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Abstract— This paper studies state quantization schemes for times when the state trajectory crosses the boundarieebatw
feedback stabilization of control systems with limited informa- the quantization regions.)
tion. The focus is on designing the least destabilizing quantizer In the literature it is usually assumed that quantization
subject to a given information constraint. We explore several . . . o
ways of measuring the destabilizing effect of a quantizer on the '€9ions are fixed in advance and have specific shapes, most
closed-loop system, including (but not limited to) the worst-case Often rectilinear. Here we are interested in the situatibens
quantization error. In each case, we show how quantizer design the numberN of quantizer values is a given constraint in
can be naturally reduced to a version of the so-called multicenter the control problem, but the control designer has flexipilit
problem from locational optimization. Algorithms for obtaining , choosing a specific configuration of quantization regions
solutions to such problems, all in terms of suitable Voronoi . o . A
quantizers, are discussed. In particular, an iterative solver is (Whose shz.apes can in principle be arbitrary) and quantizati .
developed for a novel weighted multicenter problem which most Points. While there has been some research on systems with

accurately represents the least destabilizing quantizer design. A quantization regions of arbitrary shapes [19], [16] and loa t

simulation study is also presented. relationship between the choice of quantization regiond an
Index Terms— Feedback stabilization, locational optimization, the behavior of the closed-loop system [9], [14], the geinera
quantized control. problem of determining the “best” quantizer for a particula
control task such as feedback stabilization remains lgargel
open.
I. INTRODUCTION A feedback law which globally asymptotically stabilizes a

iven system in the absence of quantization will in general

In this paper we study control systems whose state variab a[ﬁ to provide global asymptotic stability of the closambp

are quantized. We think of a quantizer as a device tha ; ! o
. . . ) system that arises in the presence of state quantizatioo. Tw
converts a real-valued signal into a piecewise constant one . : ) .

. o enomena accounting for changes in the system’s behavior
taking a finite set of values. The recent papers [3], [9], [1 - . .

. . o : S aused by quantization will play the role in what follows.eTh
discuss various situations where this type of quantizaiises _ ; o . . . .
. . . first one is saturation: if the quantized signal is outside th
and provide references to the literature. Mathematically, : o )
range of the quantizer, then the quantization error is |aagd

quantizer can be described by a piecewise constant funct{ & control law designed for the ideal case of no quantizatio
g : D c R* — Q, where Q is a finite subset ofR™ 9 .

. ) X may lead to instability. The second one is deterioration of
with a fixed number of element&V. Here n is the state T .

. : . . . performance near the equilibrium: as the difference betwee
dimension of a given system ar} is a closed region of .
) . the current and the desired values of the state becomes, small
interest in the state space. We denote the element3 bj

o . higher precision is required, and so in the presence of quan-
qi,--.,qn and refer to them aquantization pointsThe sets .~ . ) : .
. . .. tization errors asymptotic convergence is typically Idstese
W;:=cl{zx € D:q(z) = ¢}, i €{1,..., N} associated with . : )
i . . . phenomena manifest themselves in the existence of twocheste
fixed values of the quantizer form a partitfoof the regionD

L . invariant regionsR; and R, such that all trajectories of the
and are calledquantization regionqcl denotes closure). We uantized system starting in the bigger regiopapproach the
will sometimes identify a quantizer with the corresponding d A g 99 napp

: - . smaller oneR, while no further convergence guarantees can
pair (Q, W), whereW := {I3,..., Wy }. Quantized values be given. Chattering on the boundaries between quantizatio

of the state represent a limited information flow from the " : . : : . )
rgglons is possible, and solutions are to be interpretetien t

system to a feedback controller: the state is not complete - : . S .
o . Sense of Filippov if necessary [11]; however, this issud wil
known to the controller, but it is only known which one of & R . o .
) o . : hot play a significant role in the subsequent stability asialy
fixed number of quantization regions contains the currextest . . : 1 .
at each instant of time. (Assuming that the quantizatiom{goi because we will work with a singlé  Lyapunov function on
) 9 9 R1\ R2. (One way to prevent chattering, and thus ensure a

are known to the controller, one can think of the informatiop . . S
. . . Inite data rate, would be to introduce a dwell time; cf. [14].
flow as a string of integers from 1 t®&/, transmitted at the . . o
In Section Il we explain how the destabilizing effect of a
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analysis, the destabilization measure itself is a funatibthe encountered, our formulation appears to be novel in that it

guantization regions and quantization points only. Thenquaintroduces weighting factors in the context of the contumio

tizer design problem then naturally reduces to an optingrat multicenter problem.

problem which consists in minimizing such a measure over allin Section IV we provide a comparative simulation study

guantizers satisfying the information constraint. We désc of the three quantizer designs considered here and a standar

this procedure for three different types of quantizersimgis rectangular quantizer for a two-dimensional linear system

from uniform, radial and spherical, and radially weighte@hese simulation results—as well as existing studies of the

guantization. related multimedian problem, such as [12]—indicate that by
After casting quantizer design as an optimization problersolving the quantized feedback stabilization problem i

we proceed to explain how techniques framptimal facility help of locational optimization techniques, one may obtain

location (or locational optimizatioh yield new insights into quite interesting quantization patterns. For the multieen

this problem as well as efficient algorithms for solving itproblem in the plane, for example, a typical Voronoi regisn i

Facility location problems concern the location of a fixedau a hexagon. Consequently, hexagonal quantization regmms f

ber of facilities that provide service demanded by users; thlanar systems have some advantages over more traditional

objective is to minimize the average or maximal distancenfrorectangular ones.

sets of demand points to facilities. We focus here on sedting

continuous in the location of both the facilities and the dach

points (i.e., both facilities and demand points take valines Il. QUANTIZATION AND STABILITY

a continuum of points, such as a polytope or an ellipsoid). — ,

Facility location problems are surveyed in [7]. Computagib We assume that the stab|I|zat|oq problem in the absence

geometric aspects in continuous facility location areutised ©f guantization has been solved, in the sense that a state

in [24], [23] and indirectly in textbooks on computationa-g feedback control law is known such that the origin is a

ometry [6]. Relevant background on computational geomet§!0P2lly asymptotically stable equilibrium point of theea

methods in locational optimization is provided in Sectidin | clos?d-loo_p system. In the ’;’)resence of quantization, wetado
For example, a classical problem of interest in locationdi® ‘certainty equivalence” control paradigm; namely, we

optimization is the so-callethultimedian problemit consists '€t the same control law act on the quantized site),
in choosing a collection ofN points ¢i,qs,...,qy in a where ¢ is a quantizer onR™ (or on a smaller region of
bounded regionD C R" so as to minimize the quantityintereSt)' The problem under consideration is to charaeter

E(mingeqr.... vy g — z|2), where the expected value is comihe destabilizing effect of the quantizer with the goal of

puted with respect to some probability density functionfon ©Ptaining an ultimate bound on solutions of the closed-loop
and|-| denotes the Euclidean norm. Solutions of this probleffyStém starting in a given bounded region. We first discuiss th
are given bycentroidal Voronoi tessellationsee [28], [8]. problie'm for general .nonlmear systems gnd then deyelop more
Within the context of quantization and information theahe SPECIfic results for linear systems, moving from simpler but
multimedian problem is known as the fixed-rate minimurrEonservative to more complicated but sharper formulations
distorsion quantizer design [7], [13]. One of the early ref-
erences on this problem is the classic work by Lloyd [18] i
who obtains optimality conditions and introduces a famods Nonlinear systems
insightful algorithm. The multimedian problem is relateml t \ve start with the general situation where the process to be
the problem of state moment stabilization of linear systemgntrolled is modeled by the system
with limited data rate [21].

Since we are working in the deterministic setting, we will &= f(z,u), z €R" ueR™. (1)
find that the problem relevant for our purposes isrhéticen-
ter problem discussed in [28], [27]. This is a somewhat lesall vector fields and control laws are understood to be suf-
frequently encountered variant of the multimedian problerficiently regular (e.g.C') so that existence and uniqueness
which is obtained by replacing the expected value by thgf solutions are ensured. Suppose that some nominal static
worst-case value; it can also be stated as the problem feédback law: = k(z) is given (with minor changes, dynamic
covering a given region with overlapping balls of minimafeedback laws can also be used). In the presence of state
radius. The connection between the quantized control pnobl quantization, we consider the feedback laws k(q(z)) and
and the multicenter problem, although very natural, apgire the corresponding closed-loop system
has not been pursued before. In Section Il we present a
general formulation of the multicenter problem with weight = f(x,k(q(x))) = f(z,k(z +¢)) 2)
factors. We then discuss solutions of specific versions of
this problem corresponding to the three types of quantimatiwheree := ¢(x) — = represents thguantization error
considered in Section Il, all in terms of suitable Voronoi Besides stabilizing the nominal system (1), the feedback
guantizers. We show how existing algorithms can handle thev & clearly must possess some robustness property with
first two approaches, and then develop a new algorithm fagspect to the measurement ereoifo this end we impose the
the last one which gives less conservative results. We ndodowing assumption: there exists( functionV : R* — R
that while weighted multimedian problems are commonlguch that for some clas§,, functionsay, as,as, p and for



all z,e € R™ we havé a;(|z]) < V(z) < az(|z|) and where @ = {q1,...,qn} is a set of quantization points and
oV W = {Wy,...,Wx} is a partition of 5y, into quantization
2l = plle]) = Z-f(a,kz +e)) < —as(|z]). regions. (We could work with partitions oR, rather than
A, but this requires the knowledge df and also may
e less computationally feasible for non-quadrdtio The
optimization problem (8) is known as timaulticenter problem
i computational geometry; we defer its detailed discussio
until Section 11I-A.

(Here and later] - | denotes the standard Euclidean norm
This amounts to the property that the control law= k(x)
input-to-state stabilizeshe closed-loop system with respec
to the measurement errer [25], [26]. This assumption is
rather restrictive and can be relaxed at the expense ofniiggi
weaker results (for linear systems, however, it is an autema

consequence of closed-loop asymptotic stability o= 0). B. Worst-case quantization error for linear systems

There is also considerable research on designing contwsl 1a \\e now specialize to the case when the process is described
satisfying this assumption. These issues are further skscl by the linear system

elsewhere [15], [16], [17].

Pick a positive nhumbefl/ and consider the balBy, := & = Az + Bu, zeR" uweR™. 9)
e R™: < M}. Consider the worst-case quantization _ . i .
ifror [l < M} g The linear system structure can be utilized to define a destab
A := max |e| 3) lization measure in several different ways. Suppose that th
" 2€Bu system (9) is stabilizable, so that for some matfix the

(this quantity is sometimes also referred to as seesitivity €igenvalues oA + BK" have negative real parts. Then there
of the quantizer). The following result is fairly straightivard ~€Xists a unique positive definite symmetric matfbsuch that
to obtain (see [16, Lemma 2] and [17, Lemma 5.2]).

(A+BK)'P+ P(A+ BK) = 1. (10)
Lemma 1 Assume that We let Amin(P) and Amax(P) denote the smallest and the
a1(M) > as o p(A). (4) largest eigenvalue oP, respectively. We assume that # 0
and K # 0; this is no loss of generality because the case of
Then the sets interest is whend is not a stable matrix.
Ri={zeR":V(z) <an(M)} (5) The quantized state feedback control law= Kq(x) yields

the closed-loop system
and

Ro:={z eR":V(z) <agop(A)} & = Az + BKq(x). (11)

are invariant regions for the systef®). Moreover, all solutions Take a positive numbek/ and consider the ellipsoids
of (2) that start in the selR, enter the smaller seR, in finite

time. An upper bound on this time is Ri = {z €R" : 2" Pr < Anin(P)M?} (12)
7 M) —az0p(A) ©) and
as o p(A) Ry = {z € R" : 27 Pz < Apax(P)4(1 + £)2|| PBK||2A%}
This lemma implies, in particular, that all solutions sStagt (13)
in Ry at timet = ¢, satisfy the ultimate bound wherees > 0 is arbitrary andA is the worst-case quantization
12(t)] < a7t o ag 0 p(A), V> to 4+ T (7) error defined by (3). Then we have the following linear coun-

. _ _ terpart of Lemma 1. Although this result is known (see [16,
with T" given by the formula (6). We regard the quanty | emma 1] and [17, Lemma 5.1]), we sketch a proof because

defined by (3) as alestabilization measuref the quantizer jt will be needed in the sequel; this proof also differs sligh
q. For given feedback lawk and Lyapunov function/, an from the one given in the references.

ultimate bound on solutions can be described by a dtags

function of this measure as shown by (7). It is not hard t0 S€&1,ma 2 Assume that

that if the numberN of quantization regions is sufficiently

large, thenA can be made small enough for the inequality (4)  Amin(P)M? > Apax (P)4(1 + €)?| PBK (A% (14)
to hold. Minimizing A—and consequently the size of the

attracting invariant regioi ,—over all possible choices of the 1hen the ellipsoidsk; and R defined by(12) and (13) are

quantizerg corresponds to the following optimization probleminvariant regions for the systeifi1). Moreover, all solutions
of (11)that start in the ellipsoid?; enter the smaller ellipsoid

min max  max |g; — (8) R, in finite time. An upper bound on this time is

o,W ie{l,..,.N} zeW;
Amin(P)YM? — Mpax (P)4(1 + €)2||PBK ||2 A2

2Recall that a functionx : [0, 00) — [0, 00) is said to be ofclass K if T= (15)
it is continuous, strictly increasing, ané(0) = 0. If « € K is unbounded, 4|PBK|?A%(1 +¢)e
then it is said to be oflassK . The existence of functions; andas with . .
the indicated property simply means thatis positive definite and radially Proof: Rewrite (11) as

unbounded; it will be convenient to have these functionslieitly in the
following analysis. = (A+ BK)x + BKe



wheree := ¢(z) — z is the quantization error as before. Irmeasure in the sense used in this paper, because it depends
view of (10), the derivative of the function on the feedback gain matrik’. While it gives better results
T for a fixed feedback law, quantizer design based on this
V(z) =" Pz destabilization measure needs to be redone if the feedback
along solutions of this system satisfies law is changed, and is not suitable for switching between
several feedback laws. For these reasons we henceforth focu

VA T T 2
V=—r w42 PBKe < —|a|” +2Jz[|[PBKe|.  (16) g gestabilization measures that are independent of apkati

We can rewrite this as feedback law used. o
. € 1
V< -z’ - > +2(1 + ¢)| PBK e/? Remark 2 It is clear that in Lemma 2, the system'’s behavior
l1+e¢ 2(1+¢) e -
9 is important only forxz € R, \ R2. In other words, redefining
1 the quantizer arbitrarily outsid&k; \ R. does not affect
- —V2(1+¢)|PBK . ! 2 .
( 2(1+¢) 2 (1+e)l e') the result. This means that we can design the quantizer
- 1 9 more efficiently and preserve or decrease the ultimate bound
<———2)P = ——(|2]? - (2(1 +5)|PBK6|) . on solutions. For example, if the gquantizer that solves the
1+e¢ 2(1+¢) S ) o
optimization problem (19) involves several quantizati@ings
Therefore, we have inside R,, we can move some of them 1@, \ R, to achieve
2| > 2(1 + ¢)|PBKe| = V < — € 2. 17) petter coverage_t.here. We can also restate the problem (19)
1+e¢ in terms of partitions ofR; \ R> or of a spherical annulus
Using the inequalityPBKe| < |[PBK|||e|, where| - || stands Ccontaining this set. U
for the matrix norm induced by the Euclidean norm, we obtain
c Remark 3 Lemma 2 suggests that among stabilizing state

2| = 2(1 +¢)|PBK]||le] = V < *1_~_E|1’|2~ (18) feedback gainsk, the ones that provide smaller ultimate

bounds for the solutions of the quantized system (for a fixed

gHantizer) are those with smaller values of the inducedirmatr

norm ||PBK||, where P is given by (10). In this regard,

it is interesting to observe the following: if the open-loop
Amax (P) systemi = Az is not asymptotically stable, then for every

2(t)] < )\_7(13)2(1 +e)[[PBK||A,  Vt>to+T  stabilizing feedback gaids and the corresponding positive

e definite symmetric matrix° satisfying (10) we have

It is now straightforward to conclude the result. O
As a consequence of this lemma, an ultimate bound
solutions starting iR, at timet = g is

with T' given by the formula (15). Decreasingto 0, we see
that solutions (asymptotically) approach the ellipsoid |PBK|| > 1/2 (20)

{2 € R" : 27 P2 < Apax(P)4| PBK||2A%}. and the inequality is strict it = Az is unstable. To see this,

) ) o use (16) and the definition af to write
Thus we still considerA as a destabilization measure. As

in the nonlinear setting, this leads to the optimizationbpro V< —|z? (1 _ 2||pBK||Q(m>x> ) (21)

lem (8). If N is large enough, thed\ can be made small |z

enough so that the inequality (14) holds (for a given feeklbaghis formula will be used again several times in the sequel.

gain K). Now, note that ifg is chosen to take the value 0 in a
neighborhood of the origin, then the right-hand side of (21)

Remark 1 We note that another approach is to work with (17équa|s_‘x|2(1_2||pBK||) there, and sa—2|| PBK || cannot

directly, avoiding the use of the induced nofi BK ||. Define  pe positive sinced is not stable. It is also straightforward to

Appy := max |PBKe|. show (20) directly: just multiply (10) on the left by” and
TER1 on the right byv, wherev is a normalized eigenvector of
The result of Lemma 2 still holds if PBK |[2A? is replaced A’ P+ PA with a nonnegative eigenvalue. o

by A2 . everywhere in the statement of that lemma. This

yields a less conservative ultimate bound and motivates the Radial and spherical quantization for linear systems

following optimization problem: In the previous developments, the required bounds on the

min max max |PBK(q; — )] (19) quantization error do not depend on the size of the states. Thi

oW  ie{l,.,N} «€W; leads to uniform quantization, in the sense that quantimati
where Q is a set of quantization points as before and points are distributed uniformly over the region of intéres
is a partition of By, (or R1) into N regions. This problem However, it is well known that more efficient quantization
is in general lower-dimensional compared to (8) because thehemes are those which provide lower precision far away
subspaceker(PBK) can be ignored. (Note tha?BK is a from the origin and higher precision close to the origin.
singular matrix whenevet < n.) Therefore, for the sam& Quantizers with a logarithmic scale are particularly ukefu
the optimal value for this problem will be significantly lowe see [9]. Loosely speaking, with logarithmic quantizatioreo
than that for (8). However\ .. is not really a destabilization has the same number of quantization points in the vicinity of



every sphere centered at the origin in the state space, adere  Proof: The fact that the numbetsandb defined by (29)
with uniform quantization this number grows with the radiussatisfy the inequalities (24) follows directly from (20)ca(28).
This observation suggests introducing a “direct produdt” dt is a simple matter to check from (25) that we have

one quantizer on a unit sphere and another along the radial N 7 (2)
direction, which is what we do next. (a/b)""M <z< M = — - 1’ <max{b—1,1—a}.
Let us write ) )
x = |z|vergz) For the values ofi andb given by (29), this becomes
T 1 _
where 2 (a/b)NlMgng = L(Z)— ’§2||PBEI{”_AS
verqx) := Ek (31)

Now, from the triangle inequality and the fact that

We represent the quantizer accordingly as |¢°(vergx))| < 1 for all z by construction, we obtain

q(x) = q"(Jz|)¢° (vergx 22 - s s

(0) = ¢ ehaverss)) @2 Jya) — ] < |g7 (12" (vers(@) — [zl (versa)|
where ¢q" takes N, positive real valuesg® takes N, values .
on or inside the unit sphere, an¥; and N, are some + ’mq (vergz)) — |$|Ver5($)‘

positive integers such thaV; Ny < N. This means that we

: : <
introduce two separate quantizers, one ffof and the other -

¢ (jal) — lal| + |2l

q°(verdx)) — vers(:z:)‘

for verdx). The set of quantization points for the resulting <lal q"(|z|) 1lea
overall quantizew is formed by theN, N, pairwise products - || 8
of the values of" and¢”. o where the last inequality follows from (23). Substitutirfgst
Let us introduce the_worst.-case quantization error on tigq (21), we conclude that the derivative Bfalong solutions
unit sphere corresponding to: of the closed-loop system satisfies
As = s - . 23 . r
max | (@) — =l @3y g [1 _ 9| PBK]| (‘quf') 1 +AS)} . (32)

As before, pick a positive numbév/. We will take ¢" to be o S .
a logarithmic quantizer, defined as follows: given a pair gfombining this with the formula (31), we conclude that<

numbersa, b satisfying —e|z|? for all z € Ry \ Ra, from which it is straightforward
to conclude the result. O

0<a<1<b, (24)  For fixed N, and N,, the quantity A, defined by (23)

let provides a destabilization measure (fg). When K is given

. P ; i1 and A, satisfies the inequality (28) for some > 0, we
¢'(2) = (a' /b )M, for z€ ((a/b)'M,(a/b) ' M), (ap construct” via (25) and compute an ultimate bound on
ie{l,..., N1} solutions using Lemma 3. Minimizing\, corresponds to the
(25) following optimization problem:

and defineq” at the endpoints of these intervals to make min max max |gf — x| (33)
it continuous from the right or from the left. Consider the Q®Wei€{l,..No}  z€W?
ellipsoid where Q° = {q{,...,q%,} is a set of points on or inside the

unit sphere andV*® = {W7,..., Wy } is a partition of the
unit sphere. This problem can be solved by the same algorithm
as the problem (8), as will be described in Section IlI-A. The
quantity (33) will not exceed the right-hand side of (28) if

Ry :={z € R" : 27 Pz < Apax(P)(a/b)* M M2}, (26)

Lemma 3 Assume that

Amin (P)M? > Amax (P)(a/b)*N M? (27) N, is sufficiently large. For a giveV, the values ofN; and
N, satisfying Ny N, < N which yield the smallest ultimate
and 1—¢ bound are not easy to compute analytically and in general
As < 2||PBK]|| (28) seemto depend on the stabilizing feedback dairhowever,

there is a finite number of choices for these integers and we
can find the optimal values by trying all of them. We remark
1— 1— i imedi i
a=1— € A, b= 1+ € “A,. (29) that in the cont.ext of the multlmedlan problem, the idea of
2|PBK]|| 2|PBK]|| spherical coordinates quantization has been exploitedréef

Then(24) holds. Withg” given by(25) and¢ given by(22), the and in particular the trade-off between the numbers of walue
ellipsoidsR; and R, defined by(12) and (26) are invariant for the radial and the spherical directions has been studied
regions for the systertil1). Moreover, all solutions of(11) See [29] and the references therein.

that start in the ellipsoidR, enter the smaller ellipsoidR,
in finite time. An upper bound on this time is

for somee > 0. Let

Remark 4 It is straightforward to derive similar results using
the norm defined by the Lyapunov function, i.dz| =
Amin (P)M? — Aax(P)(a/b)*N1 M? (30) V7 Pz, instead of the Euclidean norm. This gives rise to an

T= L .
(a/b)2N1 M2e optimization problem on an ellipsoid rather than on a spliére




D. Radially weighted quantization for linear systems Remark 5 In this paper, we are assuming that quantizer

The need for logarithmic quantization patterns is eviddncd€Sign can only be performed once and cannot be changed
by the fact that it is the ratife|/|z|, and not the absolute value®?liné. In situations where one can recompute the location
of the quantization errde| itself, that needs to be small. This® duantization regions and quantization points on-linesi
is clear from the formulas (18) and (21). The approach 8PSSiPle to achieve global asymptotic stability of the dizea
Section 1I-C leads to an “aligned” logarithmic quantizatio ¢/0Sed-loop system by using the dynamic quantizationeggat

pattern, in the sense that quantization points on spheresdg¥eloped in [3], [16]. In fact, a simple rescaling of the
different radii are aligned along the same radial directionduantizer every” units of time would suffice. For this to work,
However, it is not hard to see that non-aligned quantizatid}e Need to ensure tha, is a strict subset o, in each

patterns may achieve better coverage. This suggests p#océ)é the previous schemes_. This means that the optimization
ing from (21) in a more direct fashion. problems formulated earlier remain relevant, except that b

To this end, pick two numbers/ > m > 0 and consider passing from static to dynamic quantization we basicallyspa
the eIIipsoids?yzl given by (12) and from an op_timal_to a suboptimal quantizer (_jesign objective.
An interesting direction for future research is to incogder

Ry = {z € R" : 2T Pz < Apax(P)m?}. (34) a cost for recomputing the quantization parameters into the
! guantizer design problem. O
Define
A e la(x) ~ ] 25
rw = Iax : (33)  11l. CONTINUOUS MULTICENTER PROBLEMS IN FACILITY
.LER]\R2 |$‘
LOCATION

The following result easily follows by virtue of (21), andeth

proof is omitted In this section we present a class of optimization problems

related to the field of facility location; see the discussion
Section | and the survey [7]. The facility location problere w

Lemma 4 Assume that consider will have as special cases the optimization proble

Amin(P)M? > Amax(P)m? (36) studied in Section Il, and in particular the problems (8)fro
Sections II-A and 1I-B, (33) from Section II-C, and (39) from
and |- Section II-D.
< — Let us review some preliminary concepts. Given a compact
Apy < SIPBK] (37) p y p p

regionD C R™ and a set ofV points @ = {q1,...,qn} In
for somes > 0. Then the ellipsoid®; andR, defined by(12) R”, the Voronoi partitionV = {V;,...,Vn} of D generated
and (34) are invariant regions for the syste(i1). Moreover, by Q is defined according to

all solutions of (11) that start in the ellipsoidR, enter the o ) L.

smaller ellipsoidR, in finite time. An upper bound on this Vi = {e€D: |z —ql<le—ql Vi#i.  (40)

time is ) ) When it is useful to emphasize the dependency @nwe
T= Amin (P) M ;Amax(P)m . (38) shall writeV(Q) or V;(Q). WhenD is a polytope inR", each
mee Voronoi regionV; is a polytope, otherwisE; is the intersection

The quantityA,.,, defined by (35) provides another destabetween a polytope an®. The faces of the polytope which
bilization measure forg, in relation to a pair of numbers definesV; are given by hyperplanes of points Ri* that are
M > m > 0. Given a stabilizing feedback gaif, we can equidistant fromg; and ¢;, j # ¢; among the latter, only
check the inequalities (36) and (37) and, if they are satisfie'neighboring” points play a role. Note that this (standard)
obtain an ultimate bound on solutions from Lemma 4. (It isonstruction remains valid whe® is a lower-dimensional
also clear from (21) thaf\,.,, provides a lower bound on thesubset ofR™, such as a sphere. We refer to [6], [23] for
rate of decay of solutions ifR; \ R».) This leads us to the comprehensive treatments of Voronoi partitions.

following optimization problem: Let @ = {qi,...,qn} be a collection of points ifR™ and
let W = {Wi,...,Wx} be a partition ofD. In what follows,
i l9: — | hall | i i
min max max (39) we shall concern ourselves with the function
QW  ie{l,..,.N} zeW; |z]
where @ = {q1,...,qn} is a set of quantization points and HQ,wW) ie{r{}%.},(N} e o@)fz—al)  (41)

W= {Wy,..., Wy} is a partition of the annulugz € R™: o ¢ : D — [0,00) is continuous non-negative and
m < |z| < M} into quantization regions. The inequality (37)f . [0,00) — [0,00) is continuous, non-decreasing and
will hold for a given K if N is sufficiently large. - ' '

. ) nbounded. We al me t not identically vanish
The optimization problem (39) is different in structurerfro unbounded. We also assume thadoes not identically vanis

. on D. We investigate the optimization problem
the ones we encountered earlier, and apparently has not been g P P

studied in the locational optimization literature. We hefiocth min  H(Q, W) (42)
call it the radially weighted multicenter problenit turns out lad

that while this problem is more challenging than the othigrs,and refer to it as theveighted multicenter problenn general,
is still computationally tractable. We will develop an allom A is a nonlinear non-convex function of the locatiogs
for solving it in Section III-B. and of the partition/V. Accordingly, its global minima can



be obtained only numerically via nonlinear programmingee Section 4.2.5 in [2]). We call'(D) a weighted centepf
algorithms. However, this and related facility locatiorolpr the regionD if it is a (possibly non-unique) global minimum
lems [28], [27], [8] have some peculiar structure that helgsoint:
us characterize optimal solutions and design useful iterat . )
algorithms. Let us start by considering tiveighted 1-center ¢"(D) := argmin Thax o(@)f(|z = ql).

. g€co(D) T
problemover D, i.e., takeN = 1.

Now, it is useful to return to the general weighted multicen-

Lemma 5 The functionH; : R"™ — [0, c0) defined by ter problem (41), (42) and defind’ — Q*(W) as the map
o - that associates t®V a collection of N (possibly non-unique)
Ha(g) = H({a}, {P}) = pray o(z) f(lz — ql) global minimum points for the corresponding weighted 1-

center problems; in other wordQ*({W;,..., Wx}) =
{g*(W1),...,q*(Wn)}. Note that these weighted centers are
well defined since eachV; is compact. Finally, define the
Proof: The function H; is continuous because it isLloyd map(or the Lloyd algorithm)C : (Q, W) — (Q', W)

the maximum of a compact family of continuous functionsvhereW’ :=V(Q) and Q" := Q*(W’). The following result
Further,’H, is radially unbounded because for every c D is a relatively straightforward consequence of LaSalletiav
such thatg(z*) > 0 we haveH;(q) > ¢(z*)f(|lz* — ¢|) ance Principle for discrete-time dynamical systems; furth
and f is unbounded. To show the other statements, we invokenvergence properties are under current investigatids]in
certain properties of convex and quasiconvex functions; se
Sections 3.2 and 3.4 in [2] At a ﬁxed, the funCtionq — Lemma 7 At afixedQ' a g|0ba| minimum o) — H(Q’W)
f(lz — q|) is quasiconvex because it is the composition of i3 achieved a8V = V(Q). At a fixedW, a global minimum
convex function with a non-decreasing function. Furthe®no of 9 — H(Q,W) is achieved atQ = Q*(W). The Lloyd
if f is non-decreasing and convex, then— f(|lz — ¢|) map is a descent algorithm for the cost functidf i.e., an
is convex because, at a fixed it is the composition of a application of the map is guaranteed not to incredge The
convex function with a convex non-decreasing functionf If cost is guaranteed to decrease in one iteration if no aétive
is convex, then; — maxzep f(|z — ¢l) is convex because it point ¢; € Q is a weighted center of its regiol’;. Given
is the pointwise supremum over a set of convex functions. Fgf initial pair (Qo, Wo), the sequencd L*(Qo, Wo), k >
generaly and f, the function™, is quasiconvex because it is)} approaches the largest set invariant undéron which
the weighted pointwise supremum of quasiconvex functilﬁhs.H(g(g W)) =H(Q,W).

Next, we letco(D) denote the convex hull db and study
the global minima ofH;.

is continuous, radially unbounded, and quasicontéi.f is
convex andp is constant, theri{; is convex.

Remark 6 (i) Fixed points of the Lloyd map areeighted
central Voronoi quantizers.e., pairs(Q, W) such that
W is the Voronoi partition generated b9 and at the
same time the points i@ are weighted centers fof. It

Lemma 6 The set of global minimum points fét; is com-
pact, convex and has a non-empty intersection witfD). If

tf is sgctly increasing, then all global minimum points bedp is an open conjecture that the iteration described in the
0 co(D). lemma converges to local minima @f. Nevertheless,

Proof: The fact that the set of global minimum points the algorithm is of interest to us because it is guaranteed
is compact and convex is an immediate consequence of t0improve a given quantizer design and provides a good

continuity, radial unboundedness, and quasiconvexity.use indication as to whether or naV is large enough to
prove the non-empty intersection witho(D). Suppose that ~ achieve the control objective. .

¢* € co(D) is a global minimum point fof{;. Letp* € co(D) (i) The classic Lloyd algorithm is tailored to the continuo

be the closest point t*, i.e., p* := argmin, ¢ .,(py l¢* — /. multimedian problem as it appears, for example, in
Then |z — p*| < |z — ¢*| for all z € D, so that, for all the problem of fixed-rate minimum-distorsion quantizer
x € D, we haveg(z)f(lz — p*|) < o(@)f(jz — ¢*]) < design; see [7], [13]. The classic Lon_d algorithm differs
max,ep ¢(z) f(|z — ¢*|) = Hi(g*). Therefore,H;(p*) = from the one considered here only.m the fact that the
maxzep ¢(z)f(|z—p*|) < Hi(g*) andp* also belongs to the points in Q@ are moved to the centroids—as opposed to
set of global minimum points. Wheyi is strictly increasing, the weighted centers—of the respective Voronoi regions.
the previous argument leads f;(p*) < Hi(q*), which (Centroids are solutions of the 1-median problems.)

contradicts the assumption thgt is a global minimum. O (i) The results in Lemmas 5, 6, and 7 provide an algorithm
Lemmas 5 and 6 ShOW that the We|ghted 1-center prob'em for the solution of the relevant multicenter pI’OblemS via
over D is a quasiconvex optimization problem, i.e., it consists 1) quasiconvex programming and 2) Voronoi partition

in minimizing the quasiconvex functiof(; over the convex computations. It is important to observe that intense
setco(D). It is known that every quasiconvex optimization research activity is ongoing on both problems and that
problem can be solved by iterative techniques (via a bisecti numerical iterative algorithms are available for solving

algorithm solving a convex feasibility problem at each step ~ them; e.g., see [1], [2] and references therein. [J

SRecall that aquasiconvexfunction is a function defined on a convex “We call ¢; activeif H(Q, W) = maxzew; ¢(z)f(lz — g;]), i.e., the
domain and with convex sublevel sets. maximum over: is achieved at the index.



Next, we consider the specific settings that arise in tiehe upper bound is easily obtained by constructing a uniform
qguantizer design problems discussed in the previous seobical quantization pattern, while the lower bound is know
tion. We characterize additional properties of the muftiee as Sukharev’s lower bound on dispersion [22], [20]. In the
problem (8), the spherical multicenter problem (33), ang tlpresent case whepP is a ball, it is straightforward to obtain
radially weighted multicenter problem (39). To implemem t similar bounds by considering inscribed and superscribed
Lloyd algorithm, two tasks must be carried out repeatedlgubes forD. The upper bound can be used to evaluate the
One consists in computing the Voronoi partition for a givenonvergence of the Lloyd algorithm. When the lower bound
set of points @, which is accomplished by the standaran A is not small enough for the inequality (4) or (14) to
procedure described earlier. The other amounts to contputimold, it indicates that a different destabilization measamd/or
a weighted center for each sBf; in a given partition. Thus a different stabilizing feedback law must be used, or tNat
for each of the specific multicenter problems, we must nomust be increased.
discuss how to solve the corresponding 1-center problemlt is also useful to recall some known facts about the
Some additional remarks on the properties of these paaticuinultimedian problem. It is conjectured in [12] that fo¥
multicenter problems will also be provided. sufficiently large, the optimal quantizer with respect te th

uniform probability density is given by a tessellation (i.e
) translation and rotation) of a fixed polytope, except near
A. Multicenter problem the boundary of the region of interest. In two dimensions,

Let us first consider the problem (8) arising in Sections IPolygons that can give rise to such tessellations are gqrala
A and 1I-B. The domain is a ball centered at the origin offiangles, rectangles, and regular hexagons. Among thiese,
more generally, an ellipsoid, i.eQ = {z € R" : 27 Pz < 1} hexagon is optimal, because it has the smallest mean-square
for some positive definite symmetric matrix Note also that quantization error with respect to its centroid per unitwvoé.
the problem (19) arising in Section II-B reduces, via a lined his result remains true if we consider the worst-case rathe
change of coordinates, to the multicenter problem consitlethan mean-square quantization error, which is the quantity
here in a lower dimension. being minimized in the multicenter problem. The hexagon

In the problem (8), the weighting functiop is identically achieves the smallest error with respect to its center. (For
equal to 1 and the performance functignis the identity the unit volume regular hexagon this error is approximately
map. Under these conditions, we refer to the optimizati¢h62, compared with 0.707 for the square and 0.936 for the
problem (42) simply as the multicenter problem; see [28]][2 €Quilateral triangle; the unit-volume disk gives the erodr
The multicenter problem can be equivalently restated as #&64 but disks cannot be used to obtain tessellations.) In
problem of covering the regio® with a given number of Section IV we will indeed see hexagonal patterns arising as
(possibly overlapping) balls of smallest radiusBf c R™ is  solutions of the multicenter problem.
the unit ball centered at the origin, andAf3; + ¢ denotes the ~ The spherical multicenter problem (33) from Section II-C
ball of radiusR centered at a point, the problem reads: ~ corresponds to the setting whefe= {z € R™ : |z = 1} is

the unit sphere ifR™. Since the spherical multicenter problem
min R, subject to U (RBi+4q)2D. is formulated in terms of the Euclidean distanc&ih Voronoi
ie{l,...,N} - .
partitions of the sphere can be constructed as explainédrear

Let us analyze the 1-center problem. From Lemma 5 \f@r the general case. Voronoi regions will be intersectiohs
know that this is a convex optimization problem. For eadpolytopes with the unit sphere. The center of each Voronoi
region V;, the optimal solutiong*(V;) is the center of the regionV; is the center of the minimal-radius enclosing sphere
minimal-radius enclosing sphere fot. This center is unique for Vi. We can consider a polytope iR" generated by the
because the minimal-radius enclosing sphere is the intémse Vertices ofV; and perhaps some other pointslip If enough
of all enclosing spheres. Wheri ¢ R2 is a polygon, this points are taken, then the center of this polytope will also b
sphere is referred to as the smallest enclosing circle afh@ center of;. As we explained earlier, computing the center
algorithms are available to compute it; see [6, Chapter #]f @ polytope is a computationally tractable task.

WhenV; C R" is a polytope, the smallest enclosing ellipsoid

(in _pa_rtic_ular, sphfere) can be compu_ted via iterative convg Radially weighted multicenter problem

optimization algorithms; see [2, Section 8.4]. For a Voriono . ]
region V; near the boundary ob, which is not a polytope, Here, we study thg problem (39) formulated in Section Il-
we can under-approximate it by a polytope generated by tHe Where the domain is the spherical annulls= {z €
vertices ofl; and suitable additional points on the intersectiof : ™ < |z| < M}. We consider the corresponding radially
of V; with the boundary ofD, and then compute the centefVeighted 1-center problem over a détC D:

of this polytope. For a sufficiently close under-approxiiomt ) g —
this center will also be the center ®f. (A max 7] (43)
When D is a unit cube inR"”, the optimal value of the
problem (8) satisfies the bounds The problem is well-posed becauseis a subset ofD and
therefore does not contain the origin. In what follows, weta
1 <A< Vn V to be a polytope; if it is not, we approximate it by a polytope
21V/N| T 21¥N| as before. We begin by making the following observation.



Lemma 8 The optimal cost in the problerfd3) is smaller Note that the poing* belongs taco(V) by Lemma 6, while
than1 if and only if the sel/ is separated from the origin by ¢* might not. Lemma 9 leads us to considering the problem

a hyperplane. 9
. 2 o
min y(er) =5 44
Proof: Suppose first thdt is separated from the origin by CER. R ) |CQ‘ . (44)
a hyperplane, so that¢ co(V). Let G be the projection of the subject to [c—wvs” <%, i€ {l,....p},
origin ontoco(V), i.e., ¢ := argmin,e.o(v) [2[- By construc- wherew,, ..., v, are the vertices of the polytogé. This is an

tion, |[z—¢| < |z[ forallx € V, hencemax,cv |[§—=|/|z| < 1. optimization problem subject to inequality constraint$jiat
This implies that the optimal cost in the problem (43) is lessan be solved with a finite number of computations. The idea
than 1. To prove the converse, suppose on the contrary thatto enumerate active constraints, according to the proeed

0 € co(V). This means that the origin lies on the line segmegescribed in the following algorithm:

between two pointsy,zo € V. For the optimal cost to be ;. tor all subsetsS of the set of vertices of” do

less than 1, the optimal point® must belong to the open ., compute the(cs, rs)-sphere minimizingy? among all

ball {g € R : |¢ — z1| < |z1|} as well as to the open ball (¢, )-spheres touching all points ifi

{g € R™ : [g—x2| < |22|}. But the intersection between these 5. and for

two sets is empty, which is a contradiction. U 4 discard all(cs, rs)-spheres not containing all vertices of
We shall henceforth assume that the 8es separated from 174

guantization points can be chosen in such a way that each of r2/|cs|> among all remaining candidate spheres

the resulting Voronoi regions indeed has this propertyc&in Steps4 and 5 are straightforward comparison checks. Re-

by Lemma 7 the Lloyd algorithm does not increase the CO%[arding step, it turns out we can restrict our search to sgts

Lemma 8 implies that all Vor(_)n0| regions will then have i ntaining at least two vertices of, by virtue of the following
property at every step of the iteration. From Lemmas 5 andrb§ It

we know that the problem (43) is quasiconvex and can thus be

handled by iterative convex optimization algorithms; see t emma 10 The optimal sphere for the proble(d4) touches

discussion in Remark 5('")' ] at least two vertices of/, i.e., at least two constraints are
In what follows we investigate the structure of the probs.tive at the minimum.

lem (43) in order to obtain a solution more constructivelgt L

us first present an equivalent formulation of this optinizat Proof: The proof is by contradiction. Suppose that the

problem. optimal sphere touches only one vertex. We denote thiswerte
by v and assume, performing an affine coordinate change, that
it has coordinateg1,0,...,0)". Let ¢ = (z1,Z2,...,%,)7.

Lemma 9 Let V be a polytope separated from the origin b hen we are led to minimizin
a hyperplane. Consider the problem of finding the sphere with 9

centerc and radiusr which enclosed” and minimizes/|c|. o, _ _ (@ -2+ a5 14 1—2%
Let (c*,r*) be the parameters of the optimal sphere. Then the (@1, T2y, Tn) = Yo a? =it PO
optimal value for the probleni43) is v* := r*/|¢*| and the (45)
optimal point isq* := (1 — (7*)2)0*_ Let us show that this function has no critical points besides
the pole at the origin and the zeroatWe have
Proof: Let fq(a:_) :_:_|q — z|/|z|. In the problem _(43), we 02 2(z -, 7 —7)
search forg that minimizes the value of the functiofy on e R (46)
its smallest level set enclosing (we will see shortly that e (Xiza 77)
this is well defined). For each > 0, the y-level set off, is and ) - ~
described by 0y" _ —2m:(1 - 23,) Qxl), i# 1. (47)

i (T, &)
In view of the formula (47), every critical point satisfiesheir

Becausel is separated from the origin by a hyperplane, wg! = 1/2 orz; = 0 for all i # 1. In the first case, the

imoli nooz2 _
know from Lemma 8 that the optimal value ofis smaller formula (46) implies that we must have,;_, 7 = —1/2,
than1. Thus from here on we will only be interested-in< 1. and this equation has no solution. In the second case, (46)

A square completion argument leads to gives two solutionsz; = 0 (pole at 0) andz; = 1 (zero
at v). The pole at the origin is not a minimum. The zero at

1 9 - q 2 , v corresponds to the sphere of radius O centered athich

142 (lg =2 =7f*) = ‘33_ 1 ,72‘ T 1422 4", is not a feasible solution because it does not encldsén
summary, we have shown that the optimal sphere cannot touch

so that they-level set of f, is the spherdxz — c[> = r2, only a single vertex of/. O

with centerc := ¢/(1 —~?) and radiusr := vlc|. In the Regarding ste, we need to minimizey? over spheres

new variableg¢, r), we must minimizey = r/|c| among all passing through two or more vertices Bt Spheres passing

spheres enclosing. O throughi generic points INR™ are parameterized by +

lq — 2> — 7*|=]* = 0.
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1 — [ variables. A convenient parameterization is obtain€this leads toP = I from (10), which is convenient because
by intersecting hyperplanes of points equidistant fronrgaithe regionsR; and R. will be balls around the origin. We
of points from a given set. Coordinates of the points omave |PBK|| = /5/2. In all simulations, we také// = 5,
the intersection are given by affine functions of+ 1 — 1 so the outer ball shown in the following figures7&, = Bs.
free parameters. Note that the radiusof the sphere is We also fix the numbelN of quantization points to be 25.
uniquely determined by its center and the vertices o We first consider a simple quantizer which divides the
which lie on the sphere. It is straightforward to verify thasquare[—5,5] x [—5,5] into 25 equal squares as shown in
the functiony? in (44) is a rational function whose numeratoFigure 1(a). The worst-case quantization errakis- /2 here,
and denominator are quadratic inhomogeneous polynomialsd the inequality (14) is satisfied for sufficiently smal(in
in these free parameters, and that critical pointsydfare fact, N = 25 is the smallest perfect square for which this is the
solutions ofn + 1 — [ quadratic equations in the same numberase). Solutions of the quantized closed-loop system () a
of unknowns. According to Bezout's theorem, this geneljcalshown in Figure 1(b). Lemma 2 predicts that asymptotically,
gives 2"t1-! candidate optimal spheres (see [4]). Stejs these solutions must approach the ball of radiu$ ~ 4.472
completed by choosing the one with the smallest radius. Vdeound the origin (this is obtained by settiag= 0 in the
emphasize that while this constructive solution has exptiale formula (13) forRy). The circle of this radius is drawn in
complexity, a more efficient solver can be developed based e figure, and we see that solutions in fact enter it in finite
guasiconvex programming; see Remark 6(iii). time and then continue to approach the origin (we tdok 2

As an example of step, let us work out the planar case.in all simulations); this illustrates the conservativenes the
Whenn = 2, the problem reduces to finding critical points otheory presented in Section Il. We also clearly see chageri
~ for circles passing throughvertices ofV, wherel > 1 by behavior on the boundaries between quantization regions.
Lemma 8. Since fof > 2 there is at most one circle passing Next, we design the quantizer by solving the multicenter
through the corresponding vertices, we only need to explginoblem onB; using the Lloyd algorithm. Figure 2(a) illus-
how to solve this problem fol = 2. For convenience, let ustrates the evolution of the quantization points startingnfr
consider an affine change of coordinates which places the tremdom initial conditions close to the origin, and Figur®)2(
vertices at(1,0)” and (—1,0) and the origin at some point depicts the quantization points obtained after 100 itenati
(w0,90)T. Without loss of generality, assume thgt> 0. The and the corresponding Voronoi regions, predominantly of
center of the circle is denoted ly= (z,%)”. We know thatc hexagonal shapes. The worst-case quantization errdr 4s
must be equidistant from the two vertices, hefice 0. Then 1.248 in this case, which is smaller than the one for the

we have rectangular quantizer. From Lemma 2, the ultimate bound on
A2 = 1+3° the norm of closed-loop solutions is approximatgl948. We
23+ (§ — yo)? see from Figure 2(c) that solutions indeed enter the ball of
this radius (again in finite time).
and so : . . o
We now consider radial and spherical quantization. Let
o 27(x3 4+ (7 — v0)?) — 2(7 — yo) (1 + ¥2) N; = 1 andN, = 25. This means that we must uniformly dis-
oy (2 + (j — y0)2)2 tribute 25 points on the unit circle, and the cordal quantization

error A, defined by (23) is computed from the formulg, =

V2 —2cos(m/25) =~ 0.126. The inequality (28) is satisfied
for sufficiently smalle becausd /(2| PBK]||) =~ 0.316. Since

we are interested in an ultimate bound on solutions, we
take ¢ = 0. This givesa 0.809, b ~ 1.191, and the
required distance from the quantization points to the origi
determined from the formula (25) and approximately equals

i _ i S (2 —
Iqthe special case whep = 0, this reduces t@.(xo 1). 0. 4.045; see Figure 3(a). In view of Lemma 3, closed-loop
Sincexy = +1 corresponds to one of the vertices being at the - . . .
o . : . rajectories must asymptotically approach a ball whos@usad
origin, which cannot happen by our earlier assumption, th

e I
solution isg = 0 (as is also clear from symmetry). Whe iS now decreased to about 3.399. This indeed happens, as
yo # 0, the minimum is achieved at

n|Ilustrated in Figure 3(b). Interestinglyy; = 2 gives a poorer
w8 ys —1=V(ag+y5 — 1) + 493 _
2yo

guaranteed convergence radius (even if we t&ke= 13), and
(Note that this goes to 0 ag approaches 0 oso.)

—29%yo + 2y(g + 3 — 1) + 240
_ 2 :
(@5 + (7 — %0)?)
Equating the numerator to 0, we arrive at the equation

~
~

—5%yo + G(xd +yg — 1) +yo = 0.

it is easy to check that larger values &f are not feasible
because of (28).

Finally, we consider a quantizer that results from solving
the radially weighted multicenter problem using the Lloyd

0.

g:

IV. SIMULATION RESULTS

For our simulation studies, we take the system (9) and w
with the following data:

-

0
1

2

algorithm. In this case we have to pick a desired ultimate
bound on|z(t)|, which we take to ben = 3. Figure 4(a)
c)illystrates the evolution of the quantization points eyt
{rom random initial conditions in the annulus; \ B3, and
Figure 4(b) depicts the quantization points obtained &ift&r
iterations and the associated Voronoi regions (computetthéo
entire ballBs). The quantization points remain in the convex
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Fig. 1. Rectangular quantizer: (a) Quantization regions and points, (b) Clospdrajectories.

Fig. 2. Uniform quantizer: (a) Lloyd iterations, (b) Quantization regions and tgpift) Closed-loop trajectories.

hull of the intersections of the corresponding Voronoi oegi  exploring the least destabilizing quantizer design foissts
with the annulus (Lemma 6). We hav®,,, ~ 0.273, hence of nonlinear systems.

the inequality (37) is satisfied for sufficiently small Thus

Lemma 4 guarantees that(t)] < 3 ast — oo, which is REFERENCES

confirmed by Figure 4(c).
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