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Kinematic controllability and motion planning for
the snakeboard

Francesco Bullo and Andrew D. Lewis

Abstract— The snakeboard is shown to possess two de-
coupling vector fields, and to be kinematically controllable.
Accordingly, the problem of steering the snakeboard from a
given configuration at rest to a desired configuration at rest
is posed as a constrained static nonlinear inversion problem.
An explicit algorithmic solution to the problem is provided,
and its limitations are discussed. An ad hoc solution to the
nonlinear inversion problem is also exhibited.

I. Introduction

The snakeboard was first studied by Lewis et al., [1]
and has since motivated a growing body of literature in
robotics, control, and Lagrangian dynamics. The snake-
board is a challenging testbed for techniques aimed at mod-
eling, controllability, gait analysis, and motion planning
for mechanical control systems. It is a key example in the
study of dexterous mechanical devices that exploit non-
holonomic constraints to locomote.

In the initial work [1], various “gaits” were observed for
the snakeboard which suggested that the system should
be locally controllable. These gaits used periodic controls,
and gave trajectories which, while interesting, are too com-
plicated to use as tools for motion planning. The snake-
board was further studied by Ostrowski [2] using general
techniques presented by Bloch et al., [3] for understand-
ing the dynamics of mechanical systems with symmetry
and constraints; see also [4]. Ostrowski [2] gave the first
proof for the local controllability of the snakeboard (see
also [5]). In [6] and [7] Ostrowski et al., investigate ap-
proximate planning algorithms and numerically generated
optimal trajectories for the snakeboard. Until now, the
goal of analytically determining steering controls for the
snakeboard has not been achieved.

This goal is accomplished in this paper via the no-
tion of kinematic controllability introduced by Bullo and
Lynch [8]. This notion relies on the finding of a large
enough collection of so-called “decoupling vector fields,”
i.e., vector fields whose integral curves can be followed with
an arbitrary parameterisation. Motion planning can then
be achieved by concatenating these integral curves start-
ing and ending each integral curve at rest. The motion
primitives we propose here do not generate nonholonomic
momentum. This is in contrast to, for example, the work
in [6], [7].

The contributions of this paper are organized as follows.
In Section III, we show that the snakeboard is kinemat-
ically controllable. Note that this requires the slight ex-
tension of the original presentation of [8] to general affine
connections (see also [9]), and this follows from the cal-
culations in [10], [11] provided one is aware of the idea of
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kinematic controllability. In Section IV, we cast the mo-
tion planning problem for the snakeboard as a nonlinear
inversion problem and we provide a constructive algorith-
mic solution. Furthermore, we discuss the advantages and
limitations of the algorithm and exhibit a second ad hoc
numerical solution. Note that our reduction of motion
planning to a static, low-dimensional problem presents a
significant computational improvement over methodologies
which directly discretise the dynamic model, and perform
optimisation on this model.

II. The snakeboard model

The basis for our mathematical model for the snakeboard
is illustrated in Figure 1. Its configuration space is coor-
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dinatized by (x, y, θ, ψ, φ) ∈ Q = SE(2) × S1 × S1. The
inertia matrix for the snakeboard is given by

M =













m 0 0 0 0
0 m 0 0 0
0 0 J + Jr + Jw Jr 0
0 0 Jr Jr 0
0 0 0 0 Jw













,

where m is the mass of the assembly, J is the inertia of the
snakeboard about its center of mass, Jr is the rotor inertia,
and 1

2Jw is the inertia of the wheels. This is a simplified
model, but it captures the essential features of the system.

The snakeboard also has nonholonomic constraints which
specify the admissible velocities at each configuration. One
may readily show that the admissible velocities are spanned
by the three vector fields

X1 = ` cos(φ)Vx − sin(φ)
∂

∂θ
,

X2 = a(φ)Vx − b(φ)
∂

∂θ
+

∂

∂ψ
, X3 =

∂

∂φ
,

where Vx = cos θ
∂

∂x
+ sin θ

∂

∂y
and

a(φ) =
Jr` cos(φ) sin(φ)

c1(φ)
, b(φ) =

Jr sin
2(φ)

c1(φ)
,

c1(φ) = m`2 cos2(φ) + (J + Jr + Jw) sin
2(φ).

(1)

We remark that the vector fields X1, X2, and X3 are or-
thogonal with respect to the inertia matrix M . This or-
thogonality property is useful in writing the equations of
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motion for the snakeboard using the techniques in [11].
The inertia matrix and the constraints together define an
affine connection ∇ on Q as related for the snakeboard by
Lewis [12]. The unforced trajectories for the snakeboard
are the geodesics of ∇. The vector fields {X1, X2, X3} are
orthogonal with respect to the inner product defined by the
inertia matrix M . This allows us to use the simple formu-
lae of Bullo and Žefran [11] to easily express the covariant
derivatives of vector fields which lie in the constraint dis-
tribution. Of particular interest to us are the formulae

∇X2
X2 = 0, ∇X3

X3 = 0. (2)

These are easily seen using the computations done for the
snakeboard in [11], and we refer the reader there for details.
We also remark that these computational details are avail-
able in the expanded preprint version of this paper [13].

The final element of the snakeboard model is the set
of input forces. These are the forces arising from torques
applied to the wheels and rotor. To express how these
forces enter the equations of motion in the affine connection
setting, we again refer the reader to [11]. Here we simply
provide the result that the input forces are specified by the
two vector fields

Yψ =
c1(φ)

Jrc2(φ)
X2, Yφ =

1

Jw
X3, (3)

where

c2(φ) = m`2 cos2(φ) + (J + Jw) sin
2(φ).

With this data, the snakeboard equations have the form

∇q̇ q̇ = uψYψ(q) + uφYφ(q). (4)

III. Kinematic controllability of the
snakeboard

The notion of kinematic controllability was introduced
by Bullo and Lynch [8] motivated by the work in [14].
We consider general controlled mechanical systems that
evolve according to equation (4) on an arbitrary config-
uration space Q with a specified affine connection ∇ and
m input vector fields {Y1, . . . , Ym}. For such a system, a
vector field X on Q is a decoupling vector field if its integral
curves may be followed, with an arbitrary reparameteriza-
tion, by controlled trajectories for the mechanical system.
Although Bullo and Lynch work only in the context of sys-
tems whose affine connection is Levi-Civita, their results
are easily seen to apply to general affine connections, and
so may be applied to the snakeboard equations (4). The
main result of [8] (see also [9]) is the following.

Proposition III.1 A necessary and sufficient condition
for a vector field X to be a decoupling vector field is that

both X and ∇XX should lie in the distribution spanned by
the input vector fields {Y1, . . . , Ym}.

Next, Bullo and Lynch [8] define a system to be kinemat-
ically controllable if it possesses decoupling vector fields

{X1, . . . , Xk} whose involutive closure has maximal rank.
The value of a system that is kinematically controllable
is that one can do motion planning using concatenations
of integral curves of the decoupling vector fields. The re-
sulting concatenated curve, when reparameterized so that
each segment begins and ends with zero velocity, will then
be a trajectory for the mechanical system. Thus, one can
essentially do the planning for a driftless system.

For the snakeboard, we have the following result.

Lemma III.2 The vector fields X2 and X3 are de-

coupling, and the involutive closure of the vector fields

{X2, X3} has maximal rank. In particular, the snakeboard
is kinematically controllable.

Proof: Note by (3) that X2 is a multiple of Yψ and
that X3 is a multiple of Yφ. Thus X2 and X3 take their val-
ues in the distribution spanned by the input vector fields.
Also, by (2), the vector fields ∇X2

X2 and ∇X3
X3 trivially

take their values in the input distribution. This shows that
X2 and X3 are decoupling vector fields. A messy calcula-
tion shows that at all points in Q where φ 6∈

{

±π
4 ,± 3π

4

}

,
the vector fields

{

c1X2, X3, [c1X2, X3], [X3, [c1X2, X3]],

[X3, [c1X2, [X3, [c1X2, X3]]]]
}

span a distribution of maximal rank. At the degenerate
values for φ, the vector fields

{

c1X2, X3, [c1X2, X3], [X3, [c1X2, X3]],

[c1X2, [X3, [c1X2, X3]]]
}

span the tangent space. Since c1 is an everywhere positive
function, this shows that the involutive closure of {X2, X3}
has maximal rank as claimed.

IV. Motion planning for the snakeboard

In this section we cast the motion planning problem for
the snakeboard as a nonlinear inversion problem and we
provide a constructive algorithmic solution. However, the
algorithmic solution we provide will typically involve an
unnecessarily large number of moves for the snakeboard.
While we do not propose a systematic methodology to ob-
tain satisfactory solutions to the motion planning problem,
we do exhibit an ad hoc solution that demonstrates the
potential value of solving the nonlinear inversion problem.
The ad hoc solution of the problem that we determine is
in closed form, although we do not discuss the details here.
We also remark that, in contrast to the analysis of Os-
trowski [6], the kinematic motions we use in our planning
algorithm do not build nonholonomic momentum.

We first note that it is easy to alter (ψ, φ) to any de-
sired position without altering (x, y, θ). Indeed, φ can be
changed directly, and so too can ψ, provided one first sets
φ = 0. In this way we reduce our interest to achieving the
desired values for (x, y, θ) ∈ SE(2). We do this by design-
ing controls that steer from (0, 0, 0) to points of the form
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(xd, 0, 0), (0, yd, 0), and (0, 0, θd). The latter motion is ob-
tained along with motion incurred in x and y, but this can
be corrected using the already obtained x/y-translations.
By concatenating such motions, starting and ending at rest
for each segment, we can achieve any desired configuration
of the snakeboard.

A. The basic primitive

Movement along the X3 decoupling vector field is trivial;
it merely specifies a rotation of the wheel angle φ without
altering any of the other configurations. However, move-
ment along the X2 decoupling vector field is not so simple,
and it is this motion which lies at the heart of our tra-
jectory generation algorithm. Note that the components
of X2 depend on φ. Therefore, to specify a motion along
X2, one should first specify a wheel angle φ = φ0. The
only other parameter in a movement along X3 will then
be the (signed) total time of the motion. Note that since
the coefficient of ∂

∂ψ
is 1 in X2, the total time equals the

change in the rotor angle ∆ψ. What we shall determine
is the relationship between (φ0,∆ψ) and the motion in
(x, y, θ) ∈ SE(2). To state this relationship, we utilize the
definitions of a(φ) and b(φ) as given in (1). The reader may
also wish to recall that, as a matrix group, SE(2) consists
of those matrices of the form





cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1



 , x, y, θ ∈ R. (5)

Furthermore, the Lie algebra se(2) of this group consists of
those matrices of the form





0 −ω ξ

ω 0 η

0 0 0



 , ξ, η, ω ∈ R. (6)

In the interests of compactness, let us represent the ma-
trix (5) by (x, y, θ) and the matrix (6) by (ξ, η, ω). The Lie
group exponential coincides with the matrix exponential,
and is given in this case by

exp(ξ, η, ω) =
( sin(ω)

ω
ξ − 1− cos(ω)

ω
η,

1− cos(ω)

ω
ξ +

sin(ω)

ω
η, ω

)

,

when ω 6= 0. With this notation, we have the following
result.

Lemma IV.1 Let q0 = (0, 0, 0, 0, φ0) ∈ Q and let

(x, y, θ,∆ψ, φ0) ∈ Q be the point obtained by flowing along
X2 for time ∆ψ. Then

(x, y, θ) = exp
(

a(φ0)∆ψ, 0,−b(φ0)∆ψ
)

=
(

` cotφ0 sin(b(φ0)∆ψ),

` cotφ0
(

cos(b(φ0)∆ψ)− 1
)

, b(φ0)∆ψ
)

.

Proof: The result follows from explicitly solving the
differential equation associated with X2 with φ = φ0, and
for time ∆ψ.

It is evident from the definition of X2 that during a mo-
tion along X2, one should have φ0 6∈ {0, π} since in such a
configuration the rotor will simply move without changing
(x, y, θ). The following lemma describes the possible val-
ues of the quantities a(φ)∆ψ and b(ψ)∆ψ obtainable using
wheel angles between −π

2 and π
2 .

Lemma IV.2 Let S and T be given by

S =
(

]−π
2 , 0[×]0, π2 [

)

× (R \ {0})
T = R2 \ ({(x, 0)| x ∈ R} ∪ {(0, y)| y ∈ R}).

The map (φ,∆ψ) 7→ (a(φ)∆ψ,−b(φ)∆ψ) is a diffeomor-
phism from S to T .

Proof: The differentiability of the stated map is clear.
We can also produce an explicit inverse for the map:

(ξ, ω) 7→
(

− arctan
(

ω`
ξ

)

,−
c1
(

arctan
(

ω`
ξ

))

(ξ2 + `2ω2)

Jr`2ω

)

.

This map is itself differentiable on the specified domain.

Combined, Lemmas IV.1 and IV.2 suggest that we
should try to do motion planning in the coordinates (x, y, θ)
using as parameters the forward and angular velocities
(ξ, ω) = (a(φ0)∆ψ, b(φ0)∆ψ) constrained to the set T .
For a physical snakeboard, it is reasonable to suppose that
there will be restrictions on ψ and φ. For this reason, we
make the assumption that ψ ∈ [−ψ̄, ψ̄] and φ ∈ [−φ̄, φ̄] for
some φ̄ ∈]0, π2 [. This provides a restriction that ‖∆ψ‖ ≤
2ψ̄. This then defines a set

S̄ =
(

]−φ̄, 0[×]0, φ̄[
)

×
(

]−2ψ̄, 2ψ̄[
)

,

and the map of Lemma IV.2, when restricted to this set,
will have an image as shown in Figure 2. The angle χ in

ξ
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χ
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Fig. 2. The gray region describes the set of admissible values for
the forward and angular velocities (ξ, ω) with constraints on the
wheel and rotor angles

the figure is given by χ = − arctan
( `b(φ̄)

a(φ̄)

)

. Let us denote

by T̄ the region of R2 shown in Figure 2.
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B. A nonlinear inversion problem for snakeboard motion

planning, and an algorithmic solution

The idea of kinematic controllability is that one fol-
lows concatenations of integral curves of decoupling vec-
tor fields, ensuring that at the beginning and end of each
segment, one is at rest. With the discussion of the preced-
ing section as background, we can state the essence of the
motion planning problem for the snakeboard as follows.

Problem IV.3 (Snakeboard motion planning)
Suppose that qi = (xi, yi, θi, φi, φi) and qf = (xf, yf, θf, φf, φf)
are given. Find a finite collection of points (ξ1, ω1), . . . ,
(ξk, ωk) ∈ T̄ so that

(xi, yi, θi) ◦ exp(ξ1, 0, ω1) ◦ · · · ◦ exp(ξk, 0, ωk) = (xf, yf, θf)

(Here all terms are thought of as elements of SE(2).) ¤

Of course, in obtaining a solution to the problem, one will
want to minimize k. In the absence of control constraints,
it is possible to show that one can steer from an initial
configuration to any final configuration with k at most 3.
However, it appears quite difficult to analytically obtain
such small bounds in the presence of constraints on the
rotor and wheel angles.

Let us now turn to exhibiting a constructive algorith-
mic local solution to Problem IV.3. That is, for (xf, yf, θf)
sufficiently close to (0, 0, 0), we shall show how to steer
from (0, 0, 0) to the final point using a finite sequence of
basic primitives. We do this essentially by demonstrating
translations in the body ξ and η-directions (see Figure 1),
and then a rotation in θ. The latter incurs motion in x

and y which can be corrected by the already determined
ξ/η-body translations. This gives rise to a complete closed-
form local planner. It would be possible to design a global
planner by computing appropriate sequences of desired lo-
cal displacements and composing multiple invocations of
the local planner.

B.1. ξ-translation. For a fixed φ0 6= 0, we construct a
sequence of three basic primitives as follows:

exp
(

a(φ0)∆ψ, 0,−b(φ0)∆ψ
)

◦

exp
(

2a(−φ0)∆ψ, 0, 2b(−φ0)∆ψ
)

◦

exp
(

a(φ0)∆ψ, 0,−b(φ0)∆ψ
)

= (∆ξ, 0, 0).

where

∆ξ = 4` cotφ0 sin
(Jr∆ψ sin2 φ0

c1(φ0)

)

.

For ∆ξ sufficiently small, we can compute the unique ∆ψ
that will translate the snakeboard in body ξ-direction by
an amount ∆ξ. ¤

B.2. η-translation. For fixed φ0 6= 0, we construct a
sequence of four basic primitives as follows:

exp
(

a(φ0)∆ψ, 0,−b(φ0)∆ψ
)

◦

exp
(

−a(−φ0)∆ψ, 0, b(−φ0)∆ψ
)

◦

exp
(

−a(φ0)∆ψ, 0, b(φ0)∆ψ
)

◦

exp
(

a(−φ0)∆ψ, 0,−b(−φ0)∆ψ
)

= (0,∆η, 0),

where

∆η = 4` cotφ0

(

cos
(Jr∆ψ sin2 φ0

c1(φ0)

)

− 1
)

.

For ∆η sufficiently small, we can compute the unique ∆ψ
that will translate the snakeboard in the body η-direction
by an amount ∆η. ¤

B.3. θ-specification. The motion in the θ-direction is
achieved while incurring motion in the x and y variables as
well. The single primitive we use is

exp
(

a(φ0)∆ψ, 0,−b(φ0)∆ψ
)

= (∆x,∆y,∆θ),

where

∆θ = −Jr∆ψ sin2 φ0
c1(φ0)

∆x = ` cotφ0 sin
(Jr∆ψ sin2 φ0

c1(φ0)

)

∆y = ` cotφ0

(

cos
(Jr∆ψ sin2 φ0

c1(φ0)

)

− 1
)

.

For a fixed φ0 6= 0, we can compute the unique ∆ψ that will
rotate the snakeboard by an amount ∆θ. Although there
is an error in x and y variables, it can be corrected by
employing the direct translations in these directions. Note
that it is possible to produce a pure rotation by setting
the wheel angles to ±π

2 , and then following X3. We do not
allow this as we wish to guarantee that the wheel angles
can be kept small. ¤

In Figure 3 we show a motion of the snakeboard from
(x, y, θ) = (0, 0, 0) to (x, y, θ) =

(√
2, 2, π5

)

. The rotation
by π

5 was broken into two smaller rotations to mollify the
effects of the deviation in x and y. We note that, including
final corrections to the wheel and rotor angles, the above
sort of motion will involve a concatenation of twenty basic
kinematic motions.

B.4. An ad hoc solution to the nonlinear inversion prob-
lem. The above procedure demonstrates an algorithmic
solution to Problem IV.3, albeit a rather inefficient one.
One can also proceed by looking directly at the equations
yielded by Problem IV.3. Without the constraints on the
wheel and rotor angles, it is possible to construct a proce-
dure that will steer the snakeboard between two (x, y, θ)
configurations using a concatenation of at most three basic
primitives. One can do this by looking at the equations
generated by the problem, noting that for three primitives
there will be six independent variables (three pairs (ξ, ω)).
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Fig. 3. Snakeboard motion from (0, 0, 0) to
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5

)

using concate-
nations of basis primitives. The controls are shown in the bottom
figure. The parameters used are (m, `, J, Jr, Jw) = (1, 1, 1, 1, 1

4
).

One can then impose relations on these variables to reduce
the extent to which the problem is under-determined. In
this way, various sorts of ad hoc procedures are fairly easily
developed. However, it appears to be difficult to do this in
a methodical way so that the wheel and rotor angle con-
straints are satisfied. In Figure 4 we show such a three
primitive motion, steering to the same final point as was
done in Figure 3.

Remarks IV.4 1. For the purposes of making more easily
understood plots, we have ignored constraints of the rotor
angle ψ. When constraints on this angle are enforced, the
motions become comparatively smaller than those in Fig-
ures 3 and 4.
2. For an accurate comparison of the motion in Figure 4
with the motion of Figure 3, we should also count the mo-
tions involving positioning the wheels, and straightening
out the rotor and wheels after the motion. In this case,
there are eight segments of the motion in Figure 4, com-
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pared with twenty for the motion in Figure 3. ¤

V. Discussion

The snakeboard is a somewhat simple example of a me-
chanical system, and yet it is certainly not trivial. Indeed,
until now, the motion planning problem for the snakeboard
has resisted any sort of non-numerical solution. In this pa-
per we have shown that it is possible to reduce the motion
planning problem for the snakeboard to a low-dimensional
static nonlinear inversion problem. Although this problem
is not of particularly pleasing nature, we have shown that
it admits a closed form solution by constructing an algo-
rithmic local motion planning strategy.

We conclude by remarking on the advantages of the affine
connection formalism in the modeling and control theory
for mechanical systems. Indeed, it is in this setting that
the notions of decoupling vector fields and kinematic con-
trollability are naturally understood. It is also worth not-
ing that the idea of decoupling vector fields arises in an
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interesting and nontrivial way in the quadratic form con-
trollability conditions of Hirschorn and Lewis [15]. This is
an interesting avenue for further research.
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