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Abstract: It was shown in Spong [1999b] that the passive gaits for a planar 2-DOF
biped walking on a shallow slope can be made slope invariant by a passivity based
control that compensates only the gravitational torques acting on the biped. In this
paper we extend these results to the general case of a 3-D, n-DOF robot. We show
that if there exists a passive walking gait, i.e. a stable limit cycle, then there exists a
passivity-based nonlinear control law that renders the limit cycle slope invariant. The
result is constructive in the sense that we generate the resulting control law and initial
conditions from the initial conditions of the passive biped and the ground slope. This
intuitively simple result relies on some well-known symmetries in the dynamics of
mechanical systems with respect to the group action of SO(3) on solution trajectories
of the system. We also discuss the design of an additional passivity based control term
designed to increase the basin of attraction of the passive limit cycle.
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1. INTRODUCTION

The notion that it is possible to achieve walk-
ing gaits from mechanical bipeds powered only
by gravity has intriqued researchers since the pi-
oneering work of McGeer more than a decade
ago (McGeer [1990]). These so-called passive gaits
may help to explain the efficiency of human and
animal locomotion and provide insight into the
development of walking robots. For example, in
human walking, there is evidence that a great part
of the swing phase is passive — the muscles of the
human leg are active primarily during the double
support period, after which they essentially turn
off and allow the leg to swing through like a
jointed pendulum McMahon [1984].

Several researchers have studied passive walking
in planar mechanisms, with and without knees
and analyzed their passive gaits (Collins et al.
[2001], Garcia et al. [1998], Goswami et al. [1997,
1998], McGeer [1990]). The stable passive gaits

found in these mechanisms typically exist only for
very shallow slopes and exhibit extreme sensitivity
to slope magnitude.

The first results in active feedback control in this
context appeared in Goswami et al. [1997] and
Spong [1999a,b]. In Spong [1999a,b] it was shown,
for a fully actuated compass gait biped, that the
passive limit cycle of Goswami et al. [1997] can be
made slope invariant using a so-called passivity
based nonlinear control. Related results appear in
Ohta et al. [1999] and Suzuki et al. [2001].

Passive walking in three-dimensions was inves-
tigated in Kuo [1999]. Passive limit cycles were
found in the lateral plane as well as the saggital
plane. However, the lateral motion was unstable
and had to be compensated by feedback control.
Kuo used an elegant control algorithm to adjust
the foot placement at each step to achieve sta-
ble locomotion in both the lateral and sagittal
planes. More recently, true three dimensional pas-



sive walking has been achieved in Collins et al.
[2001]. This remarkable biped has both knees and
specially shaped feet to stabilize the lateral mo-
tion passively, arms that swing coupled to the
leg motion to stabilize yaw motion and produces
surprisingly anthropomorphic motion without ac-
tuation of any kind.

Motivated in part by the above work showing
that passive walking can be achieved in three
dimensions, we extend here our previous results
on passivity based nonlinear control to the general
case of a three dimensional n-DOF biped. The
result follows nearly identically to the 2-D case as
a consequence of some symmetry properties in the
Euler-Lagrange equations describing the biped.
Specifically, we show that changing the ground
slope defines a group action on the configuration
manifold of the system and that both the kinetic
energy and impact dynamics are invariant under
this group action. Hence, to achieve invariance of
the passive limit cycles, one need only compensate
the potential energy as in the planar, 2-D case.

We also investigate an additional passivity based
design in order to enlarge the basin of attraction of
the system. We add to the gravity compensating
control an additional term proportional to the
difference of the total energy of the robot and
the energy along the limit cycle. We show via
simulation that this term increases the basin of
attraction of the limit cycle.

2. BACKGROUND

We consider a general n-degree-of-freedom biped
in 3-dimensions. The act of walking involves both

Fig. 1. A General 3-D Biped

a swing phase and a stance phase for each leg as
well as impacts between the swing leg and ground.
We make the standard assumptions, namely,

(i) impacts are perfectly inelastic (no bounce),
(ii) transfer of support between swing and stance

legs is instantaneous,
(iii) there is no slipping at the stance leg ground

contact.

Under these assumptions it can be shown (Hur-
muzlu and Moskowitz [1986]) that each impact
results in an instantaneous jump in velocities,
hence a discontinuity in kinetic energy. The posi-
tion variables are continuous through the impact
and so, if the kinetic energy dissipated during the
impact is somehow compensated so that the joint
angles and velocities after impact are restored to
their original values at the beginning of the step,
then a periodic gait (limit cycle) results. In passive
walking this is achieved by starting the biped
on a constant downhill slope so that that loss
of kinetic energy is compensated by the change
in potential energy during the step. The loss of
kinetic energy can also be compensated by active
control of actuators at the joints so that walking
can be achieved on level ground and/or uphill.

2.1 Group Actions and Invariance

Group Actions

We now give some background from differential
geometry and dynamical systems theory (see Olver
[1993]).

Definition 2.1. Let Q be a differentiable manifold
and G be a Lie group. Then G is said to act on
Q if there is a mapping Φ : G × Q → Q taking a
pair (g, q) to Φ(g, q) = Φg(q) ∈ Q and satisfying
for all q ∈ Q

(i) Φe(q) = q, where e is the identity element of
G, and

(ii) Φg1
(Φg2

(q)) = Φg1g2
(q).

The mapping Φ is called a lift action.

A group action on Q induces corresponding maps
on scalar functions over Q (e.g., the system’s
kinetic and potential energy), tangent vectors
and vector fields (e.g., the system’s instantaneous
velocity), and one forms (e.g., the external forces
applied to the system). For example, if h : Q → <
is a scalar function on Q, then the group action
induces a map via composition,

(h ◦ Φ)(q) := h(Φ(q))

We say that the scalar function h(q) is invariant
(under the group action) if, for all g ∈ G

h ◦ Φg = h.

Let TqQ be the linear space of tangent vectors at
q, and let g be an element in G. Let TqΦg be the
tangent map to Φg mapping TqQ onto TΦg(q)Q.
We call TqΦg the lifted action. In other words, if
Xq ∈ TqQ and h is a function on Q, then

(TqΦg ◦ Xq) h = Xq (h(Φg(q))) .



The vector field X is invariant if, for all g ∈ G,

TqΦg ◦ X = X ◦ Φg.

Given any curve η : [0, T ] → Q, the velocity of the
curve Φg ◦ η satisfies the equality

d

dt
Φg(η(t)) = Tη(t)Φg · η̇(t).

If the group action on Q is commutative, the
tangent map TqΦg is the identity map. If the
action is not commutative, e.g., if the symmetry
group is SO(3), the action on the velocity variables
is non-trivial. In the latter case, the action is the
identity map if the velocities are written in the
body-fixed frame.

The importance of these definitions for us is the
following.

Lemma 2.2. Let the vector field X be Φ-invariant,
and let γ : [0, T ] → Q; t 7→ γ(t) be an integral
curve of X, i.e., the solution of the differential
equation defined by X with initial condition γ(0).
Then, Φg ◦ γ : [0, T ] → Q; t 7→ Φg(γ(t)) is an
integral curve for X for all g ∈ G.

See Olver [1993]

3. WALKING ROBOTS AND PASSIVE
DYNAMIC

Consider the n-link biped during a single step. We
use Q = SO(3)× S to represent the configuration
space of the biped, where SO(3) is the Rotation
Group in <3 and S := Tn−3 is the n − 3-torus
(with T = [0, 2π)). A configuration is then an
ordered pair q = (R, r) where R ∈ SO(3) is the
orientation of the first link, and r ∈ S is the shape
of the multi-body chain, for example the angle of
each joint referenced to the previous joint.

In the case of a planar mechanism Q = SO(2) ×
S and, in this case, we may identify Q with
Tn since elements of SO(2) can be represented
by scalars (angles). In the case of a serial link
mechanism we may again identify Q with Tn

using the familiar Denavit-Hartenberg variables
to define the configuration, q.

The advantage of this formalism is that only the
first degree of freedom is reference to an absolute
or world frame. The remaining joint variables are
then invariant under a change of basis of the world
frame. Configuration spaces that can be written as
the Cartesian product of a Lie group and a shape
space are referred to as principal bundles (Spivak
[1979]).

3.0.1. Lagrangian Dynamics We refer to the
tangent bundle TQ as the space of configuration

and velocities, (q, q̇) ∈ TQ. In terms of the gener-
alized coordinates q and in their time-derivatives
q̇, the kinetic energy K, potential energy V (due to
gravity), and Lagrangian function, L are defined
as usual, with

L(q, q̇) = K(q, q̇) − V(q). (1)

The Euler-Lagrange equations of a passive walker,
i.e., without external control inputs, are

d

dt

∂L

∂q̇
−

∂L

∂q
= 0. (2)

3.1 Slope Changing Symmetry

The orientation of the ground, i.e., its slope,
can be represented by a rotation of the world
coordinate frame, i.e. by an element of SO(3).
The act of changing the ground slope is thus
represented by an action of SO(3) on Q, that is a
map Φ from (A, q) = (A, (R, r)) ∈ SO(3)×Q into
Q such that

Φ(A, (R, r)) = ΦA(R, r) = (A · R, r) . (3)

Next, we state the following proposition.

Proposition 3.1. The kinetic energy K is invariant
under the slope changing action Φ, i.e., for all
A ∈ SO(3)

K ◦ TqΦA = K, (4)

In terms of the generalized coordinates, this
means K(q, q̇) = K(ΦA(q), TqΦA(q̇)).

Proof: We recall that the kinetic energy K of a
single rigid body (cf:Figure 1) can be expressed as
the sum of the translational and rotational kinetic
energies as

K =
1

2
mṖT Ṗ +

1

2
ωT Iω. (5)

It is easily shown that both the scalar product,
ṖT Ṗ , and triple product, ωT Iω, are independent
of the particular world coordinate system, i.e., are
invariant under a rotation of the world frame (see
Spong and Vidyasagar [1989] for the details).
In the general case of an n-DOF biped with
configuration q = (R, r), only the first DOF is
referenced to the world frame. Since its kinetic
energy is invariant under rotations of the world
frame, it follows that the kinetic energy of the
entire system is invariant.

3.1.1. Impact Dynamics The impact of the
swing leg with the ground induces a discontinu-
ity in the leg velocities. Under the assumptions
made above on the nature of the impacts, the
change in velocity is found by integrating the
Euler-Lagrange equations over the (infinitesimally
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small) duration of the impact event and by consid-
ering the resulting impulsive forces. The velocity
change is therefore determined by considering the
impulse/momentum equations

∂L

∂q̇

∣

∣

∣

t+

t
−

= W
t+
t
−

where W
t+
t
−

represents the impulse over [t−, t+].
Since

∂L

∂q̇
=

∂K

∂q̇
(6)

the quantity ∂L/∂q̇ is invariant. Furthermore, the
impulse W t+

t− is known to be linear combination
of force one-forms Fi. These one-forms are the
differentials of invariant functions describing the
impact condition. Thus, these one-forms and the
impulse W t+

t− are invariant. Therefore we have

Corollary 3.2. The velocity change due to the
impact of the swing leg and ground is invariant
under the slope changing action.

4. CONTROLLED SYMMETRIES AND
GRAVITY COMPENSATION

We can use the above invariance properties to
derive a control law that enforces invariance of
solutions in the presence of gravity. We consider
the controlled walking machine described by the
impact dynamics and by the differential equation

d

dt

∂L

∂q̇
−

∂L

∂q
= Bu, (7)

where B is a full rank matrix. Our main result can
now be expressed as

Theorem 4.1. Let η : [0, T ] → Q be a solution
trajectory to equation (7) at u = 0, Let A ∈ SO(3)
and define

u = B−1 ∂

∂q

(

V − V ◦ ΦA

)

= B−1 ∂

∂q

(

V(q) − V(ΦA(q))
)

. (8)

Then ΦA ◦ η : [0, T ] → Q; t 7→ ΦA(η(t)) is
a solution trajectory for the controlled walking
machine (7).

Proof: Substituting the control law (8) into (7)
and using invariance of the kinetic energy under
the group action we have

d

dt

∂LA

∂q̇
−

∂LA

∂q
= 0 (9)

where LA(q, q̇) = L(ΦA(q), TqΦA(q̇)). Thus, if η is
a solution of (7) with u = 0, ΦA ◦ η is a solution
of (9).

In particular, Theorem 4.1 together with Corol-
lary 3.2 tells us that any limit cycles that exist
for the passive walker for one ground slope can
be reproduced by the active control law (8) for
any other ground slope. Also, if (q0, q̇0) lies in the
basin of attraction of the passive limit cycle, then
(ΦA(q0), Tq0

ΦA(q̇0)) lies in the basin of attraction
of the closed loop system. Thus, we are able to
determine the appropriate initial conditions on
any slope given one initial condition that leads
to a passive gait on one particular slope.

5. PASSIVITY BASED CONTROL

The relationship with Passivity-Based Nonlinear
Control is the following. Define the energy func-
tion EφA

as

EφA
(q, q̇) = K(q, q̇) + (V ◦ ΦA)(q) (10)

where K, V are the kinetic and potential energies
of the biped. Then a simple calculation shows
that, along trajectories of the system

ĖφA
= q̇T (BU −

∂V

∂q
+

∂(V ◦ ΦA)

∂q
) (11)

Define the Storage Function S as

S =
1

2
(EφA

− Eref )2 (12)

where Eref is the (constant) energy of the biped
along the limit cycle trajectory of the system (9).
Note that S is identically zero on the limit cycle
trajectory and non-negative away from the limit
cycle. A simple calculation shows that



Ṡ = (EφA
− Eref )ĖφA

(13)

This suggests the following extension of Equa-
tion (8).

u = B−1(
∂V

∂q
−

∂V ◦ ΦA

∂q
+ ū) (14)

where ū is an additional control input yet to be
determined. Then it follows that

Ṡ = (EφA
− Eref )q̇T ū (15)

Thus, if we choose the additional control ū accord-
ing to

ū = −(EφA
− Eref )q̇ (16)

we have
Ṡ = −ū2 ≤ 0 (17)

It can be shown using LaSalle’s Invariance Prin-
ciple (Khalil [1995]) that the manifold defined by

{q̇ = 0} ∩ {EφA
= Eref}

is attractive for the closed loop system over a
single step. Indeed, for a system without impacts,
all trajectories of the system would converge to
this manifold asymptotically. Since impacts occur
at finite intervals, LaSalle’s Theorem cannot be
used to predict the global behavior of the system.
However, it seems intuitive that the basin of
attraction of the stable limit cycle can be enlarged
with the additional control term, baru. This is
verified by simulations in the next section for the
case of the compass gait biped.

6. EXAMPLE

Consider the compass gait biped from Goswami
et al. [1997] shown below, The compass gait biped
is equivalent to a double pendulum with point
masses mH and m concentrated at the hip and
legs. The configuration of the compass gait is
determined by the support angle, θs, and non-

support angle, θns. The dynamic equations, from
Goswami, et. al. (1997), are

M(q)q̈ + C(q, q̇)q̇ + g(q) = Bu (18)

where q =

[

q1

q2

]

=

[

θns

θs

]

; S =

[

−1 0
1 1

]

and

u =

[

uH

us

]

.

The vector u represents independent torques at
the hip and ankle, which are assumed to be
identically zero in the case of the passive biped.

The matrices M(q), C(q, q̇), and vector g(q) are
given as,

M(q) =

[

mb2 −m`b cos(θs − θns)
−m`b cos(θs − θns) (mH + m)`2 + ma2

]

C(q, q̇) =

[

0 m`b sin(θs − θns)θ̇s

m`b sin(θns − θs)θ̇ns 0

]

g(q) =

[

mb sin(θns)
−(mH` + ma + m`) sin(θs)

]

,

where ` = a + b.

In terms of our convention for assigning coordi-
nates, we may take q1 = θs the support angle and
r = θs − θns, the relative angle between the links
(hip angle). Thus we see that the inertia matrix,
and hence the Coriolis and centrifugal terms are
independent of q1.

Figure 4 shows a passive limit cycle for this system
corresponding to a ground slope φ = 3deg. For
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Fig. 3. Limit Cycle (θns, θ̇ns) for a Three Degree
Slope

any ground slope, δ, define β = φ − δ and let

Vβ(q) = V(q + β) and gβ(q) =
∂V(q + β)

∂q

T

Then we apply the feedback control law

u = B−1(
∂V

∂q
−

∂Vβ

∂q
+ ū)

= B−1(g(q) − gβ(q) + ū) (19)

where ū is defined according to (16). Theorem
(4.1) then implies that there is a stable limit cycle
corresponding to the slope δ with ū = 0. The
additional term ū vanishes on the limit cycle and
its inclusion is intended to increase the basin of
attraction and rate of convergence to the limit
cycle. We illustrate this below via simulation.

Figures 5 and 6 show the effect of the added term
ū. In the first plot ū = 0 and the initial condition
is chosen outside the basin of attraction of the
limit cycle. The second plot shows that this same
initial condition is now in the basin of attraction
of the limit cycle with the addition of ū.
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7. CONCLUSIONS AND FUTURE WORK

The results in the paper have potential applica-
tions in developing energy efficient walking gaits
for walking robots. Clearly, the passive limit cy-
cle is energy optimal in that it requires no en-
ergy from external actuators. As the ground slope
varies, the passivity based control law derived here
is sub-optimal but may be used either as an initial
guess in a search for an energy optimal control law
or in lieu of one in case the search for the energy
optimal control is prohibitively expensive.

8. ACKNOWLEDGEMENTS

This research was partially supported by NSF
Grants ECE-9812591 and CSM-0100162. The au-
thors would like to thank Gagandeep Bhatia and
Ian Hiskens for help with the simulation results.

References

S. H. Collins, M. Wisse, and A. Ruina. A three-
dimensional passive-dynamic walking robot
with two legs and knees. International Journal
of Robotics Research, 20(7):607–15, 2001.

M. Garcia, A. Chatterjee, A. Ruina, and M. Cole-
man. The simplest walking model: Stabil-
ity, complexity, and scaling. ASME Journal

on Biomechanical Engineering, 120(2):281–288,
1998.

A. Goswami, B. Espiau, and A. Keramane. Limit
cycles in a passive compass gait biped and
passivity-mimicking control laws. Autonomous
Robots, 4(3):273–86, 1997.

A. Goswami, B. Thuilot, and B. Espiau. A study
of the passive gait of a compass-like biped robot:
Symmetry and chaos. International Journal of
Robotics Research, 17(12):1282–301, 1998.

Y. Hurmuzlu and D. Moskowitz. The role of
impact in the stability of bipedal locomotion.
Dynamics and Stability of Systems, 1(3):217–
234, 1986.

H. K. Khalil. Nonlinear Systems. Prentice Hall,
Englewood Cliffs, NJ, 2 edition, 1995. ISBN
0132280248.

A. D. Kuo. Stabilization of lateral motion in
passive dynamic walking. International Journal
of Robotics Research, 18(9):917–30, 1999.

T. McGeer. Passive dynamic walking. Interna-
tional Journal of Robotics Research, 9(2):62–82,
1990.

T. A. McMahon. Muscles, reflexes, and locomo-
tion. Princeton University Press, Princeton, NJ,
1984. ISBN 0691083223.

H. Ohta, M. Yamakita, and K. Furuta. From
passive to active dynamic walking. In IEEE
Conf. on Decision and Control, pages 3883–
3885, Phoenix, AZ, December 1999.

P. J. Olver. Application of Lie Groups to Differ-
ential Equations, volume 107 of GTM. Springer
Verlag, New York, 1993.

M. Spivak. A comprehensive introduction to
differential geometry. Publish or Perish,
Inc., Berkeley, CA, 2 edition, 1979. ISBN
0914098799.

M. W. Spong. Bipedal locomotion, robot gym-
nastics, and robot air hockey: A rapproche-
ment. In TITech COE/Super Mechano-Systems
Workshop, pages 34–41, Tokyo, Japan, Febru-
ary 1999a.

M. W. Spong. Passivity based control of the
compass gait biped. In IFAC World Congress,
volume 3, pages 19–23, Beijing, China, July
1999b.

M. W. Spong and M. Vidyasagar. Robot Dynamics
and Control. John Wiley, New York, 1989.
ISBN 047161243X.

S. Suzuki, K. Furuta, Y. Pan, and S. Hatakeyama.
Biped walking robot control with passive walker
model by new vsc servo. In American Con-
trol Conference, pages 107–112, Arlington, VA,
June 2001.


