response;p;) from all agents within radiuge; 1% %ﬂd ri1f'|

. ena wnie

Further, we have to require each agent to perform the foligwi
event-driven task: if theith agent receives at any timg

a “request to reply” message from theh agent located at 5 clocks are synchronized (although they later can run at
positionp;, It executes different speeds) and that each agent know$ #he exact
send (“response;’pi(ti)) within radius ||p:(t) — p;|| location of every other agent. TheORERAGE BEHAVIOR
ALGORITHM | (cf. Table 1) is designed for robotic agents

Next, we present the BMINITORING ALGORITHM (Cf. Ta-  wjth communication capabilities, and requires th@asT
ble 11), whose objective is to maintain the information aboy- 5 \MUNICATION RADIUS ALGORITHM (while it does not
the Voronoi cell of theith agent, and detect certain eve”tsrequire the MONITORING ALGORITHM).

We consider robotic agents with sensing capabilities. We ca

an agentactiveif it is moving and we assume th#gh agent TABLE Il

can determine if any agent within radiug; is active or COVERAGE BEHAVIOR ALGORITHM |
not. It turns out that (only) the following two events are .

of interest: (i) a Voronoi neighbor of thith agent becomes| pom® ggxﬁ)ﬁﬁfpim;’f(;z:nﬁggggg"'
active, and (ii) an active agent becomes a Voronoi neighlomequires: (i) Voronoi cell computation

of the ith agent. In both cases, we record the event by (ii) centroid and mass computation
(iii) positive real §o

setting a Bo_olef';\n varlableventtc_J true (as we shall later (iv) ADIUST COMMUNICATION RADIUS
show, this will trigger an appropriate control action). Thap ALGORITHM
weight : Pt € RVX" s (wy,...,w,) € NJ in Table Il is
def;gned by (wa,..wn) 0 Forie {L .oo,n}, z’th' agent performs a; =Tio=0:
. . . 0: setP*(Ty,0) = (P (T3,0); - - -, Ph(Ti,0))
3 if 5 € N(i) andj is active 0: compute Voronoi regio;(T;,0)
w; = ¢ 1 if j € N(i) andj is not active 0: setVi := Vi(Tio) and R; == 2maxgev; [Ipi — 4l
0 if j€N@). Fori € {1,...,n}, theith agent performs at time; = T; . either one

. . . of the following threads or both. For son®; € N, we require that each
We denote byweight; the jth component ofweight. The |thread is executed at least once evétysteps of the scheduling sequence.

algorithm is designed to run for times € [to, to + Jt]. )
h tness of the ®NITORING ALGORITHM is guar- [information thread]

The correc : . g 1: run ADJUST COMMUNICATION RADIUS ALGORITHM
anteed by the following argument: if an event of type (i) ascu [Control thread]
at time t; € [to,to + 6t], i.e., an agent (say, thgth) that | 1. compute centroid’y;, and massMy,, of V;
is a Voronoi neighbor of théth agent becomes active, then 2: apply control pairf(do, My, (Cv; — pi(Tix)))
weight, (P*(t;)) —w; = 2, and thereforeventis set tot r ue.
Similarly, if an event of type (ii) occurs at time € [to, to+0t],
i.e., a new active agent (say, th¢h) becomes a Voronoi
neighbor of theith agent, then weightP’(t;)) — w; = 3,
and eventis set tot r ue.

As a consequence of the results in [32, Theorem 3.1 and
Corollary 3.1] (see Appendix B, Theorem B.2 below for a
brief exposition), we have the following result.

Proposition 4.2:Let Py, € Q™ denote the initial sensors
location. Let{T}} be the sequence in increasing order of all
C. Asynchronous distributed implementations of coveragge scheduling sequences of the agents of the network. Assum
control infy{T), — Tx_1} > 0. Then, there exists a sufficiently small

Let us now present two versions of Lloyd algorithmd,. > 0 such that if0 < §y < ., the COVERAGE BEHAVIOR
for the solution of the optimization problem (1) that camLGORITHM | converges to the set of critical points &fy,
be implemented by an asynchronous distributed network thiat is, the set of centroidal Voronoi configurations.
robotic agents. For simplicity, we assume that at tilme Next, we focus on distributed asynchronous implementa-



tions of Lloyd algorithm that take advantage of the speciér vehicles endowed with a local motion planner. Finally,
structure of the coverage problem. The\&ERAGE BEHAVIOR we describe interesting ways of designing density funetimn
ALGORITHM Il (cf. Table 1V) is designed for robotic agentssolve problems apparently unrelated to coverage.

with sensing capabilities, it requires the Monitoring ahe t

Adju;t sensing radius _algorithms. Two advan.tages of th'As_ Variations on vehicle dynamics

algorithm over the previous one are that there is no need for

each agent to exactly go toward the centroid of its Voronoi T€T€, We consider vehicles systems described by more
cell nor to take a small step at each stage. general linear and nonlinear dynamical models.

Coordination of vehicles with passive dynamiéé& start by

TABLE IV considering the extension of the control design to nonlinea
COVERAGE BEHAVIOR ALGORITHM I control systems whose dynamics is passive [42]. Relevant
examples include networks of vehicles and robots with ganer
Name: COVERAGE BEHAVIOR ALGORITHM 1| L . d . I tiallv i iant e
Goal: distributed optimal agent location agrangian ynam!c_s’ as well as spatially invarian pm“’
Requires: (i) Voronoi cell computation ear systems. Specifically, assume that for @aeh1,...,n},
(i) centroid computation the ith vehicle state includes the spatial variaple and that
(iii) M ONITORING ALGORITHM L, . . . L. .
Forie 1 ” vert - o the vehicle’s dynamics is passive with input outputp; and
g” GUE(T ' ’)"}’ Z( .?;en) per Orm(STaf’i); 50 =5 storage functionS; : Q@ — R,. Furthermore, assume that
i setP (Ti0) == (p1(Ti,0)s - - - Pr(T50 ; . . e .
0: compute Voronoi regio; (7 ) the input preserving the zero dynamics maniféfgd = 0} is
0: setV; := Vj(T;,0) and R; := 2maxgcv; |[p; — 4l u; = 0.
Fori € {1,...,n}, ith agent performs a; = T} ;: For such systems, we devise a proportional derivative (PD)
1: choosed < 6t; < t;i.min control via,
2: sets := T; ;, compute centroid’y; (s)
3: chooseu;, with u; - (Cy, —p;(s)) > 0, with strict inequality ifp; (s) # u; = —k’propr (pi — O%) — kderivDi, (13)
Cy,, setevent:=f al se
;‘1 while t'('/lé T,k + ot; do for (To, 8t4) where kprop and kgeriy are scalar positive gains. The closed-
run MONITORING ALGORITHM for (T5 1, 6t; - . .
6 while event=fal se do loop system mduce_d by this control law can be analyzed with
7 pi = u; the Lyapunov function
8: end while "
9 sets := t;, compute centroicCVi(s 1
10 chooseu;, with u; - (Cy; — pi(s); > 0, with strict inequality if &= §kpropHv + Z Si,
pi(s) # Cy;,, setevent:=f al se i=1
11: end while L .
yielding the following result.

_ i Proposition 5.1: For passive systems, the control law (13)
Remark 4.3:The control law in ste’: of the COVERAGE  5chieves asymptotic convergence of the sensors locatithreto
BEHAVIOR ALGORITHM Il can be defined via a saturationge; of centroidal Voronoi configurations. If this set is it

i i RN N ) . )
function. For instanceSR : R™ — R then the sensors location converges to a centroidal Voronoi
SR(z) = x if ||z]] <1 configuration.
=V /=l i 2l =1 Proof: Consider the evolution of the functiaf,
Then setu; = SR(Cy, — p;). d 1 d L
With respect to the correctness of th@\WERAGE BEHAW- @5 - §kP'OP@HV T Z Si
IOR ALGORITHM II, one can consider the time instants when N =1
the computation of the centroid of the Voronoi region of any < (k: C . . )
. . . . < (i — Cv;) - Di +Di - Uy
agent is made, together with the time instants when any agent ; propMv: (p Vi) Pt
decide to stop, and regard the execution of this algorithm as n
a discrete-time mapping. Resorting to the discussion in Sec = —kderv »_P; <0.
tion 111-B on the convergence of the discrete Lloyd alganith i=1

one can prove that the Coverage behavior algorithm Il yerifig LaSalle’s principle, the sensors location converges to

properties (a) and (b). As a consequence of Proposition 3 largest invariant set contained {p; = 0}. Given the

we then have the following result. . assumption on the zero dynamics, we conclude that Cy,
Proposition 4.4:Let I € Q™ denote the initial sensors 10-for j ¢ {1,... n}, i.e., the largest invariant set corresponds to

cation. The @VERAGE BEHAVIOR ALGORITHM Il CONVEIges the set of centroidal Voronoi configurations. If this set fité,

to the set of critical points of{y, that is, the set of centroidal | 554j1e’s principle also guarantees convergence to a fapeci

Voronoi configurations. centroidal Voronoi configuration. [ |
In Fig. 5 we illustrate the performance of the control
V. EXTENSIONS AND APPLICATIONS law (13) for vehicles with second-order dynamigs = u;

In this section we investigate various extensions and appdind storage functios; = 1p?.
cations of the algorithms proposed in the previous sectes  Coordination of vehicles with local controllerdext, con-
extend the treatment to vehicles with passive dynamics and sider the setting where each vehicle has an arbitrary dynam-
also consider discrete-time implementations of the allgors ics and is endowed with a local feedback and feedforward
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B. Geometric patterns and formation control

Here we suggest the use of decentralized coverage algo-
rithms as formation control algorithms, and we presentouesi
density functions that lead the multi-vehicle network teqe-
termined geometric patterns. In particular, we presenpim
density functions that lead to segments, ellipses, polggon
Fig. 5. Coverage control fo32 vehicles with second order dynamics. Theyniform distributions inside convex environments.
environmEnt and Gausiian density function are as in Fig. 8.cbitrol gains Consider a planar environment, létbe a large positive
are kprop = 6 and Kery = 1 gain, and denotg = (z,7) € Q C R2. Let a,b,c be real
numbers, consider the liner + by + ¢ = 0, and define the
density function

controller. The controller is capable of strictly decreasthe
distance to any specified position @ in a specified period dine(q) = exp(—k(az + by + ¢)?).
of time o.

Assume the dynamics of thih vehicle is described by
x; = fi(t,z;,u), wherez; € R™ denotes its state, and, :
R™ — @ is such thatr;(x;) = p;. Assume also that for
any prarget € Q and anyzo € R™ \ 7, (prarged, there exists  delipse(q) = exp (— k(a(z — z)* + by — ye)* — 1°)?).
a(t, z(t), prargey SUCh that the solutio;(¢) of

Similarly, let (z.,y.) be a reference point iR?, let a, b, r be
positive scalars, consider the ellipser — )2 +b(y —y.)? =
r2, and define the density function

Fig. 7 illustrates the performance of the closed-loop netwo

corresponding to this density function. During the simiolas,

we observed that the convergence to the desired pattern was
| rather slow.

T = f;(t,7(t), u(t, Ti(t), prarged) »  T:(0) = o,

verifies ||7;(Zi(to + 0)) — Prargel| < [|7i(Zi(t0)) — Prarget
Proposition 5.2: Consider the following coordination algo-
rithm. At time ¢, = kJ, £ € N, each vehicle computes
Vi(tr) and Cvy, (tx); then, for timet € [tx, tx41], the vehicle
executesiu(t, z(t), Cy, (tx)). For this closed-loop system, the
sensors location converges to the set of centroidal Voronoij
configurations. If this set is finite, then the sensors lacati
converges to a centroidal Voronoi configuration. Fig. 7. Coverage control fa32 vehicles withgelipse. The parameter values
The proof of this result readily follows from Propositior33. are:k =500, a = 1.4, b = .6, 2. = y. = 0, 72 = .3, andkprop = 1.
since the algorithm verifies properties (a) and (b) of Sec-
tion 111-B. Finally, define the smooth ramp functioBR,(z) =
As an example, we consider a classic model of mobilgarctan(¢x)/m + (1/2)), and the density function
wheeled dynamics, thenicycle modelAssume theth vehicle baise(q) = exp(—k SR(az — 5)? + by — yo)? — 12)).

has configuratior{é;, z;,y;) € SE(2) evolving according to
) This density function leads the multi-vehicle network taasb
0; =w;i, @ =v;cosb;, ¢;=uv;sinb;, a uniform distribution inside the ellipsoidal digKz — )% +
b(y —y.)? < r?. We illustrate this density function in Fig. 8.
where (w;, v;) are the control inputs for vehicle Note that
the definition of (4;,v;) is unique up to the discrete action
(0;,v;) — (0;+m, —v;). Given a target pointarge; We use this
symmetry to require the equalifgos 0;, sin6;)-(p; —prarged <
0 for all time ¢. Should the equality be violated at some time|\
t = to, we shall redefind; (tJ) = 0;(t;) + = andv; as—v;
from time t = to onward.
Following the approach in [43], consider the control law

Fig. 8. Coverage control fo32 vehicles to an ellipsoidal disk. The density
. function parameters are the same as in Fig. 7, &ad10, kprop = 1.
(_ Sin 9i7 COs 91’) : (pi - ptarget)
(cosO;, sinb;) - (pi — Prarge) It appears straightforward to generalize these types of
v; = —kprop(cos 0;, siné;) - (p; — Prargey, density functions to the setting of arbitrary curves or gsap
The proposed algorithms are to be contrasted with the classi
wherekpop is @ positive gain. This feedback law differs fromapproach to formation control based on rigidly encoding the
the original stabilizing strategy in [43] only in the facttino desired geometric pattern. One disadvantage of the prdpose
final angular position is preferred. One can prove that= approach is the requirement for a careful numerical computa
(z;,y;) is guaranteed to monotonically approach the targgon of Voronoi diagrams and centroids. We refer to [14],][15
position prarget When run over an infinite time horizon. Wefor previous work on algorithms for geometric patterns, and
illustrate the performance of the proposed algorithm in Big to [17], [18] for formation control algorithms.

w; = 2kproparctan
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Fig. 6. Coverage control for6 vehicles with mobile wheeled dynamics. The environment ands&lan density function are as in Fig. 3, aljglop = 3.

VI. CONCLUSIONS [5]

We have presented a novel approach to coordination algo-
rithms for multi-vehicle networks. The scheme can be though
of as an interaction law between agents and as such it i
implementable in a distributed scalable asynchronousdash

This paper leaves numerous important extensions open foi
further research. First, we envision considering the regttf 8]
structured environments (ranging all the way from simple-no
convex polygon to more realistic ground, air and underwater
environments); it might be useful for example to desigr®]
distributed algorithms for the art gallery problem. Secoind
is clearly important to consider non-isotropic sensorghsu
as cameras and directional microphones, as well as limitiddl
footprint sensors, as studied for example in the literature
on coverage path planning. Third, we plan to extend they
algorithms to provide collision avoidance guarantees and t
vehicle dynamics which are not locally controllable. Final
to investigate the effect of measurement errors on our [s@go [15;
algorithms and to quantify their closed-loop robustness we
are implementing these algorithms on a network of all-terra
vehicles. All these problems provide nontrivial challesigfeat
go beyond our current treatment.
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Now, sincedist(z,,,I") — 0, there existan; such that for
all m > my, dist(x,,,I") < J. Also, we know that there is a
subsequence dfz,, | m € N} which converges ta., let us

APPENDIXA
INVARIANCE AND CONVERGENCE PRINCIPLES

In this section we collect some relevant facts on desceffnote it by{zy,, | k € N}. Ford, there existsny, such that
flows both in the continuous and in the discrete-time sedtingor all & > ki, we havel|x,,, — .| <.
We do this following [44] and [45], respectively. We include Let mo = max{mi,ms, }. Take k such thatm; > mq
Proposition A.4 as we are unable to locate it in the linear aridnen,
nonlinear programming literature. |Zmp+1 — Tl = |T(Tmy,) — x| < €. (14)



Now we are going to prove thjtr,,, 11 —z.| < 4. 1f d/2 <6,
then this claim is straightforward, sineeé< d/2. If d/2 > ¢,
suppose thalz,,,+1 — .|| > 4. Sincemy + 1 > my > my,
thendist(x.,, +1,1") < d. Therefore, there existg € I' such
that ||, +1 — y|| < 0. Necessarilyy # z.. Now, by the
triangle inequality)z — y| < [l — <1 + |, +1 — vl
Then,

[Emit1 =zl = |z =yl = [|2m gy —yll = d=6>d/2,

which contradicts (14). Therefordlz,,, +1 — z.|| < 4. This
argument can be iterated to prove that forall> mg, we
have ||z, — z.|]| < 0. Let us take nown’ > m, such that
|€m — 24| > €. Sincem’ —1 > mg, we havel|z,, —1 —z.| <
9, and therefore

[ — 2|l = | T(@mr—1) — 2| <€ <,
which is a contradiction. Thereforgz,, | m € N} converges

to x.. |
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Let 7 : H — R, be a(C!'-function whose derivative
is a Lipschitz function. Consider thdeterministic gradient
algorithm given by

; _ Jzin) ngT;
zin+1) = {_% 57 (4i(n) m e T} (15a)
i 1j
7t 1) = {Zi?f??(n)) . i s (150)

whereyy > 0, n € N andi,j € {1,...,M}. The specific
conclusions of Theorem 3.1 and Corollary 3.1 in [32] that
we need for the specialization setting are presented in the
following result.

Theorem B.1:Assume each processercommunicates its
componentse? to every other processor at least once every
B; time units, for some constarf®;. Then, there exists a
constanty* > 0 such that if0 < 79 < +*, the deterministic
gradient algorithm (15) verifies

lim |lz‘(n) —2/(n)] =0 and lim g—j(zl(n)) =0,
n—oo n—oo 0T;

foralli,j € {1,...,M}.
In the particular case when, for eache {1,...,M},

. . . . . . 8(] .
In this section, we present a brief account of the resuffde partial derivative7=(x) only depends on;, with | €

in [32] concerning asynchronous gradient optimizatiomalgM(xai)

U {i} for certain setM(z,1), the previous result can

rithms. We do not review them in its full generality, but rath P€ restated in the following form.

formulate them in a form readily applicable to our setting.

Theorem B.2:Assume each processorcommunicates its

Let Hy,..., H; be finite-dimensional real vector spaces angPMponentse; to every other processor iM(z,i) at least

let H=H; x Hy x---x Hp,. |fl’:(I1,...,l‘L),fEl € H,
we refer toz; as theith component ofz. Let {1,..., M}

once everyB; time units, for some constar®®;. Then, there
exists a constant* > 0 such that if0 < 9 < ~*, the

be a set of processors that participate in the computatiflgterministic gradient algorithm (15) verifies

The algorithms considered here evolve in discrete times Thi
restriction does not involve any loss of generality, sinige t
events of interest (an update by a processor, a transmistio

a message, etc.) may be indexed by a discrete variable.

value stored by théth processor at time (global) is denoted

0,

T (ri(n))

li Hn) — ] (n)|| = d i
im [jz;(n) —x/(n)[| =0 and lim oz,

n—oo n—oo

;’%an i,j € {1,...,M} and alll € (M(z,i) U {i}) N
(

(@,5) U{s})-

by z*(n). This global clock is only need for analysis purposes.
The processors may be working without having access to it:
instead, they may have access to a local clock or to no clock

at all.

Consider thespecialization settin§32], where each proces-

sor updates a particular component of the veetgpecifically

assigned to it and relies on the information provided by the

other processors for the remaining components. Formally,

i) M=1L,
(i) Processori may update only its own component,

(iii) Processorj only sends messages containing elements of
H;. If processor: receives such a message, it uses it to

reset thez§ equal to the value received.
Let T¢ be the set of all times when processqguerforms a

computation involving theth component ofc. If a message
from processorj, containing an element off;, is received

by processor at timen, let ¢}’ (n) denote the time that this
message was sent. The content of the message is therefore

2% (t7 (n)). Naturally, it is assumed? (n) < n and we set
t(n) = n. Finally, T} denotes the set of all times when

processor receives a message from procesgor



