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Quantized control via locational optimization
Francesco Bullo,Senior Member, IEEE,Daniel Liberzon,Senior Member, IEEE,

Abstract— This paper studies state quantization schemes for
feedback stabilization of control systems with limited informa-
tion. The focus is on designing the least destabilizing quantizer
subject to a given information constraint. We explore several
ways of measuring the destabilizing effect of a quantizer on the
closed-loop system, including (but not limited to) the worst-case
quantization error. In each case, we show how quantizer design
can be naturally reduced to a version of the so-called multicenter
problem from locational optimization. Algorithms for obtaining
solutions to such problems, all in terms of suitable Voronoi
quantizers, are discussed. In particular, an iterative solver is
developed for a novel weighted multicenter problem which most
accurately represents the least destabilizing quantizer design. A
simulation study is also presented.

Index Terms— Feedback stabilization, locational optimization,
quantized control.

I. I NTRODUCTION

In this paper we study control systems whose state variables
are quantized. We think of a quantizer as a device that
converts a real-valued signal into a piecewise constant one
taking a finite set of values. The recent papers [3], [9], [14]
discuss various situations where this type of quantizationarises
and provide references to the literature. Mathematically,a
quantizer can be described by a piecewise constant function
q : D ⊂ R

n → Q, where Q is a finite subset ofRn

with a fixed number of elementsN . Here n is the state
dimension of a given system andD is a closed region of
interest in the state space. We denote the elements ofQ by
q1, . . . , qN and refer to them asquantization points. The sets
Wi := cl{x ∈ D : q(x) = qi}, i ∈ {1, . . . , N} associated with
fixed values of the quantizer form a partition1 of the regionD
and are calledquantization regions(cl denotes closure). We
will sometimes identify a quantizerq with the corresponding
pair (Q,W), whereW := {W1, . . . ,WN}. Quantized values
of the state represent a limited information flow from the
system to a feedback controller: the state is not completely
known to the controller, but it is only known which one of a
fixed number of quantization regions contains the current state
at each instant of time. (Assuming that the quantization points
are known to the controller, one can think of the information
flow as a string of integers from 1 toN , transmitted at the
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1A collection {W1, . . . , WN} of subsets ofD is a partition of D if the
intersection between the relative interior of any twoWi is empty and the
union of all Wi equalsD.

times when the state trajectory crosses the boundaries between
the quantization regions.)

In the literature it is usually assumed that quantization
regions are fixed in advance and have specific shapes, most
often rectilinear. Here we are interested in the situation where
the numberN of quantizer values is a given constraint in
the control problem, but the control designer has flexibility
in choosing a specific configuration of quantization regions
(whose shapes can in principle be arbitrary) and quantization
points. While there has been some research on systems with
quantization regions of arbitrary shapes [19], [16] and on the
relationship between the choice of quantization regions and
the behavior of the closed-loop system [9], [14], the general
problem of determining the “best” quantizer for a particular
control task such as feedback stabilization remains largely
open.

A feedback law which globally asymptotically stabilizes a
given system in the absence of quantization will in general
fail to provide global asymptotic stability of the closed-loop
system that arises in the presence of state quantization. Two
phenomena accounting for changes in the system’s behavior
caused by quantization will play the role in what follows. The
first one is saturation: if the quantized signal is outside the
range of the quantizer, then the quantization error is large, and
the control law designed for the ideal case of no quantization
may lead to instability. The second one is deterioration of
performance near the equilibrium: as the difference between
the current and the desired values of the state becomes small,
higher precision is required, and so in the presence of quan-
tization errors asymptotic convergence is typically lost.These
phenomena manifest themselves in the existence of two nested
invariant regions,R1 andR2, such that all trajectories of the
quantized system starting in the bigger regionR1 approach the
smaller oneR2 while no further convergence guarantees can
be given. Chattering on the boundaries between quantization
regions is possible, and solutions are to be interpreted in the
sense of Filippov if necessary [11]; however, this issue will
not play a significant role in the subsequent stability analysis,
because we will work with a singleC1 Lyapunov function on
R1 \ R2. (One way to prevent chattering, and thus ensure a
finite data rate, would be to introduce a dwell time; cf. [14].)

In Section II we explain how the destabilizing effect of a
given quantizer can be measured. We introduce the concept
of a destabilization measurewhich, in conjunction with an
arbitrary stabilizing feedback law and a corresponding Lya-
punov function, can be used to determine an ultimate bound on
solutions. One example of such a destabilization measure isthe
worst-case quantization errormaxx∈D |q(x)−x|. However, it
turns out that there exist other destabilization measures which
are actually more suitable in the present context. Although
the parameters of the control system are used in the stability
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analysis, the destabilization measure itself is a functionof the
quantization regions and quantization points only. The quan-
tizer design problem then naturally reduces to an optimization
problem which consists in minimizing such a measure over all
quantizers satisfying the information constraint. We describe
this procedure for three different types of quantizers arising
from uniform, radial and spherical, and radially weighted
quantization.

After casting quantizer design as an optimization problem,
we proceed to explain how techniques fromoptimal facility
location (or locational optimization) yield new insights into
this problem as well as efficient algorithms for solving it.
Facility location problems concern the location of a fixed num-
ber of facilities that provide service demanded by users; the
objective is to minimize the average or maximal distance from
sets of demand points to facilities. We focus here on settings
continuous in the location of both the facilities and the demand
points (i.e., both facilities and demand points take valuesin
a continuum of points, such as a polytope or an ellipsoid).
Facility location problems are surveyed in [7]. Computational
geometric aspects in continuous facility location are discussed
in [24], [23] and indirectly in textbooks on computational ge-
ometry [6]. Relevant background on computational geometric
methods in locational optimization is provided in Section III.

For example, a classical problem of interest in locational
optimization is the so-calledmultimedian problem. It consists
in choosing a collection ofN points q1, q2, . . . , qN in a
bounded regionD ⊂ R

n so as to minimize the quantity
E(mini∈{1,...,N} |qi − x|2), where the expected value is com-
puted with respect to some probability density function onD
and| · | denotes the Euclidean norm. Solutions of this problem
are given bycentroidal Voronoi tessellations; see [28], [8].
Within the context of quantization and information theory,the
multimedian problem is known as the fixed-rate minimum-
distorsion quantizer design [7], [13]. One of the early ref-
erences on this problem is the classic work by Lloyd [18],
who obtains optimality conditions and introduces a famous
insightful algorithm. The multimedian problem is related to
the problem of state moment stabilization of linear systems
with limited data rate [21].

Since we are working in the deterministic setting, we will
find that the problem relevant for our purposes is themulticen-
ter problem, discussed in [28], [27]. This is a somewhat less
frequently encountered variant of the multimedian problem,
which is obtained by replacing the expected value by the
worst-case value; it can also be stated as the problem of
covering a given region with overlapping balls of minimal
radius. The connection between the quantized control problem
and the multicenter problem, although very natural, apparently
has not been pursued before. In Section III we present a
general formulation of the multicenter problem with weighting
factors. We then discuss solutions of specific versions of
this problem corresponding to the three types of quantization
considered in Section II, all in terms of suitable Voronoi
quantizers. We show how existing algorithms can handle the
first two approaches, and then develop a new algorithm for
the last one which gives less conservative results. We note
that while weighted multimedian problems are commonly

encountered, our formulation appears to be novel in that it
introduces weighting factors in the context of the continuous
multicenter problem.

In Section IV we provide a comparative simulation study
of the three quantizer designs considered here and a standard
rectangular quantizer for a two-dimensional linear system.
These simulation results—as well as existing studies of the
related multimedian problem, such as [12]—indicate that by
solving the quantized feedback stabilization problem withthe
help of locational optimization techniques, one may obtain
quite interesting quantization patterns. For the multicenter
problem in the plane, for example, a typical Voronoi region is
a hexagon. Consequently, hexagonal quantization regions for
planar systems have some advantages over more traditional
rectangular ones.

II. QUANTIZATION AND STABILITY

We assume that the stabilization problem in the absence
of quantization has been solved, in the sense that a state
feedback control law is known such that the origin is a
globally asymptotically stable equilibrium point of the ideal
closed-loop system. In the presence of quantization, we adopt
the “certainty equivalence” control paradigm; namely, we
let the same control law act on the quantized stateq(x),
where q is a quantizer onRn (or on a smaller region of
interest). The problem under consideration is to characterize
the destabilizing effect of the quantizerq, with the goal of
obtaining an ultimate bound on solutions of the closed-loop
system starting in a given bounded region. We first discuss this
problem for general nonlinear systems and then develop more
specific results for linear systems, moving from simpler but
conservative to more complicated but sharper formulations.

A. Nonlinear systems

We start with the general situation where the process to be
controlled is modeled by the system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m. (1)

All vector fields and control laws are understood to be suf-
ficiently regular (e.g.,C1) so that existence and uniqueness
of solutions are ensured. Suppose that some nominal static
feedback lawu = k(x) is given (with minor changes, dynamic
feedback laws can also be used). In the presence of state
quantization, we consider the feedback lawu = k(q(x)) and
the corresponding closed-loop system

ẋ = f(x, k(q(x))) = f(x, k(x + e)) (2)

wheree := q(x) − x represents thequantization error.
Besides stabilizing the nominal system (1), the feedback

law k clearly must possess some robustness property with
respect to the measurement errore. To this end we impose the
following assumption: there exists aC1 functionV : R

n → R

such that for some classK∞ functionsα1, α2, α3, ρ and for
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all x, e ∈ R
n we have2 α1(|x|) ≤ V (x) ≤ α2(|x|) and

|x| ≥ ρ(|e|) ⇒ ∂V

∂x
f(x, k(x + e)) ≤ −α3(|x|).

(Here and later,| · | denotes the standard Euclidean norm.)
This amounts to the property that the control lawu = k(x)
input-to-state stabilizesthe closed-loop system with respect
to the measurement errore [25], [26]. This assumption is
rather restrictive and can be relaxed at the expense of obtaining
weaker results (for linear systems, however, it is an automatic
consequence of closed-loop asymptotic stability fore ≡ 0).
There is also considerable research on designing control laws
satisfying this assumption. These issues are further discussed
elsewhere [15], [16], [17].

Pick a positive numberM and consider the ballBM :=
{x ∈ R

n : |x| ≤ M}. Consider the worst-case quantization
error

∆ := max
x∈BM

|e| (3)

(this quantity is sometimes also referred to as thesensitivity
of the quantizer). The following result is fairly straightforward
to obtain (see [16, Lemma 2] and [17, Lemma 5.2]).

Lemma 1 Assume that

α1(M) > α2 ◦ ρ(∆). (4)

Then the sets

R1 := {x ∈ R
n : V (x) ≤ α1(M)} (5)

and
R2 := {x ∈ R

n : V (x) ≤ α2 ◦ ρ(∆)}
are invariant regions for the system(2). Moreover, all solutions
of (2) that start in the setR1 enter the smaller setR2 in finite
time. An upper bound on this time is

T =
α1(M) − α2 ◦ ρ(∆)

α3 ◦ ρ(∆)
. (6)

This lemma implies, in particular, that all solutions starting
in R1 at time t = t0 satisfy the ultimate bound

|x(t)| ≤ α−1
1 ◦ α2 ◦ ρ(∆), ∀t ≥ t0 + T (7)

with T given by the formula (6). We regard the quantity∆
defined by (3) as adestabilization measureof the quantizer
q. For given feedback lawk and Lyapunov functionV , an
ultimate bound on solutions can be described by a classK∞

function of this measure as shown by (7). It is not hard to see
that if the numberN of quantization regions is sufficiently
large, then∆ can be made small enough for the inequality (4)
to hold. Minimizing ∆—and consequently the size of the
attracting invariant regionR2—over all possible choices of the
quantizerq corresponds to the following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x| (8)

2Recall that a functionα : [0,∞) → [0,∞) is said to be ofclassK if
it is continuous, strictly increasing, andα(0) = 0. If α ∈ K is unbounded,
then it is said to be ofclassK∞. The existence of functionsα1 andα2 with
the indicated property simply means thatV is positive definite and radially
unbounded; it will be convenient to have these functions explicitly in the
following analysis.

whereQ = {q1, . . . , qN} is a set of quantization points and
W = {W1, . . . ,WN} is a partition ofBM into quantization
regions. (We could work with partitions ofR1 rather than
BM , but this requires the knowledge ofV and also may
be less computationally feasible for non-quadraticV .) The
optimization problem (8) is known as themulticenter problem
in computational geometry; we defer its detailed discussion
until Section III-A.

B. Worst-case quantization error for linear systems

We now specialize to the case when the process is described
by the linear system

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m. (9)

The linear system structure can be utilized to define a destabi-
lization measure in several different ways. Suppose that the
system (9) is stabilizable, so that for some matrixK the
eigenvalues ofA + BK have negative real parts. Then there
exists a unique positive definite symmetric matrixP such that

(A + BK)T P + P (A + BK) = −I. (10)

We let λmin(P ) and λmax(P ) denote the smallest and the
largest eigenvalue ofP , respectively. We assume thatB 6= 0
and K 6= 0; this is no loss of generality because the case of
interest is whenA is not a stable matrix.

The quantized state feedback control lawu = Kq(x) yields
the closed-loop system

ẋ = Ax + BKq(x). (11)

Take a positive numberM and consider the ellipsoids

R1 := {x ∈ R
n : xT Px ≤ λmin(P )M2} (12)

and

R2 := {x ∈ R
n : xT Px ≤ λmax(P )4(1 + ε)2‖PBK‖2∆2}

(13)
whereε > 0 is arbitrary and∆ is the worst-case quantization
error defined by (3). Then we have the following linear coun-
terpart of Lemma 1. Although this result is known (see [16,
Lemma 1] and [17, Lemma 5.1]), we sketch a proof because
it will be needed in the sequel; this proof also differs slightly
from the one given in the references.

Lemma 2 Assume that

λmin(P )M2 > λmax(P )4(1 + ε)2‖PBK‖2∆2. (14)

Then the ellipsoidsR1 and R2 defined by(12) and (13) are
invariant regions for the system(11). Moreover, all solutions
of (11) that start in the ellipsoidR1 enter the smaller ellipsoid
R2 in finite time. An upper bound on this time is

T =
λmin(P )M2 − λmax(P )4(1 + ε)2‖PBK‖2∆2

4‖PBK‖2∆2(1 + ε)ε
. (15)

Proof: Rewrite (11) as

ẋ = (A + BK)x + BKe
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where e := q(x) − x is the quantization error as before. In
view of (10), the derivative of the function

V (x) := xT Px

along solutions of this system satisfies

V̇ = −xT x + 2xT PBKe ≤ −|x|2 + 2|x||PBKe|. (16)

We can rewrite this as

V̇ ≤ − ε

1 + ε
|x|2 − 1

2(1 + ε)
|x|2 + 2(1 + ε)|PBKe|2

−
(

1
√

2(1 + ε)
|x| −

√

2(1 + ε)|PBKe|
)2

≤ − ε

1 + ε
|x|2 − 1

2(1 + ε)

(

|x|2 −
(

2(1 + ε)|PBKe|
)2
)

.

Therefore, we have

|x| ≥ 2(1 + ε)|PBKe| ⇒ V̇ ≤ − ε

1 + ε
|x|2. (17)

Using the inequality|PBKe| ≤ ‖PBK‖|e|, where‖·‖ stands
for the matrix norm induced by the Euclidean norm, we obtain

|x| ≥ 2(1 + ε)‖PBK‖|e| ⇒ V̇ ≤ − ε

1 + ε
|x|2. (18)

It is now straightforward to conclude the result.
As a consequence of this lemma, an ultimate bound on

solutions starting inR1 at time t = t0 is

|x(t)| ≤
√

λmax(P )

λmin(P )
2(1 + ε)‖PBK‖∆, ∀t ≥ t0 + T

with T given by the formula (15). Decreasingε to 0, we see
that solutions (asymptotically) approach the ellipsoid

{x ∈ R
n : xT Px ≤ λmax(P )4‖PBK‖2∆2}.

Thus we still consider∆ as a destabilization measure. As
in the nonlinear setting, this leads to the optimization prob-
lem (8). If N is large enough, then∆ can be made small
enough so that the inequality (14) holds (for a given feedback
gain K).

Remark 1 We note that another approach is to work with (17)
directly, avoiding the use of the induced norm‖PBK‖. Define

∆P BK := max
x∈R1

|PBKe|.

The result of Lemma 2 still holds if‖PBK‖2∆2 is replaced
by ∆2

P BK
everywhere in the statement of that lemma. This

yields a less conservative ultimate bound and motivates the
following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|PBK(qi − x)| (19)

where Q is a set of quantization points as before andW
is a partition ofBM (or R1) into N regions. This problem
is in general lower-dimensional compared to (8) because the
subspaceker(PBK) can be ignored. (Note thatPBK is a
singular matrix wheneverm < n.) Therefore, for the sameN
the optimal value for this problem will be significantly lower
than that for (8). However,∆P BK is not really a destabilization

measure in the sense used in this paper, because it depends
on the feedback gain matrixK. While it gives better results
for a fixed feedback law, quantizer design based on this
destabilization measure needs to be redone if the feedback
law is changed, and is not suitable for switching between
several feedback laws. For these reasons we henceforth focus
on destabilization measures that are independent of a particular
feedback law used.

Remark 2 It is clear that in Lemma 2, the system’s behavior
is important only forx ∈ R1 \R2. In other words, redefining
the quantizer arbitrarily outsideR1 \ R2 does not affect
the result. This means that we can design the quantizer
more efficiently and preserve or decrease the ultimate bound
on solutions. For example, if the quantizer that solves the
optimization problem (19) involves several quantization points
insideR2, we can move some of them toR1 \R2 to achieve
better coverage there. We can also restate the problem (19)
in terms of partitions ofR1 \ R2 or of a spherical annulus
containing this set.

Remark 3 Lemma 2 suggests that among stabilizing state
feedback gainsK, the ones that provide smaller ultimate
bounds for the solutions of the quantized system (for a fixed
quantizer) are those with smaller values of the induced matrix
norm ‖PBK‖, where P is given by (10). In this regard,
it is interesting to observe the following: if the open-loop
systemẋ = Ax is not asymptotically stable, then for every
stabilizing feedback gainK and the corresponding positive
definite symmetric matrixP satisfying (10) we have

‖PBK‖ ≥ 1/2 (20)

and the inequality is strict iḟx = Ax is unstable. To see this,
use (16) and the definition ofe to write

V̇ ≤ −|x|2
(

1 − 2‖PBK‖ |q(x) − x|
|x|

)

. (21)

This formula will be used again several times in the sequel.
Now, note that if q is chosen to take the value 0 in a
neighborhood of the origin, then the right-hand side of (21)
equals−|x|2(1−2‖PBK‖) there, and so1−2‖PBK‖ cannot
be positive sinceA is not stable. It is also straightforward to
show (20) directly: just multiply (10) on the left byvT and
on the right byv, where v is a normalized eigenvector of
AT P + PA with a nonnegative eigenvalue.

C. Radial and spherical quantization for linear systems

In the previous developments, the required bounds on the
quantization error do not depend on the size of the state. This
leads to uniform quantization, in the sense that quantization
points are distributed uniformly over the region of interest.
However, it is well known that more efficient quantization
schemes are those which provide lower precision far away
from the origin and higher precision close to the origin.
Quantizers with a logarithmic scale are particularly useful;
see [9]. Loosely speaking, with logarithmic quantization one
has the same number of quantization points in the vicinity of
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every sphere centered at the origin in the state space, whereas
with uniform quantization this number grows with the radius.
This observation suggests introducing a “direct product” of
one quantizer on a unit sphere and another along the radial
direction, which is what we do next.

Let us write
x = |x|vers(x)

where
vers(x) :=

x

|x| .

We represent the quantizer accordingly as

q(x) = qr(|x|)qs(vers(x)) (22)

where qr takesN1 positive real values,qs takesN2 values
on or inside the unit sphere, andN1 and N2 are some
positive integers such thatN1N2 ≤ N . This means that we
introduce two separate quantizers, one for|x| and the other
for vers(x). The set of quantization points for the resulting
overall quantizerq is formed by theN1N2 pairwise products
of the values ofqr andqs.

Let us introduce the worst-case quantization error on the
unit sphere corresponding toqs:

∆s := max
|x|=1

|qs(x) − x|. (23)

As before, pick a positive numberM . We will take qr to be
a logarithmic quantizer, defined as follows: given a pair of
numbersa, b satisfying

0 < a < 1 < b, (24)

let

qr(z) := (ai/bi−1)M, for z ∈
(

(a/b)iM, (a/b)i−1M
)

,

i ∈ {1, . . . , N1}
(25)

and defineqr at the endpoints of these intervals to make
it continuous from the right or from the left. Consider the
ellipsoid

R2 := {x ∈ R
n : xT Px ≤ λmax(P )(a/b)2N1M2}. (26)

Lemma 3 Assume that

λmin(P )M2 > λmax(P )(a/b)2N1M2 (27)

and
∆s <

1 − ε

2‖PBK‖ (28)

for someε > 0. Let

a := 1− 1 − ε

2‖PBK‖+∆s , b := 1+
1 − ε

2‖PBK‖−∆s. (29)

Then(24) holds. Withqr given by(25) andq given by(22), the
ellipsoidsR1 and R2 defined by(12) and (26) are invariant
regions for the system(11). Moreover, all solutions of(11)
that start in the ellipsoidR1 enter the smaller ellipsoidR2

in finite time. An upper bound on this time is

T =
λmin(P )M2 − λmax(P )(a/b)2N1M2

(a/b)2N1M2ε
. (30)

Proof: The fact that the numbersa andb defined by (29)
satisfy the inequalities (24) follows directly from (20) and (28).
It is a simple matter to check from (25) that we have

(a/b)N1M ≤ z ≤ M ⇒
∣

∣

∣

∣

qr(z)

z
− 1

∣

∣

∣

∣

≤ max
{

b − 1, 1 − a
}

.

For the values ofa andb given by (29), this becomes

(a/b)N1M ≤ z ≤ M ⇒
∣

∣

∣

∣

qr(z)

z
− 1

∣

∣

∣

∣

≤ 1 − ε

2‖PBK‖ − ∆s.

(31)
Now, from the triangle inequality and the fact that
|qs(vers(x))| ≤ 1 for all x by construction, we obtain

|q(x) − x| ≤
∣

∣

∣
qr(|x|)qs(vers(x)) − |x|qs(vers(x))

∣

∣

∣

+
∣

∣

∣
|x|qs(vers(x)) − |x|vers(x)

∣

∣

∣

≤
∣

∣

∣
qr(|x|) − |x|

∣

∣

∣
+ |x|

∣

∣

∣
qs(vers(x)) − vers(x)

∣

∣

∣

≤ |x|
(∣

∣

∣

∣

qr(|x|)
|x| − 1

∣

∣

∣

∣

+ ∆s

)

where the last inequality follows from (23). Substituting this
into (21), we conclude that the derivative ofV along solutions
of the closed-loop system satisfies

V̇ ≤ −|x|2
[

1 − 2‖PBK‖
(∣

∣

∣

∣

qr(|x|)
|x| − 1

∣

∣

∣

∣

+ ∆s

)]

. (32)

Combining this with the formula (31), we conclude thatV̇ ≤
−ε|x|2 for all x ∈ R1 \ R2, from which it is straightforward
to conclude the result.

For fixed N1 and N2, the quantity∆s defined by (23)
provides a destabilization measure (forqs). WhenK is given
and ∆s satisfies the inequality (28) for someε > 0, we
can constructqr via (25) and compute an ultimate bound on
solutions using Lemma 3. Minimizing∆s corresponds to the
following optimization problem:

min
Qs,Ws

max
i∈{1,...,N2}

max
x∈W s

i

|qs
i − x| (33)

whereQs = {qs
1, . . . , q

s
N2

} is a set of points on or inside the
unit sphere andWs = {W s

1 , . . . ,W s
N2

} is a partition of the
unit sphere. This problem can be solved by the same algorithm
as the problem (8), as will be described in Section III-A. The
quantity (33) will not exceed the right-hand side of (28) if
N2 is sufficiently large. For a givenN , the values ofN1 and
N2 satisfyingN1N2 ≤ N which yield the smallest ultimate
bound are not easy to compute analytically and in general
seem to depend on the stabilizing feedback gainK; however,
there is a finite number of choices for these integers and we
can find the optimal values by trying all of them. We remark
that in the context of the multimedian problem, the idea of
spherical coordinates quantization has been exploited before,
and in particular the trade-off between the numbers of values
for the radial and the spherical directions has been studied;
see [29] and the references therein.

Remark 4 It is straightforward to derive similar results using
the norm defined by the Lyapunov function, i.e.,‖x‖ :=√

xT Px, instead of the Euclidean norm. This gives rise to an
optimization problem on an ellipsoid rather than on a sphere.
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D. Radially weighted quantization for linear systems

The need for logarithmic quantization patterns is evidenced
by the fact that it is the ratio|e|/|x|, and not the absolute value
of the quantization error|e| itself, that needs to be small. This
is clear from the formulas (18) and (21). The approach of
Section II-C leads to an “aligned” logarithmic quantization
pattern, in the sense that quantization points on spheres of
different radii are aligned along the same radial directions.
However, it is not hard to see that non-aligned quantization
patterns may achieve better coverage. This suggests proceed-
ing from (21) in a more direct fashion.

To this end, pick two numbersM > m > 0 and consider
the ellipsoidsR1 given by (12) and

R2 := {x ∈ R
n : xT Px ≤ λmax(P )m2}. (34)

Define

∆rw := max
x∈R1\R2

|q(x) − x|
|x| . (35)

The following result easily follows by virtue of (21), and the
proof is omitted.

Lemma 4 Assume that

λmin(P )M2 > λmax(P )m2 (36)

and

∆rw ≤ 1 − ε

2‖PBK‖ (37)

for someε > 0. Then the ellipsoidsR1 andR2 defined by(12)
and (34) are invariant regions for the system(11). Moreover,
all solutions of (11) that start in the ellipsoidR1 enter the
smaller ellipsoidR2 in finite time. An upper bound on this
time is

T =
λmin(P )M2 − λmax(P )m2

m2ε
. (38)

The quantity∆rw defined by (35) provides another desta-
bilization measure forq, in relation to a pair of numbers
M > m > 0. Given a stabilizing feedback gainK, we can
check the inequalities (36) and (37) and, if they are satisfied,
obtain an ultimate bound on solutions from Lemma 4. (It is
also clear from (21) that∆rw provides a lower bound on the
rate of decay of solutions inR1 \ R2.) This leads us to the
following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x|
|x| (39)

whereQ = {q1, . . . , qN} is a set of quantization points and
W = {W1, . . . ,WN} is a partition of the annulus{x ∈ R

n :
m ≤ |x| ≤ M} into quantization regions. The inequality (37)
will hold for a givenK if N is sufficiently large.

The optimization problem (39) is different in structure from
the ones we encountered earlier, and apparently has not been
studied in the locational optimization literature. We henceforth
call it the radially weighted multicenter problem. It turns out
that while this problem is more challenging than the others,it
is still computationally tractable. We will develop an algorithm
for solving it in Section III-B.

Remark 5 In this paper, we are assuming that quantizer
design can only be performed once and cannot be changed
on-line. In situations where one can recompute the locations
of quantization regions and quantization points on-line, it is
possible to achieve global asymptotic stability of the quantized
closed-loop system by using the dynamic quantization strategy
developed in [3], [16]. In fact, a simple rescaling of the
quantizer everyT units of time would suffice. For this to work,
we need to ensure thatR2 is a strict subset ofR1 in each
of the previous schemes. This means that the optimization
problems formulated earlier remain relevant, except that by
passing from static to dynamic quantization we basically pass
from an optimal to a suboptimal quantizer design objective.
An interesting direction for future research is to incorporate
a cost for recomputing the quantization parameters into the
quantizer design problem.

III. C ONTINUOUS MULTICENTER PROBLEMS IN FACILITY

LOCATION

In this section we present a class of optimization problems
related to the field of facility location; see the discussionin
Section I and the survey [7]. The facility location problem we
consider will have as special cases the optimization problems
studied in Section II, and in particular the problems (8) from
Sections II-A and II-B, (33) from Section II-C, and (39) from
Section II-D.

Let us review some preliminary concepts. Given a compact
regionD ⊂ R

n and a set ofN pointsQ = {q1, . . . , qN} in
R

n, the Voronoi partitionV = {V1, . . . , VN} of D generated
by Q is defined according to

Vi := {x ∈ D : |x − qi| ≤ |x − qj |, ∀j 6= i}. (40)

When it is useful to emphasize the dependency onQ, we
shall writeV(Q) or Vi(Q). WhenD is a polytope inRn, each
Voronoi regionVi is a polytope, otherwiseVi is the intersection
between a polytope andD. The faces of the polytope which
definesVi are given by hyperplanes of points inRn that are
equidistant fromqi and qj , j 6= i; among the latter, only
“neighboring” points play a role. Note that this (standard)
construction remains valid whenD is a lower-dimensional
subset ofRn, such as a sphere. We refer to [6], [23] for
comprehensive treatments of Voronoi partitions.

Let Q = {q1, . . . , qN} be a collection of points inRn and
let W = {W1, . . . ,WN} be a partition ofD. In what follows,
we shall concern ourselves with the function

H(Q,W) := max
i∈{1,...,N}

max
x∈Wi

φ(x)f(|x − qi|) (41)

where φ : D → [0,∞) is continuous non-negative and
f : [0,∞) → [0,∞) is continuous, non-decreasing and
unbounded. We also assume thatφ does not identically vanish
on D. We investigate the optimization problem

min
Q,W

H(Q,W) (42)

and refer to it as theweighted multicenter problem. In general,
H is a nonlinear non-convex function of the locationsQ
and of the partitionW. Accordingly, its global minima can
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be obtained only numerically via nonlinear programming
algorithms. However, this and related facility location prob-
lems [28], [27], [8] have some peculiar structure that helps
us characterize optimal solutions and design useful iterative
algorithms. Let us start by considering theweighted 1-center
problemoverD, i.e., takeN = 1.

Lemma 5 The functionH1 : R
n → [0,∞) defined by

H1(q) := H({q}, {D}) = max
x∈D

φ(x)f(|x − q|)

is continuous, radially unbounded, and quasiconvex.3 If f is
convex andφ is constant, thenH1 is convex.

Proof: The function H1 is continuous because it is
the maximum of a compact family of continuous functions.
Further,H1 is radially unbounded because for everyx∗ ∈ D
such thatφ(x∗) > 0 we haveH1(q) ≥ φ(x∗)f(|x∗ − q|)
andf is unbounded. To show the other statements, we invoke
certain properties of convex and quasiconvex functions; see
Sections 3.2 and 3.4 in [2]. At a fixedx, the functionq 7→
f(|x − q|) is quasiconvex because it is the composition of a
convex function with a non-decreasing function. Furthermore,
if f is non-decreasing and convex, thenq 7→ f(|x − q|)
is convex because, at a fixedx, it is the composition of a
convex function with a convex non-decreasing function. Iff
is convex, thenq 7→ maxx∈D f(|x − q|) is convex because it
is the pointwise supremum over a set of convex functions. For
generalφ andf , the functionH1 is quasiconvex because it is
the weighted pointwise supremum of quasiconvex functions.

Next, we letco(D) denote the convex hull ofD and study
the global minima ofH1.

Lemma 6 The set of global minimum points forH1 is com-
pact, convex and has a non-empty intersection withco(D). If
f is strictly increasing, then all global minimum points belong
to co(D).

Proof: The fact that the set of global minimum points
is compact and convex is an immediate consequence of
continuity, radial unboundedness, and quasiconvexity. Let us
prove the non-empty intersection withco(D). Suppose that
q∗ 6∈ co(D) is a global minimum point forH1. Let p∗ ∈ co(D)
be the closest point toq∗, i.e., p∗ := argminx∈co(D) |q∗ − x|.
Then |x − p∗| < |x − q∗| for all x ∈ D, so that, for all
x ∈ D, we haveφ(x)f(|x − p∗|) ≤ φ(x)f(|x − q∗|) ≤
maxx∈D φ(x)f(|x − q∗|) = H1(q

∗). Therefore,H1(p
∗) =

maxx∈D φ(x)f(|x−p∗|) ≤ H1(q
∗) andp∗ also belongs to the

set of global minimum points. Whenf is strictly increasing,
the previous argument leads toH1(p

∗) < H1(q
∗), which

contradicts the assumption thatq∗ is a global minimum.
Lemmas 5 and 6 show that the weighted 1-center problem

overD is a quasiconvex optimization problem, i.e., it consists
in minimizing the quasiconvex functionH1 over the convex
set co(D). It is known that every quasiconvex optimization
problem can be solved by iterative techniques (via a bisection
algorithm solving a convex feasibility problem at each step;

3Recall that aquasiconvexfunction is a function defined on a convex
domain and with convex sublevel sets.

see Section 4.2.5 in [2]). We callq∗(D) a weighted centerof
the regionD if it is a (possibly non-unique) global minimum
point:

q∗(D) := argmin
q∈co(D)

max
x∈D

φ(x)f(|x − q|).

Now, it is useful to return to the general weighted multicen-
ter problem (41), (42) and defineW 7→ Q∗(W) as the map
that associates toW a collection ofN (possibly non-unique)
global minimum points for the corresponding weighted 1-
center problems; in other words,Q∗({W1, . . . ,WN}) :=
{q∗(W1), . . . , q

∗(WN )}. Note that these weighted centers are
well defined since eachWi is compact. Finally, define the
Lloyd map(or the Lloyd algorithm)L : (Q,W) 7→ (Q′,W ′)
whereW ′ := V(Q) andQ′ := Q∗(W ′). The following result
is a relatively straightforward consequence of LaSalle Invari-
ance Principle for discrete-time dynamical systems; further
convergence properties are under current investigation in[5].

Lemma 7 At a fixedQ, a global minimum ofW 7→ H(Q,W)
is achieved atW = V(Q). At a fixedW, a global minimum
of Q 7→ H(Q,W) is achieved atQ = Q∗(W). The Lloyd
map is a descent algorithm for the cost functionH, i.e., an
application of the map is guaranteed not to increaseH. The
cost is guaranteed to decrease in one iteration if no active4

point qj ∈ Q is a weighted center of its regionWj . Given
an initial pair (Q0,W0), the sequence{Lk(Q0,W0), k ≥
0} approaches the largest set invariant underL on which
H(L(Q,W)) = H(Q,W).

Remark 6 (i) Fixed points of the Lloyd map areweighted
central Voronoi quantizers, i.e., pairs(Q,W) such that
W is the Voronoi partition generated byQ and at the
same time the points inQ are weighted centers forW. It
is an open conjecture that the iteration described in the
lemma converges to local minima ofH. Nevertheless,
the algorithm is of interest to us because it is guaranteed
to improve a given quantizer design and provides a good
indication as to whether or notN is large enough to
achieve the control objective.

(ii) The classic Lloyd algorithm is tailored to the continuous
multimedian problem as it appears, for example, in
the problem of fixed-rate minimum-distorsion quantizer
design; see [7], [13]. The classic Lloyd algorithm differs
from the one considered here only in the fact that the
points inQ are moved to the centroids—as opposed to
the weighted centers—of the respective Voronoi regions.
(Centroids are solutions of the 1-median problems.)

(iii) The results in Lemmas 5, 6, and 7 provide an algorithm
for the solution of the relevant multicenter problems via
1) quasiconvex programming and 2) Voronoi partition
computations. It is important to observe that intense
research activity is ongoing on both problems and that
numerical iterative algorithms are available for solving
them; e.g., see [1], [2] and references therein.

4We call qj active if H(Q,W) = maxx∈Wj
φ(x)f(|x − qj |), i.e., the

maximum overi is achieved at the indexj.
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Next, we consider the specific settings that arise in the
quantizer design problems discussed in the previous sec-
tion. We characterize additional properties of the multicenter
problem (8), the spherical multicenter problem (33), and the
radially weighted multicenter problem (39). To implement the
Lloyd algorithm, two tasks must be carried out repeatedly.
One consists in computing the Voronoi partition for a given
set of pointsQ, which is accomplished by the standard
procedure described earlier. The other amounts to computing
a weighted center for each setWi in a given partition. Thus
for each of the specific multicenter problems, we must now
discuss how to solve the corresponding 1-center problem.
Some additional remarks on the properties of these particular
multicenter problems will also be provided.

A. Multicenter problem

Let us first consider the problem (8) arising in Sections II-
A and II-B. The domain is a ball centered at the origin or,
more generally, an ellipsoid, i.e.,D = {x ∈ R

n : xT Px ≤ 1}
for some positive definite symmetric matrixP . Note also that
the problem (19) arising in Section II-B reduces, via a linear
change of coordinates, to the multicenter problem considered
here in a lower dimension.

In the problem (8), the weighting functionφ is identically
equal to 1 and the performance functionf is the identity
map. Under these conditions, we refer to the optimization
problem (42) simply as the multicenter problem; see [28], [27].
The multicenter problem can be equivalently restated as the
problem of covering the regionD with a given number of
(possibly overlapping) balls of smallest radius. IfB1 ⊂ R

n is
the unit ball centered at the origin, and ifRB1 +q denotes the
ball of radiusR centered at a pointq, the problem reads:

min R, subject to ∪
i∈{1,...,N}

(RB1 + qi) ⊇ D.

Let us analyze the 1-center problem. From Lemma 5 we
know that this is a convex optimization problem. For each
region Vi, the optimal solutionq∗(Vi) is the center of the
minimal-radius enclosing sphere forVi. This center is unique
because the minimal-radius enclosing sphere is the intersection
of all enclosing spheres. WhenVi ⊂ R

2 is a polygon, this
sphere is referred to as the smallest enclosing circle and
algorithms are available to compute it; see [6, Chapter 4].
WhenVi ⊂ R

n is a polytope, the smallest enclosing ellipsoid
(in particular, sphere) can be computed via iterative convex
optimization algorithms; see [2, Section 8.4]. For a Voronoi
region Vi near the boundary ofD, which is not a polytope,
we can under-approximate it by a polytope generated by the
vertices ofVi and suitable additional points on the intersection
of Vi with the boundary ofD, and then compute the center
of this polytope. For a sufficiently close under-approximation,
this center will also be the center ofVi.

When D is a unit cube inR
n, the optimal value of the

problem (8) satisfies the bounds

1

2b n
√

Nc
≤ ∆ ≤

√
n

2b n
√

Nc
.

The upper bound is easily obtained by constructing a uniform
cubical quantization pattern, while the lower bound is known
as Sukharev’s lower bound on dispersion [22], [20]. In the
present case whenD is a ball, it is straightforward to obtain
similar bounds by considering inscribed and superscribed
cubes forD. The upper bound can be used to evaluate the
convergence of the Lloyd algorithm. When the lower bound
on ∆ is not small enough for the inequality (4) or (14) to
hold, it indicates that a different destabilization measure and/or
a different stabilizing feedback law must be used, or thatN
must be increased.

It is also useful to recall some known facts about the
multimedian problem. It is conjectured in [12] that forN
sufficiently large, the optimal quantizer with respect to the
uniform probability density is given by a tessellation (i.e.,
translation and rotation) of a fixed polytope, except near
the boundary of the region of interest. In two dimensions,
polygons that can give rise to such tessellations are equilateral
triangles, rectangles, and regular hexagons. Among these,the
hexagon is optimal, because it has the smallest mean-square
quantization error with respect to its centroid per unit volume.
This result remains true if we consider the worst-case rather
than mean-square quantization error, which is the quantity
being minimized in the multicenter problem. The hexagon
achieves the smallest error with respect to its center. (For
the unit volume regular hexagon this error is approximately
0.62, compared with 0.707 for the square and 0.936 for the
equilateral triangle; the unit-volume disk gives the errorof
0.564 but disks cannot be used to obtain tessellations.) In
Section IV we will indeed see hexagonal patterns arising as
solutions of the multicenter problem.

The spherical multicenter problem (33) from Section II-C
corresponds to the setting whereD = {x ∈ R

n : |x| = 1} is
the unit sphere inRn. Since the spherical multicenter problem
is formulated in terms of the Euclidean distance inR

n, Voronoi
partitions of the sphere can be constructed as explained earlier
for the general case. Voronoi regions will be intersectionsof
polytopes with the unit sphere. The center of each Voronoi
regionVi is the center of the minimal-radius enclosing sphere
for Vi. We can consider a polytope inRn generated by the
vertices ofVi and perhaps some other points inVi. If enough
points are taken, then the center of this polytope will also be
the center ofVi. As we explained earlier, computing the center
of a polytope is a computationally tractable task.

B. Radially weighted multicenter problem

Here, we study the problem (39) formulated in Section II-
D, where the domain is the spherical annulusD = {x ∈
R

n : m ≤ |x| ≤ M}. We consider the corresponding radially
weighted 1-center problem over a setV ⊂ D:

min
q∈co(V )

max
x∈V

|q − x|
|x| . (43)

The problem is well-posed becauseV is a subset ofD and
therefore does not contain the origin. In what follows, we take
V to be a polytope; if it is not, we approximate it by a polytope
as before. We begin by making the following observation.
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Lemma 8 The optimal cost in the problem(43) is smaller
than1 if and only if the setV is separated from the origin by
a hyperplane.

Proof: Suppose first thatV is separated from the origin by
a hyperplane, so that0 /∈ co(V ). Let q̃ be the projection of the
origin ontoco(V ), i.e., q̃ := argminx∈co(V ) |x|. By construc-
tion, |x−q̃| < |x| for all x ∈ V , hencemaxx∈V |q̃−x|/|x| < 1.
This implies that the optimal cost in the problem (43) is less
than 1. To prove the converse, suppose on the contrary that
0 ∈ co(V ). This means that the origin lies on the line segment
between two pointsx1, x2 ∈ V . For the optimal cost to be
less than 1, the optimal pointq∗ must belong to the open
ball {q ∈ R

n : |q − x1| < |x1|} as well as to the open ball
{q ∈ R

n : |q−x2| < |x2|}. But the intersection between these
two sets is empty, which is a contradiction.

We shall henceforth assume that the setV is separated from
the origin by a hyperplane. ForN sufficiently large, the initial
quantization points can be chosen in such a way that each of
the resulting Voronoi regions indeed has this property. Since
by Lemma 7 the Lloyd algorithm does not increase the cost,
Lemma 8 implies that all Voronoi regions will then have this
property at every step of the iteration. From Lemmas 5 and 6
we know that the problem (43) is quasiconvex and can thus be
handled by iterative convex optimization algorithms; see the
discussion in Remark 6(iii).

In what follows we investigate the structure of the prob-
lem (43) in order to obtain a solution more constructively. Let
us first present an equivalent formulation of this optimization
problem.

Lemma 9 Let V be a polytope separated from the origin by
a hyperplane. Consider the problem of finding the sphere with
centerc and radiusr which enclosesV and minimizesr/|c|.
Let (c∗, r∗) be the parameters of the optimal sphere. Then the
optimal value for the problem(43) is γ∗ := r∗/|c∗| and the
optimal point isq∗ :=

(

1 − (γ∗)2
)

c∗.

Proof: Let fq(x) := |q − x|/|x|. In the problem (43), we
search forq that minimizes the value of the functionfq on
its smallest level set enclosingV (we will see shortly that
this is well defined). For eachγ > 0, the γ-level set offq is
described by

|q − x|2 − γ2|x|2 = 0.

BecauseV is separated from the origin by a hyperplane, we
know from Lemma 8 that the optimal value ofγ is smaller
than1. Thus from here on we will only be interested inγ < 1.
A square completion argument leads to

1

1 − γ2

(

|q − x|2 − γ2|x|2
)

=
∣

∣

∣
x− q

1 − γ2

∣

∣

∣

2

− γ2

(1 − γ2)2
|q|2,

so that theγ-level set of fq is the sphere|x − c|2 = r2,
with center c := q/(1 − γ2) and radiusr := γ|c|. In the
new variables(c, r), we must minimizeγ = r/|c| among all
spheres enclosingV .

Note that the pointq∗ belongs toco(V ) by Lemma 6, while
c∗ might not. Lemma 9 leads us to considering the problem

min
c∈Rn,r∈R

γ2(c, r) :=
r2

|c|2
subject to |c − vi|2 ≤ r2, i ∈ {1, . . . , p},

(44)

wherev1, . . . , vp are the vertices of the polytopeV . This is an
optimization problem subject to inequality constraints, which
can be solved with a finite number of computations. The idea
is to enumerate active constraints, according to the procedure
described in the following algorithm:

1: for all subsetsS of the set of vertices ofV do
2: compute the(cS , rS)-sphere minimizingγ2 among all

(c, r)-spheres touching all points inS
3: end for
4: discard all(cS , rS)-spheres not containing all vertices of

V
5: find global minima for (44) by comparing the values of

r2
S/|cS |2 among all remaining candidate spheres

Steps4 and 5 are straightforward comparison checks. Re-
garding step1, it turns out we can restrict our search to setsS
containing at least two vertices ofV , by virtue of the following
result.

Lemma 10 The optimal sphere for the problem(44) touches
at least two vertices ofV , i.e., at least two constraints are
active at the minimum.

Proof: The proof is by contradiction. Suppose that the
optimal sphere touches only one vertex. We denote this vertex
by v and assume, performing an affine coordinate change, that
it has coordinates(1, 0, . . . , 0)T . Let c = (x̄1, x̄2, . . . , x̄n)T .
Then we are led to minimizing

γ2(x̄1, x̄2, . . . , x̄n) =
(x̄1 − 1)2 +

∑n

i=2 x̄2
i

∑n

i=1 x̄2
i

= 1 +
1 − 2x̄1
∑n

i=1 x̄2
i

.

(45)
Let us show that this function has no critical points besides
the pole at the origin and the zero atv. We have

∂γ2

∂x̄1
=

2
(

x̄2
1 −

∑n

i=2 x̄2
i − x̄1

)

(
∑n

i=1 x̄2
i )

2 (46)

and
∂γ2

∂x̄i

=
−2x̄i(1 − 2x̄1)

(
∑n

i=1 x̄2
i )

2 , i 6= 1. (47)

In view of the formula (47), every critical point satisfies either
x̄1 = 1/2 or x̄i = 0 for all i 6= 1. In the first case, the
formula (46) implies that we must have

∑n

i=2 x̄2
i = −1/2,

and this equation has no solution. In the second case, (46)
gives two solutions:̄x1 = 0 (pole at 0) andx̄1 = 1 (zero
at v). The pole at the origin is not a minimum. The zero at
v corresponds to the sphere of radius 0 centered atv, which
is not a feasible solution because it does not encloseV . In
summary, we have shown that the optimal sphere cannot touch
only a single vertex ofV .

Regarding step2, we need to minimizeγ2 over spheres
passing through two or more vertices ofV . Spheres passing
through l generic points inR

n are parameterized byn +



10

1 − l variables. A convenient parameterization is obtained
by intersecting hyperplanes of points equidistant from pairs
of points from a given set. Coordinates of the points on
the intersection are given by affine functions ofn + 1 − l
free parameters. Note that the radiusr of the sphere is
uniquely determined by its centerc and the vertices ofV
which lie on the sphere. It is straightforward to verify that
the functionγ2 in (44) is a rational function whose numerator
and denominator are quadratic inhomogeneous polynomials
in these free parameters, and that critical points ofγ2 are
solutions ofn+1− l quadratic equations in the same number
of unknowns. According to Bezout’s theorem, this generically
gives 2n+1−l candidate optimal spheres (see [4]). Step2 is
completed by choosing the one with the smallest radius. We
emphasize that while this constructive solution has exponential
complexity, a more efficient solver can be developed based on
quasiconvex programming; see Remark 6(iii).

As an example of step2, let us work out the planar case.
Whenn = 2, the problem reduces to finding critical points of
γ for circles passing throughl vertices ofV , wherel > 1 by
Lemma 8. Since forl > 2 there is at most one circle passing
through the corresponding vertices, we only need to explain
how to solve this problem forl = 2. For convenience, let us
consider an affine change of coordinates which places the two
vertices at(1, 0)T and (−1, 0)T and the origin at some point
(x0, y0)

T . Without loss of generality, assume thaty0 ≥ 0. The
center of the circle is denoted byc = (x̄, ȳ)T . We know thatc
must be equidistant from the two vertices, hencex̄ = 0. Then
we have

γ2 =
1 + ȳ2

x2
0 + (ȳ − y0)2

and so

∂γ2

∂ȳ
=

2ȳ
(

x2
0 + (ȳ − y0)

2
)

− 2(ȳ − y0)(1 + ȳ2)

(x2
0 + (ȳ − y0)2)

2

=
−2ȳ2y0 + 2ȳ(x2

0 + y2
0 − 1) + 2y0

(x2
0 + (ȳ − y0)2)

2 .

Equating the numerator to 0, we arrive at the equation

−ȳ2y0 + ȳ(x2
0 + y2

0 − 1) + y0 = 0.

In the special case wheny0 = 0, this reduces tōy(x2
0−1) = 0.

Sincex0 = ±1 corresponds to one of the vertices being at the
origin, which cannot happen by our earlier assumption, the
solution is ȳ = 0 (as is also clear from symmetry). When
y0 6= 0, the minimum is achieved at

ȳ =
x2

0 + y2
0 − 1 −

√

(x2
0 + y2

0 − 1)2 + 4y2
0

2y0
< 0.

(Note that this goes to 0 asy0 approaches 0 or∞.)

IV. SIMULATION RESULTS

For our simulation studies, we take the system (9) and work
with the following data:

A =

(

0 1
1
2

1
2

)

, B =

(

1
1

)

, K =
(

− 1
2 −1

)

.

This leads toP = I from (10), which is convenient because
the regionsR1 and R2 will be balls around the origin. We
have‖PBK‖ =

√

5/2. In all simulations, we takeM = 5,
so the outer ball shown in the following figures isR1 = B5.
We also fix the numberN of quantization points to be 25.

We first consider a simple quantizer which divides the
square[−5, 5] × [−5, 5] into 25 equal squares as shown in
Figure 1(a). The worst-case quantization error is∆ =

√
2 here,

and the inequality (14) is satisfied for sufficiently smallε (in
fact,N = 25 is the smallest perfect square for which this is the
case). Solutions of the quantized closed-loop system (11) are
shown in Figure 1(b). Lemma 2 predicts that asymptotically,
these solutions must approach the ball of radius2

√
5 ≈ 4.472

around the origin (this is obtained by settingε = 0 in the
formula (13) forR2). The circle of this radius is drawn in
the figure, and we see that solutions in fact enter it in finite
time and then continue to approach the origin (we tookT = 2
in all simulations); this illustrates the conservativeness of the
theory presented in Section II. We also clearly see chattering
behavior on the boundaries between quantization regions.

Next, we design the quantizer by solving the multicenter
problem onB5 using the Lloyd algorithm. Figure 2(a) illus-
trates the evolution of the quantization points starting from
random initial conditions close to the origin, and Figure 2(b)
depicts the quantization points obtained after 100 iterations
and the corresponding Voronoi regions, predominantly of
hexagonal shapes. The worst-case quantization error is∆ ≈
1.248 in this case, which is smaller than the one for the
rectangular quantizer. From Lemma 2, the ultimate bound on
the norm of closed-loop solutions is approximately3.948. We
see from Figure 2(c) that solutions indeed enter the ball of
this radius (again in finite time).

We now consider radial and spherical quantization. Let
N1 = 1 andN2 = 25. This means that we must uniformly dis-
tribute25 points on the unit circle, and the cordal quantization
error∆s defined by (23) is computed from the formula∆s =
√

2 − 2 cos(π/25) ≈ 0.126. The inequality (28) is satisfied
for sufficiently smallε because1/(2‖PBK‖) ≈ 0.316. Since
we are interested in an ultimate bound on solutions, we
take ε = 0. This gives a ≈ 0.809, b ≈ 1.191, and the
required distance from the quantization points to the origin is
determined from the formula (25) and approximately equals
4.045; see Figure 3(a). In view of Lemma 3, closed-loop
trajectories must asymptotically approach a ball whose radius
is now decreased to about 3.399. This indeed happens, as
illustrated in Figure 3(b). Interestingly,N1 = 2 gives a poorer
guaranteed convergence radius (even if we takeN2 = 13), and
it is easy to check that larger values ofN1 are not feasible
because of (28).

Finally, we consider a quantizer that results from solving
the radially weighted multicenter problem using the Lloyd
algorithm. In this case we have to pick a desired ultimate
bound on|x(t)|, which we take to bem = 3. Figure 4(a)
illustrates the evolution of the quantization points starting
from random initial conditions in the annulusB5 \ B3, and
Figure 4(b) depicts the quantization points obtained after100
iterations and the associated Voronoi regions (computed for the
entire ballB5). The quantization points remain in the convex
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Fig. 1. Rectangular quantizer: (a) Quantization regions and points, (b) Closed-loop trajectories.

Fig. 2. Uniform quantizer: (a) Lloyd iterations, (b) Quantization regions and points, (c) Closed-loop trajectories.

hull of the intersections of the corresponding Voronoi regions
with the annulus (Lemma 6). We have∆rw ≈ 0.273, hence
the inequality (37) is satisfied for sufficiently smallε. Thus
Lemma 4 guarantees that|x(t)| ≤ 3 as t → ∞, which is
confirmed by Figure 4(c).

V. CONCLUSIONS

We discussed the problem of designing the most suitable
quantizer for feedback stabilization subject to a given informa-
tion constraint. We showed how a perturbation analysis based
on a Lyapunov function can be used to define a destabilization
measure of a quantizer and arrive at an ultimate bound on
closed-loop solutions in several different ways. In each case,
we demonstrated how the problem of minimizing this ultimate
bound can be naturally cast as a weighted multicenter problem
and can be tackled via quasiconvex programming and Voronoi
diagram computations. We investigated uniform, radial and
spherical, and radially weighted quantizer designs, developing
a novel iterative solver for the latter. We compared these
quantizers among themselves and to a standard rectangular
quantizer in the context of a simple simulation example.

The general problem of designing an optimal quantizer for
stabilization depends on many parameters, and the analysis
presented here is quite conservative and not comprehensive.
An important direction for future work is to address the issue
of optimizing the design parameters and to move beyond
stability by addressing specific performance criteria. (See [10]
for some related recent work on discrete-time systems.) Some
measure of “representation complexity” of a quantizer needs
to be developed and taken into account in quantizer design.
Topics for future work also include studying convergence
properties of the Lloyd algorithm in nonsmooth settings and

exploring the least destabilizing quantizer design for classes
of nonlinear systems.
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