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Abstract

This paper outlines some progress in the study of quan-
tized control systems. We consider the dynamical sys-
tems arising from robotics and autonomous vehicles ap-
plications and describe a procedure to transcribe their
dynamics into finite-state automata. The transcription
procedure extends known previous results. We con-
sider optimal control problems and present conditions
under which linear programming algorithms are helpful
in trajectory planning.

1 Introduction

A new and promising direction of research in control
theory is centered on the purposeful introduction of
state and/or control quantization in the design of con-
trol systems. The purpose of quantization is, in gen-
eral, a reduction of the complexity of the control task,
mainly in terms on computation and communications
requirements, but also in terms of practical implemen-
tation of sensors, actuators, and control logics.

In this paper we are concerned with the impact of
quantization of control strategies on the complexity
of motion planning problems for dynamical systems
with symmetries, such as robotic mechanisms and au-
tonomous vehicles. Even though our main concern for
this paper is computational complexity, we remark that
an additional critical advantage of the proposed ap-
proach is the quantization of information characterizing
the control action. This advantage is expected to make
this set of techniques particularly attractive for ap-
plications including communications over bandwidth-
limited channels. Several approaches to the solution
of this kind of problems have been recently developed,
based on the choice of a finite number of elementary
control actions, or control laws, which are combined
to generate more complex behaviors and ultimately
achieve the desired objective.

1Partially funded by NSF grant CCR-0133869.
2Partially funded by ARO grant DAAD 190110716 and NSF

grant IIS-0118146.

We will develop a unified framework which includes
as special cases several different techniques, based on
the work reported in [1, 2, 3]. The notion of “control
quanta” was first introduced by Marigo et al. [4, 1], as a
technique for steering nonlinear driftless systems. The
so-called “maneuver automaton”, developed by Fraz-
zoli et al. [2, 5] is exploits “trim trajectories” and “rel-
ative equilibria” in mechanics to obtain a finite-state
automaton description of a vehicle dynamics. The no-
tion of decoupling vector field was introduced by Bullo
and Lynch [3] for mechanical control systems to for-
malize equivalence notions between kinematic and dy-
namical systems.

In this paper, we investigate the symmetry assump-
tions enabling this quantization and abstraction of
the dynamics. We then review and summarize con-
ditions guaranteeing local and global controllability of
the quantized system. Finally, we provide some novel
observations on the optimal planning problem.

Our modeling paradigm is related to efforts to develop
languages and reactive behaviors in robots, see [6, 7, 8],
and to efforts to characterize hierarchical abstractions
of control systems, see [9]. However, our focus is on
controllability analysis, and on feasible and optimal
trajectory design. Our transcription procedure is also
somehow related classic (direct and indirect) transcrip-
tion methods in trajectory optimization such as collo-
cation, shooting, and differential inclusion; see [10, 11].

2 Problem Formulation

In this paper we consider smooth nonlinear control sys-
tems of the form

d

dt
x = f(x, u) (1)

where x takes value in the smooth manifold M. In
what follows, we shall tacitly assume that all relevant
quantities are smooth.

The basic problem that we want to address is the fol-
lowing: given an initial state xinitial, and a goal state



xtarget, find an input signal t ∈ [0, T ] 7→ u∗(t) such
that the solution to the dynamical system (1) with ini-
tial condition x(0) = xinitial and with u = u∗ satisfies
x(T ) = xtarget. Moreover, we also address the optimal
control problem, i.e., we search for a controlled trajec-
tory satisfying the desired boundary conditions while
minimizing a cost functional of the form

J(x(·), u(·)) =

∫ T

0

c(x(t), u(t)) dt. (2)

We refer to these control problems as the motion plan-
ning or the steering problem and, when specifically re-
quiring optimality, as the trajectory optimization prob-
lem. The basic steering problem is the motivation for
a wide body of research in nonlinear controllability. It
is well known that the set of points reachable by a con-
trol system is an open set in the configuration space
if and only if the so-called Lie algebra rank condition
(LARC) is satisfied; see [12]. The LARC is a necessary
and sufficient condition for local nonlinear controllabil-
ity (STLC) for driftless systems, and sufficient tests are
available for STLC of systems with drift; see [13].

3 Transcriptions of control systems and the
role of symmetries

Our approach to the motion planning problem is based
on the selection of a finite number of elementary mo-
tions, which we for now loosely call motion primitives.
Such building blocks are then combined in such a way
as to produce more complex trajectories, satisfying
the boundary conditions imposed by the steering prob-
lem, and approximating (by providing non-tight upper
bounds) solutions to the optimal control problem.

Let X be a vector field on M. We let ΦX
0,t(x) denote

the flow of X from time 0 to time t > 0 from initial con-
dition x ∈ M. A curve γ : [0, T ] → M is a controlled
trajectory for the control system (1) if there exists a
time-dependent control law uγ : [0, T ]×M 7→ R

m such
that γ is a solution to the closed-loop system induced
by u = uγ .

Let N be a submanifold of M. A pair (X,N ) is a trim
motion for the control system (1) if N is invariant
under the flow of X and if, for all x ∈ N , the flow map
t 7→ ΦX

0,t(x) is a controlled trajectory for (1).

A pair (X,N ) is a feasible or decoupling motion
for the control system (1) if N is invariant under the
flow of X and if, for all x ∈ N and for all T > 0, there
exists a controlled trajectory γ : [0, T ] → M for the
control system (1) such that γ(T ) = ΦX

0,T (x). Clearly,
a trim motion is a feasible motion, but the opposite is
not true.

The control system (1) is controllable from sub-

manifold X to submanifold Y if for all x ∈ X , there
exists a finite-duration controlled trajectory with ini-
tial condition x to a point in Y. This is trivially true
if X ⊂ Y.

Finally, let us exploit these definitions to provide an
alternative description of the evolution of the control
system (1). Assume that we have computed a col-
lection {(Xi,Ni), i ∈ {1, . . . , n}} of feasible motions
for the control system (1), and we have characterized
when is the control system controllable from any sub-
manifold Ni to any other submanifold Nj (including
the case j = i). Then, we could restrict the dynam-
ics of the control system to this set of feasible motions
and to the finite-duration trajectories switching among
them. Clearly, such a description of the control sys-
tem (1) would not be as rich as the original differen-
tial equations. However, such a description could be
advantageous when (i) the feasible motions and the
switching trajectories are easily computable and rep-
resentable via finite dimensional numerical objects, (ii)
the resulting low-complexity representation maintains
some basic properties of the original control system, in
particular controllability.

3.1 Symmetries and invariant control problems
To reduce the complexity of the automaton representa-
tion we introduce symmetries in the system dynamics
and we exploit optimal control problems and feasible
motion primitives that are invariant. Let us define the
required invariance notions in this section.

We assume that the state can be partitioned, at least
locally, into the Cartesian product of two manifolds
M = G × Z, where G is a Lie group with identity
element e. Accordingly, we write the generic point x ∈
M as the pair (g, z) ∈ G × Z. Following conventions
from differential geometry, Z is the base space, G is the
fiber, and their product M is a principal fiber bundle;
see [14]. We let g denote the Lie algebra of G.

We also assume that the dynamics of the control system
(1) are invariant with respect to the left action of G
onto M×U

Φ : G ×M×U → M×U

(h, x, u) 7→ Φh(x, u) = ((hg, z), u).

Invariance is equivalent to the following statement.
Given any trajectory t 7→ (γ(t), u(t)) ∈ M × U solu-
tion to equation (1), the trajectory t 7→ Φh(γ(t), u(t))
is also a solution to equation (1) for all h ∈ G.

For invariant control systems defined over principal
bundles, we consider feasible motions (X,N ) of the
following form. We assume the vector field X is left
invariant (hence characterized by a vector in the Lie
algebra g of the group G) and leaves the base variables
unchanged. We assume the submanifold N is of the



form G×{zN }, for some zN ∈ Z. We call such feasible
motions invariant.

Finally, we consider control problems that have invari-
ance properties. In particular, for invariant control sys-
tems, we shall consider motion planning problems with
initial and goal states of the form xinitial = (ginitial, z0)
and xtarget = (gtarget, z0) where z0 is a fixed base point
in Z. Furthermore, we shall restrict our attention to
optimal control problems with incremental cost func-
tions c that are invariant with respect to the group
action Φ, i.e., c = c ◦ Φg, for all g ∈ G. We call such
motion planning and trajectory optimization problems
invariant.

4 Motion Primitive Automata

In what follows, let us assume that we have computed
a collection {(Xi,Ni), i ∈ {1, . . . , n}} of invariant feasi-
ble motions for the invariant control system (1), and we
have characterized when is the control system control-
lable from any invariant submanifold Ni to any other
invariant submanifold Nj . Before proceeding, let us
present some remarkable properties of invariant feasi-
ble motions. First, the flow along the vector field Xi

can be computed in closed-form by means of the matrix
exponential map on G. Integral curves of Xi through
the identity element e are one-parameter subgroups of
G, and the value of Xi on the manifold G×Z is uniquely
determined by a Lie algebra element, say ξi ∈ g. Sec-
ond, the system (1) is controllable from the submani-
fold Ni = G × {zi} to the submanifold Nj = G × {zj}
if and only if a controlled trajectory exists connecting
one point in Ni to one point in Nj .

Following the nomenclature in [5], we call maneuver a
finite-time controlled trajectory that connects the sub-
manifolds Ni and Nj corresponding to two invariant
feasible motions. Note that the net effect on the state
of each maneuver is a displacement on the fiber and
a possibly a jump on the base space. Specifically, we
let gij ∈ G denote the displacement corresponding to a
maneuver from feasible motion i to j.

Maneuvers and integral curves of invariant feasible mo-
tions are called motion primitives. The elementary
control action can be constructed as the combination
of a (finite- or zero-length) motion along a feasible mo-
tion, and a maneuver originating at the same feasible
motion. In this setting, all possible control strategy can
be represented as the outputs of a finite state, timed,
automaton called the motion primitive automaton
(MPA). It is convenient to depict the allowable prim-
itives, and the rules for their sequential combination
through a directed graph MPA(V,E), such as the one
shown in Fig. (1), in which the vertices represent the
families of motion primitives generated by invariant
feasible motions, and the edges represent the (finite or

trivial) motion primitives corresponding to the transi-
tion between them. Each edge i ∈ E is labelled by the
corresponding maneuver. Each vertex j ∈ V is labelled
by a vector ξj ∈ g.

ξ1 ξ2

Φg21

Φg12

Φg22

Figure 1: A simple motion primitive automaton.

Motion plans are thus generated by: (1) choosing “how
long”, in terms of time or distance, the system must
stay in the current vertex, and follow the correspond-
ing feasible motion, and (2) the edge to be taken to
switch to the next vertex, and feasible motion. Under
our assumption, it is immediate to translate sequences
of controls on the MPA to the actual state evolution of
the controlled physical system. For example, the per-
manence for “time” τ on node j followed by a maneuver
from vertex j to vertex i would result in a displacement
on the fiber equal to a right translation by exp(ξjτ)gji.

Following the procedure outlined in these paragraphs,
we can define a motion description language, whose
atoms, or elementary symbols, are couples α = (τ, p) ∈
R

+
0 × E; a motion plan ω is a sequence of atoms, i.e.,

ω = {α1, α2, . . . , αN}. In general, not all possible mo-
tion plans are feasible, since not all motion primitives
can be combined arbitrarily. In other words, feasible
motion plans belong to a subset Ω∗ of the free monoid
A∗, i.e., Ω∗ ⊆ A∗. The feasible sequences can be iden-
tified with feasible paths on the graph MPA, with ar-
bitrary, non-negative values of τi. In other words, the
MPA encodes the syntax of our language, or the rules
for symbol concatenation. Related efforts resulted in
syntax-free languages, i.e., all possible concatenations
of symbols were allowed [15, 7].

In the following subsections we illustrate how some
methodologies developed in recent literature fit in this
framework.

4.1 Control Quanta
The concept of “control quanta” was first introduced by
Marigo et al. [4, 1], as a technique for steering nonlinear
driftless systems, with a certain structure that leads to
the existence of symmetries. Their method consisted
of selecting a finite number of control histories on a
finite time support (the control quanta). Between the
execution of control quanta, the controls are set to zero,
thus resulting in an equilibrium point for the system.
The execution of each control quanta results in a cycle
with no net change in the base variables. In this case,
the MPA is depicted by one node and several edges.



The single node corresponds to the trivial vector field
ξ0 = 0, whereas each edge corresponds to a control
quantum.

4.2 Steering through decoupling vector fields
The notion of decoupling vector field was introduced by
Bullo and Lynch [3] for second-order nonlinear control
systems. A vector field Ξ is decoupling if any integral
curve of Ξ is a kinematic motion, i.e., it is possible
to find a time scaling t 7→ s(t) such that the path is
compatible with the system’s dynamics (1). In [3, 16]
conditions are given for kinematic controllability of a
mechanical systems, and motion planning strategies are
developed which alternate kinematic motions along de-
coupling vector fields (and corresponding time scalings
for dynamic feasibility, under, e.g., control saturation
constraints) to steer the system to arbitrary configura-
tions. The switch between different vector fields occurs
at zero velocity, and clearly results in no change in the
state variables. For simplicity we will restrict ourselves
to the case of invariant vector fields. Moreover, for rea-
sons which will be made clear when constructing a tran-
scription in terms of the MPA of the cost functional,
we distinguish between positive and negative motions
along a vector field (we need to impose that ṡ is non-
negative). In our MPA language, the technique intro-
duced by Bullo and Lynch consists of a graph with two
vertices for each vector field, corresponding to motions
along ξ and −ξ. All edges correspond to the identity
“maneuver”.

4.3 Maneuver Automata
The so-called “Maneuver Automaton”, developed by
Frazzoli et al. [2, 5] is a less general version of the
framework proposed in this paper, where the feasible
motions are restricted to represent a special class of
trajectories for the dynamical systems. These trajec-
tories are known as “trim trajectories” in the aerospace
community, and “relative equilibria” in mechanics, and
correspond to steady state behaviors for the system. In
other words, along trim trajectories, the base variables
and control inputs are constant, while the state evolves
along the given invariant vector field: ġ(t) = g(t)ξ,
ż(t) = 0, u̇(t) = 0. Each relative equilibrium j ∈ V
is hence described by a triplet (ξj , zj , uj). In this case,
both the maneuvers and the vector fields are non-trivial
in general. Because of the way they are defined, the
rate of change of the base variables along vector fields
is invariant; the only tunable parameter is then the
“dwelling” or “coasting” time τ along vector fields,
which is constrained to be non-negative.

5 Motion Planning on MPA

Given an initial condition such that the state evolves
according to one of the vector fields included in the
MPA, all motions generated by arbitrary switching on

the graph (and permanence at nodes) result in a fea-
sible trajectory for the original, continuous, dynami-
cal system (1). Hence, the MPA can be considered a
transcription of the dynamics of the system, under
the additional constraint that system trajectories are
forced to be a combination of a finite number of prim-
itives. This transcription is to be compared and con-
trasted with classic (direct and indirect) transcription
methods in trajectory optimization such as collocation,
shooting, and differential inclusion; see [10, 11].

When the system is in a state corresponding to the
inception of one of the feasible motions, the full state
of the system can be written as a function of (g, v) ∈
G × V (which we can call the hybrid state, due to
its mixed continuous/discrete nature). If the hybrid
state is (g, v), then the continuous state is equal to
(g, zv), and the control is (uv). After the execution of
a motion along the feasible motion measured by the
scalar τ , and a maneuver p ∈ E, the hybrid state is
updated according to:

(g, v) → (g exp(ξvτ)gp,Next(p)) (3)

where Next(p) is the target vertex of the edge p. Equa-
tion (3) describes a new dynamical system, and imple-
ments system (1), in the sense that every trajectory
generated by (3) is feasible for (1). Because of the in-
troduction of additional constraints (the limitation to
combination of motion primitives), the set of all possi-
ble trajectories for (1) is strictly larger than the set of
trajectories generated by (3). However, the computa-
tional complexity of many motion planning problems
is drastically reduced, as we will show in the following.

5.1 Controllability
As a first step in our analysis, we need to make sure
that some desirable properties of the system (1) are
not lost in the MPA transcription (3). In particular,
we want to make sure that controllability is retained.
We loosely define controllability as the condition en-
suring existence of a finite-time trajectory connecting
two arbitrary states on G × V , i.e., on the Cartesian
product between the fiber and the vertices set. Given
a sequence of coasting times and feasible edge tran-
sitions ω = {(τ, p)i, i = 1, . . . , N}, with τi ≥ ε > 0,
consider the map Mω : R

N → G which gives the dis-
placement on the group at the end of the sequence of
primitives, when the coasting times are perturbed by
amounts δi < τi.

Theorem 1 (MPA controllability [5]) An MPA

transcription of the system is controllable if and only if:
(1) the MPA graph is connected, and (2) there exists a
fixed-point motion plan ω̂ ∈ Ω∗, such that Mω̂(0) = e,

(3) for any ε > 0, the set {M̂ω(δτ)| ‖δτ‖ < ε} has an
open interior.

We have a few remarks regarding this result.



Remark 2 Controllability of the MPA implies the fol-
lowing notion fiber controllability of the system (1): the
original control system can be steered from any initial
point of the form (ginitial, zi) to any (gtarget, zj) for all
i, j in the set of feasible motions. This fiber control-
lability notion corresponds to the notion of kinematic
controllability in [3]. Theorem (1) can be regarded as a
simple test for checking controllability of a complicated
dynamical system. For example, two corollaries of The-
orem (1) given in [5] characterize the minimum sets of
motion primitives which ensure configuration control-
lability for planar robots, and for aircraft-like robots
(i.e., for systems with fiber diffeomorphic to SE(2) or
SE(2) × R).

Remark 3 The last condition in Theorem (1) can be
recast in differential terms, on the tangent space at the
identity TeG, or equivalently on the Lie algebra g, and
eventually translates into a Lie Algebra Rank Condition
on the vector fields generated by δτ .

Remark 4 In the Control Quanta case, since the only
vector field being considered is the null vector field ve-
locity, the MPA transcription is not controllable ac-
cording to our definition. The nature and the topology
of reachable sets of such control systems have been ex-
tensively studied by Marigo et al. [4, 17, 18]; an in-
teresting result is that in most cases of interest these
reachable sets are composed entirely by either accumu-
lation points, or by isolated points (in which case the
reachable set has the structure of a lattice).

5.2 Optimal control
If the MPA transcription is indeed controllable, one
can design feasible solutions that steer the system from
any initial hybrid state (ginitial, vinitial) to any target
state (gtarget, vtarget). In the general case, the optimal
control problem can be cast as a non-convex program,
which must be solved numerically. However, accord-
ing to the complexity of the primitives composing the
MPA, this problem might be tractable in closed form,
or through efficient numerical procedures.

In this paper we examine the problem of designing a
trajectory that minimizes a cost functional of the form
(2). Before proceeding further, we need to develop a
transcription of the cost functional into the MPA lan-
guage. This is easily done for invariant cost functionals.
Examples of such cost functionals are those arising in
minimum-time, minimum-length, minimum control ef-
fort problems, as well as cost functionals which do not
depend on the fiber variables. Note that minimum-time
problems for the MPA correspond to minimum-time
problems for the original control system provided no
time-scaling is performed in the transcription. This is
not the case for transcriptions of second-order systems
based on decoupling vector fields.

Given a motion plan ω that satisfies the boundary con-
ditions on the hybrid states, the cost functional can be
rewritten as:

J =

N∑
i=1

(Γpi
+ γvi

τi) , (4)

where we indicate with vi the source of the edge pi.
Let τ and p be the vectors with components τi and
pi. Given the cost expression (4), the optimal control
problem can be recast as the following optimization
problem:

ω∗ = (τ, p)∗ = arg min
ω∈Ω∗

|ω|∑
i=1

(Γpi
+ γvi

τi)

s.t.: τ ≥ 0 (or τ ≥ ε > 0)

Mω(0) =
|ω|∏
i=1

exp(ξvi
τi)gpi

= g−1
initial gtarget,

(5)
with the additional constraint that ω encode a path
of length |ω| on the MPA graph, starting at vinitial

and ending at vtarget. We notice that this optimiza-
tion problem includes a combinatorial aspect, in the
choice of the path p on the MPA graph, and in the
length of the motion plan. However, once we fix a path
on the graph, we get a smooth, generally non-convex
optimization problem in the coasting variables τ .

Theorem 5 (Existence of optimal solutions)
If the MPA is controllable, and the cost of any
non-trivial motion plan is bounded away from zero,
i.e., if inf{J(ω)| ω ∈ Ω∗, |ω| ≥ 1} = ε > 0, then there
exists a solution of the optimal control problem (5).

Proof: Since the MPA is controllable, there exists
a finite-length motion plan ω̄ ∈ Ω∗ which satisfies the
boundary conditions, with finite cost. Since the cost
of any motion plan with one or more symbols is at
least ε, there is a finite number of maneuver sequences
(i.e. feasible edge transitions) on the MPA graph which
could have a cost smaller than J(ω̄), e.g., the set of
all maneuver sequences of length bounded by J(ω̄)/ε.
For each of these maneuver sequences, problem (5),
with the addition of the constraint

∑
γvτ ≤ J(ω̄), is a

smooth optimization problem over a compact domain:
such a problem will either have an (attained) optimal
solution, or be unfeasible. Hence, in addition to the
solution candidate ω̄ obtained from the controllability
theorem, there will be a finite number of additional
candidates for an optimal solution. The candidate with
the smallest cost is the optimal solution.

Note that the optimal solution is not necessarily
unique. Also, note that the assumption on the cost
of non-trivial motion plans to be bounded away from
zero is needed to avoid infinite sequences of primitives



(resulting in Zeno automata, and chattering). Hence,
to obtain solutions to optimal control problems when
using technique based on decoupling vector fields, we
need to impose a minimum length on each vector field.
Another solution is that of assigning a positive cost to
each switch between vector fields (i.e., to each edge in
the graph).

5.3 Optimization on Translational Primitives
In certain cases, the optimal control problem can be
solved through a sequence of linear programs. (A sim-
ilar approach, leading to a Mixed-Integer Linear Pro-
gramming formulation, was presented for the control
quanta case in [19].) Once we fix the maneuver se-
quence p, the cost function to be minimized is linear in
the coasting variables τ . In the case in which fiber G
can be expressed as the Cartesian product of an arbi-
trary number of copies of the Euclidean group SE(3)
and its subgroups, the map Mω is affine in the coasting
variables that correspond to purely translational vector
fields. We refer to such coasting variables as “linear.”

It is therefore possible to write the optimal control
problem with respect to the linear coasting variables
as a linear program. Hence we can outline the follow-
ing algorithm: For increasing values of L, consider all
maneuver sequences p ∈ EL on the MPA of length
L. The cost of the corresponding motion plans can be
lower bounded by BL, with BL+1 − BL ≥ ε > 0 for
some ε. For each of these paths, solve the linear pro-
gram (5) for τ ∈ R

L. The solution to each of these LPs
is used to update an upper bound on the cost, initial-
ized to +∞; from controllability, we know that there
exists a finite path length L such that the LP is feasible,
hence UL will be finite for some finite L. The sequence
of updates to the upper bound Ui is non-increasing,
while the sequence of updates to the lower bound is
strongly increasing: this ensures that the upper and
lower bound sequences will converge in a finite number
of steps. Completeness of the algorithm is ensured by
the same arguments used in proving Theorem 5.

While it is possible to efficiently solve for the coasting
times τ , the problem retains its combinatorial nature
in the maneuver sequences p. However, in most cases
a feasible solution only requires a very small number
of maneuvers, typically of the order of the dimension
of the fiber G. This means that a feasible solution can
be computed exactly in a very short time, while im-
proved solutions (with bounds providing an indication
on their quality) can be computed if additional compu-
tation time is available.

Within this optimization problem it is also possible to
include any convex linear constraints on the coasting
times and on the intermediate group variables. For
example, it is possible to require for coasting times to
be upper and lower bounded, and for the fiber states
to evolve inside a convex polytope.

Figure 2: Computation times vs. cost of the solution for

the helicopter motion planning example.

6 Example

As an example, we present a simple case of mo-
tion planning on a high-fidelity simulation of a he-
licopter model, as discussed in [20]. The algorithm
outlined in the preceding section was run on a 700
MHz Pentium III machine, running Windows XP. The
program was written in C, using the lp solve li-
brary by Michel Berkelaar (the library is written in
ANSI C and freely available for download, e.g. from
ftp://ftp.es.ele.tue.nl/pub/lp solve/). The he-
licopter starts flying eastbound at the maximum al-
lowed speed (i.e., 8 m/s), at coordinates (North,
East)=(25m,55m). The helicopter is requested to fly
over the origin, northbound, at 8 m/s in the shortest
possible time. In Figure 2 a plot of the computed up-
per bound on the optimal solution is presented, as a
function of the computation time. As it can be seen,
a feasible solution, with a cost of 44.8 seconds, is com-
puted extremely quickly, i.e. in 3/100 of a second. As
more time is available for computation, better solutions
are found: the optimal solution, with a cost of 16.0
seconds, is found after about 20 seconds. A plot of
the ground traces corresponding to the first computed
solution and the best one is given in Figure 3. As it
can be seen, the final position of the helicopter is very
close to the intended target, even after the execution
of several moderately aggressive maneuvers, involving
high speeds and bank angles.

7 Conclusion

In this paper we have presented some ideas on quanti-
zation of dynamical control systems and their applica-
tion to optimal control problems. We have transcribed
a class of trajectory optimization problems into nonlin-
ear programs over a motion primitive automaton.



Figure 3: Ground trace of the first computed solu-

tion and of the best computed solution. The

tick marks along the trajectories represent one-

second time increments.

References

[1] A. Bicchi, A. Marigo, and B. Piccoli, “On
the reachability of quantized control systems,” IEEE
Trans. Automatic Ctrl, vol. 47, no. 4, pp. 546–63, 2002.

[2] E. Frazzoli, M. A. Dahleh, and E. Feron, “A hy-
brid control architecture for aggressive maneuvering of
autonomous helicopters,” in Proc CDC, (Phoenix, AZ),
pp. 2471–6, Dec. 1999.

[3] F. Bullo and K. M. Lynch, “Kinematic control-
lability for decoupled trajectory planning in underac-
tuated mechanical systems,” IEEE Trans. Robotics &
Automation, vol. 17, no. 4, pp. 402–412, 2001.

[4] A. Marigo and A. Bicchi, “Steering driftless non-
holonomic systems by control quanta,” in Proc CDC,
(Tampa, FL), pp. 4164–9, Dec. 1998.

[5] E. Frazzoli, Robust Hybrid Control for Au-
tonomous Vehicle Motion Planning. PhD thesis, MIT,
Cambridge, MA, June 2001.

[6] R. A. Brooks, “A robust layered control-system
for a mobile robot,” IEEE Journal of Robotics and Au-
tomation, vol. 2, no. 1, pp. 14–23, 1986.

[7] V. Manikonda, P. S. Krishnaprasad, and
J. Hendler, “Languages, behaviors, hybrid architec-
tures and motion control,” in Mathematical Control
Theory (J. Baillieul and J. C. Willems, eds.), New York,
NY: Springer Verlag, 1998.

[8] R. C. Arkin, Behavior-Based Robotics. Cam-
bridge, MA: MIT Press, 1998.

[9] G. J. Pappas, G. Lafferriere, and S. S. Sas-
try, “Hierarchically consistent control systems,” IEEE
Trans. Automatic Ctrl, vol. 45, no. 6, pp. 1144–60,
2000.

[10] B. A. Conway and K. M. Larson, “Collocation
versus differential inclusion in direct optimization,”

J. Guidance Control and Dynamics, vol. 21, no. 5,
pp. 780–85, 1998.

[11] J. T. Betts, “Survey of numerical methods for
trajectory optimization,” J. Guidance Control and Dy-
namics, vol. 21, no. 2, pp. 193–207, 1998.

[12] R. Hermann and A. J. Krener, “Nonlinear con-
trollability and observability,” IEEE Trans. Automatic
Ctrl, vol. 22, pp. 728–740, 1977.

[13] H. J. Sussmann, “A general theorem on local con-
trollability,” SIAM JCO, vol. 25, no. 1, pp. 158–194,
1987.

[14] S. Kobayashi and K. Nomizu, Foundations of Dif-
ferential Geometry. Vol. I, vol. 15 of Interscience Tracts
in Pure and Applied Mathematics. New York, NY: In-
terscience Publishers, 1963.

[15] R. W. Brockett, “Hybrid models for motion con-
trol systems,” in Essays in Control: Perspectives in the
Theory and its Applications, pp. 29–53, Boston, MA:
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