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Abstract—This note presents series expansions and nonlinear

controllability results for Lagrangian systems subject to dissipa-

tive forces. The treatment relies on the assumption of dissipative

forces of linear isotropic nature. The approach is based on the

affine connection formalism for Lagrangian control systems, and

on the homogeneity property of all relevant vector fields.
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I. Introduction

This note presents novel controllability and perturbation
analysis results for control systems with Lagrangian structure.
The work belongs to a growing body of research devoted to the
geometric control of mechanical systems. The objective is the
development of coordinate-free analysis and design tools appli-
cable in a unified manner to robotic manipulators, vehicle mod-
els, and systems with nonholonomic constraints. Contributions
include results on modeling [1], [2], nonlinear controllability [3],
[4], [5], series expansions [6], motion planning [7], [8], averag-
ing [9], passivity-based stabilization [10], [11], [12], and optimal
control [13], [14]. Notions from differential and Riemannian ge-
ometry provide the framework underlying these contributions:
the formalism of affine connections plays a key role in modeling,
analysis and control design for a large class of systems.

The motivation for this work is a standing limitation in the
known results on controllability and series expansions. The
analysis in [3], [4], [5], [6] applies only to systems subject to no
external dissipation, i.e., the system’s dynamics is fully deter-
mined by the Lagrangian function. With the aim of developing
more accurate mathematical models for controlled mechanical
systems, this note addresses the setting of dissipative or damp-
ing forces. It is worth adding that dissipation is a classic topic
in Geometric Mechanics (see for example the work on dissipa-
tion induced instabilities [15] and the extensive literature on
dissipation-based control [10], [11], [12]).

The contribution of this paper are controllability tests and
series expansions that account for a linear isotropic model of
dissipation. Remarkably, the same conditions guaranteeing a
variety of local accessibility and controllability properties for
systems without damping remain valid for the class of systems
under consideration. This applies to small-time local controlla-
bility, local configuration controllability, and kinematic control-
lability. Furthermore, we develop a series expansion describing
the evolution of the controlled trajectories starting from rest,
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thus generalizing the work in [6]. The technical approach ex-
ploits the homogeneity property of the affine connection model
for mechanical control systems.

II. Affine connections and mechanics

In this section we review the notion of affine connection;
see [16] for a comprehensive treatment. We introduce a class
of Lagrangian systems with dissipative forces and explore their
homogeneity properties. All quantities are assumed analytic.

A. Affine connections

An affine connection on a manifold Q is a map that assigns
to a pair of vector fields X,Y another vector field ∇XY such
that

∇fX+Y Z = f∇XZ +∇Y Z

∇X(fY + Z) = (LXf)Y + f∇XY +∇XZ
(1)

for any function f and any vector field Z. Usually ∇XY is
called the covariant derivative of Y with respect to X. Vector
fields can also be covariantly differentiated along curves, and
this concept will be instrumental in writing the Euler-Lagrange
equations. Consider a curve γ : [0, 1] → Q and a vector field
along γ, i.e., a map v : [0, 1] → TQ such that τQ(v(t)) = γ(t)
for all t ∈ [0, 1] (where τQ : TQ → Q denotes the tangent
bundle projection). Take now a vector field V that satisfies
V (γ(t)) = v(t). The covariant derivative of the vector field v

along γ is defined by

Dv(t)

dt
= ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣

∣

q=γ(t)
.

In particular, we may take v(t) = γ̇(t) and set up the equation
∇γ̇(t)γ̇(t) = 0 . This equation is called the geodesic equation, and
its solutions are termed the geodesics of ∇. The vector field Z

on TQ describing this equation is called the geodesic spray.
In a system of local coordinates (q1, . . . , qn), an affine con-

nection is uniquely determined by its Christoffel symbols Γi
ij(q),

∇ ∂

∂qi

(

∂

∂qj

)

= Γk
ij

∂

∂qk
, and accordingly, the covariant derivative

of a vector field is written using (1) as

∇XY =
(∂Y i

∂qj
X

j + Γi
jkX

j
Y

k
) ∂

∂qi
.

Taking natural coordinates (qi, vi) on TQ, the local expression
of the geodesic spray reads

Z(vq) = v
i ∂

∂qi
− Γi

jk(q)v
j
v
k ∂

∂vi
.

B. Control systems described by affine connections

An affine connection control system consists of the following
objects: an n-dimensional configuration manifold Q, with q ∈ Q

being the configuration of the system and vq ∈ TqQ being the
system’s velocity; an affine connection ∇ on Q, with Christoffel
symbols {Γi

jk : Q → R | i, j, k ∈ {1, . . . , n}}; and a family of
input vector fields Y = {Y1, . . . , Ym} on Q. The corresponding
equations of motion are written as

∇q̇(t)q̇(t) = u
a(t)Ya(q(t)), (2)

or, equivalently, in coordinates as q̈i+Γi
jk(q)q̇

j q̇k = ua(t)Y i
a (q),

where the indexes i, j, k ∈ {1, . . . , n}. These equations are a gen-
eralization of the Euler-Lagrange equations. If ∇ is the Levi-
Civita affine connection [16] associated with a kinetic energy



2 SUBMITTED AS A TECHNICAL NOTE TO THE IEEE TRANSACTIONS ON AUTOMATIC CONTROL

metric, then the equations (2) are the forced Euler-Lagrange
equations for the associated kinetic energy Lagrangian. If ∇
is the so called nonholonomic affine connection [2], the equa-
tions (2) represent the forced equations of motion for a nonholo-
nomic system with a kinetic energy Lagrangian, and constraints
linear in the velocities.

The systems described by equations (2) are subject to no
damping force. However, in a number of situations, friction
and dissipation play a relevant role. Consider, for instance, a
blimp experiencing the resistance of the air or an underwater
vehicle moving in the sea. We introduce a linear isotropic term
of dissipation into equations (2), i.e., we consider

∇q̇(t)q̇(t) = kdq̇(t) + u
a(t)Ya(q(t)), (3)

where kd ∈ R. In local coordinates, q̈i + Γi
jk(q)q̇

j q̇k = kdq̇
i +

ua(t)Y i
a (q).

This second-order system can be written as a first-order dif-
ferential equation on TQ. Using { ∂

∂qi
, ∂

∂vi
} as a basis for vector

fields on the tangent bundle of TQ, we define

L(vq) = v
i ∂

∂vi
, Y

lift
a (vq) = Y

i
a (q)

∂

∂vi
, a ∈ {1, . . . ,m} ,

so that the control system becomes

v̇(t) = Z(v(t)) + kdL(v(t)) + u
a(t)Y lift

a (v(t)), (4)

where t 7→ v(t) is now a curve in TQ describing the evolution of a
first-order control affine system. We refer to [16] for coordinate-
free definitions of the lifting operation Ya → Y lift

a and of the
Liouville vector field L on TQ.

C. Homogeneity and Lie algebraic structure

One fundamental feature of the control systems (2) and (3)
is the polynomial dependence of the vector fields Z, L and
Y lift on the velocity variables vi. This structure leads to re-
markable simplifications in the iterated Lie brackets between
{Z, Y lift

1 , . . . , Y lift
m } (see e.g. [17]). As we see below, these

simplifications also take place between the vector fields {Z +
kdL, Y lift

1 , . . . , Y lift
m }.

We start by introducing the notion of geometric homogene-
ity [18]: given two vector fields X and XE , X is homogeneous
with degree m ∈ Z with respect to XE if [XE , X] = mX.
Lemma II.1: Let ∇ be an affine connection on Q with

geodesic spray Z, and let Y be a vector field on Q. Then
[L,Z] = (+1)Z and [L, Y lift] = (−1)Y lift.
In the sequel, a vector field X on TQ is homogeneous of degree
m ∈ Z if it is homogeneous of degree m with respect to L. Let
Pj be the set of vector fields on TQ of homogeneous degree j,
so that Z ∈ P1 and Y lift ∈ P−1. One can see that [L,X] = 0,
for all X ∈ P0, and that [Pi,Pj ] ⊂ Pi+j .

III. Nonlinear controllability

In this section we investigate the controllability properties of
systems with isotropic dissipation. We show how the basic ob-
servation contained in Lemma II.1 is very helpful in the analysis
of local accessibility, controllability, and kinematic controllabil-
ity.

A. Local accessibility and controllability

Here we study conditions for accessibility and controllability
of mechanical systems with dissipation. A relevant notion is
that of configuration controllability, which concerns the reach-
able set restricted to the configuration space Q and is weaker

than full-state controllability; we refer the reader to [3] for the
exact definitions.

Let Lie(Y) and Sym(Y) denote the involutive and the sym-

metric closure, respectively, of Y = {Y1, . . . , Ym}. Let Y
lift

de-

note the set of lifted vector fields {Y
lift

1 , . . . , Y
lift

m }. The next
result shows that the involutive closures of systems (2) and (3)
at zero velocity coincide.
Proposition III.1: Consider the distributions

D(1) = span {Z,Y
lift

} , DL
(1) = span {Z + kdL,Y

lift

} .

Define recursively

D(k) = D(k−1) + [D(k−1),D(k−1)] ,

DL
(k) = D

L
(k−1) + [DL

(k−1),D
L
(k−1)] , k ≥ 2 .

Then, it holds that D(k)(0q) = DL
(k)(0q), for all k. Conse-

quently, the accessibility distributions D(∞)(0q) = Lie(Z,Y
lift

)q

and DL
(∞)(0q) = Lie(Z + kdL,Y

lift

)q coincide.

Proof: Obviously D(1)(0q) = DL
(1)(0q). Moreover, we

have [D(1),D(1)] ⊂ DL
(2) and [DL

(1),D
L
(1)] ⊂ D(2), since [Z +

kdL, Y
lift

] = [Z, Y
lift

]− kdY
lift

. Let us assume that

D(k)(0q) = D
L
(k)(0q) , (5)

[D(k),D(k)] ⊂ D
L
(k+1) , (6)

[DL
(k),D

L
(k)] ⊂ D(k+1) . (7)

hold for k and let us show that (5-7) are valid for k+1. We have

Dk+1 = D(k) + [D(k),D(k)] ⊂ D(k) +D
L
(k+1) =⇒

Dk+1(0q) ⊂ D(k)(0q) +D
L
(k+1)(0q)

= DL
(k)(0q) +D

L
(k+1)(0q) = D

L
(k+1)(0q) .

Similarly, DL
k+1(0q) ⊂ D(k+1)(0q), and thus D(k+1)(0q) =

DL
(k+1)(0q). On the other hand,

[DL
(k+1),D

L
(k+1)] = [DL

(k) + [DL
(k),D

L
(k)],D

L
(k) + [DL

(k),D
L
(k)]]

⊂ [DL
(k) +D(k+1),D

L
(k) +D(k+1)] ⊂ D(k+1) + [DL

(k),D(k+1)]

+D(k+2) = [DL
(k),D(k+1)] +D(k+2).

Thus, it remains to be checked that [DL
(k),D(k+1)] ⊂ D(k+2).

Observe that

[DL
(k),D(k+1)] = [DL

(k−1) + [DL
(k−1),D

L
(k−1)],D(k+1)]

⊂ [DL
(k−1),D(k+1)] +D(k+2),

where we have used the induction hypothesis on (7),
i.e. [DL

(k−1),D
L
(k−1)] ⊂ D(k). By a recursive argument, we find

that what we must show is [DL
(1),D(k+1)] ⊂ D(k+2). Clearly,

[Y
lift

i ,D(k+1)] ⊂ D(k+2), i ∈ {1, . . . ,m}. In addition,

[Z + kdL,D(k+1)] = [Z,D(k+1)] + [kdL,D(k+1)] ⊂ D(k+2) ,

since [L,X] ∈ D(k+1), for all X ∈ D(k+1), by homogeneity. Fi-
nally, it can be similarly shown using (6) that [D(k+1),D(k+1)] ⊂

DL
(k+2). Thus, (5-7) are satisfied for all k.
Corollary III.2: Consider a mechanical control system of the

form (3). Then
(i) the system is locally accessible (LA) at q starting with zero
velocity if Sym(Y)q = TqQ,
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(ii) the system is locally configuration accessible (LCA) at q ∈
Q if Lie(Sym(Y))q = TqQ.

Proof: The manifold Q can be identified with the set
of zero vectors Z(TQ) of TQ by the diffeomorphism q 7→ 0q.
Hence, the tangent space to Z(TQ) at 0q is isomorphic to
TqQ. On the other hand, the projection τQ(vq) = q defines
V = kerTτQ. One has that V0q is isomorphic to TqQ for all
q ∈ Q. Both parts yield the natural decomposition

T0qTQ = T0q (Z(TQ))⊕ V0q ' TqQ⊕ TqQ .

The first copy of TqQ corresponds to configurations, the second
one to velocities. The result follows from the former proposition
and Proposition 5.9 in [3] which asserts that

D(∞)(0q) ∩ V0q = Sym(Y)
lift

q ,

D(∞)(0q) ∩ T0q (Z(TQ)) = Lie(Sym(Y))q.

Next, we examine the small-time local controllability proper-
ties of the system (3). We shall use the following conventions.
Given a set of vector fields X = {X0, X1, . . . , Xm}, every Lie
bracket B in X has a unique decomposition as B = [B1, B2].
In turn, each of B1 and B2 may be uniquely expressed as
B1 = [B11, B12] and B2 = [B21, B22]. This process may be
continued until we obtain not decomposable elements. All such
elements Bi1...il , ib ∈ {1, 2}, are called components of B. The
length of a component Bi1...il is l. A Lie bracket B is bad if
δ0(B) is odd and δa(B) is even, a ∈ {1, . . . ,m}, with δa(B) the
number of occurrences of Xa in B. Otherwise, B is good. The
degree of B is δ(B) =

∑m

b=0 δb(B).
The results in [3], [19] include sufficient conditions for small-

time local controllability (STLC) and small-time local configu-
ration controllability (STLCC). Let the system be LA at q ∈ Q

starting with zero velocity (resp. LCA at q ∈ Q). The system
in equation (3) is STLC at q starting with zero velocity (resp.
STLCC) if:

(Sussmann’s criterium on {Z + kdL,Y
lift

}): Every bad bracket

B in {Z+kdL,Y
lift

} is a R-linear combination of good brackets
evaluated at 0q of lower degree than B.

We shall show that if these conditions are satisfied for the set
{Z,Y

lift

}, then they are also verified for the set {Z+kdL,Y
lift

}.
We illustrate this fact by considering two low order settings.
First, every bracket B of order 1 or 2, i.e., δ(B) ≤ 2, is good.

In addition, [Z + kdL, Y
lift

] = [Z, Y
lift

]− kdY
lift

, and therefore,

every good bracket in {Z + kdL,Y
lift

} of degree 2 is the sum

of the corresponding good bracket in {Z,Y
lift

} plus some good

brackets of lower degree in {Z + kdL,Y
lift

}.

Proposition III.3: Assume Sussmann’s criterium on {Z,Y
lift

}.
Then
(i) every bad bracket B in {Z+kdL,Y

lift

} of degree k, evaluated
at 0q, is a R-linear combination of good brackets of lower degree,

(ii) every good bracket C in {Z+ kdL,Y
lift

} of degree k, evalu-
ated at 0q, is a R-linear combination of the corresponding good

bracket in {Z,Y
lift

} and of some brackets in {Z + kdL,Y
lift

} of
lower degree, and

(iii) every good bracket in {Z,Y
lift

} of degree k, evaluated at

0q, is a R-linear combination of good brackets in {Z+kdL,Y
lift

}
of degree ≤ k.

Proof: First, note that (iii) is an immediate consequence
of (i) and (ii). Next, we show (i) by induction. The result holds
for k = 2. Suppose that it is valid for k and let us prove it for

k+1. Let B be a bad bracket in {Z+kdL,Y
lift

} of degree k+1.
This means that δ0(B) is odd and δi(B) is even, i ∈ {1, . . . ,m}.
Select a term of the form Z+kdL which is in one of the longest
components of B. We then write B as the sum of two Lie
brackets, B = B1 + B2, by expanding the chosen term. By
the homogeneity properties, we have that δ0(B2) = δ0(B) − 1,
δi(B2) = δi(B). Consequently, B2 is a good bracket in {Z +

kdL,Y
lift

} of degree k. Expanding now all the possible terms
Z+kdL in B1 as the sum of two Lie brackets, one with Z and the
other with kdL (going from the ones in the longest components
of B1 to those in the shortest ones), we finally obtain that B

can be written as the sum of the corresponding bad bracket in

{Z,Y
lift

}, plus good/bad brackets in {Z,Y
lift

} of degree ≤ k,

plus B2, which is a good bracket in {Z+kdL,Y
lift

} of degree k.
The induction hypothesis now implies (i).

Let us prove (ii). Let C be a good bracket in {Z + kdL,Y
lift

}
of degree k+1. Expanding the terms Z+kdL as before, we find
that C can be written as the sum of the corresponding good

bracket in {Z,Y
lift

}, plus brackets in {Z,Y
lift

} of degree ≤ k,

plus brackets in {Z + kdL,Y
lift

} of degree k. The induction
hypothesis implies then (ii).

If P is a symmetric product of vector fields in Y, we let γa(P )
denote the number of occurrences of Ya in P . The degree of P
will be γ(P ) =

∑m

a=1 γa(P ). We say that P is bad if γa(P ) is
even for each a ∈ {1, . . . ,m}. We say that P is good if it is not
bad.
Corollary III.4: Consider a mechanical control system as

in (3). Then, we have
(i) the system is STLC at q ∈ Q starting with zero velocity
if Sym(Y)q = TqQ and every bad symmetric product B in
Sym(Y)q is a linear combination of good symmetric products
of lower degree, and
(ii) the system is STLCC at q ∈ Q if Lie(Sym(Y))q = TqQ

and every bad symmetric product B in Sym(Y)q is a linear
combination of good symmetric products of lower degree.

Proof: It follows from the fact that there is a 1-1 corre-

spondence between bad (resp. good) Lie brackets in {Z,Y
lift

}
and bad (resp. good) symmetric products in Y; see [3].

B. Kinematic controllability

Kinematic controllability [4] has direct relevance to the trajec-
tory planning problem for mechanical systems of the form (2).
Here, we present a generalized notion of kinematic controlla-
bility for affine connection systems with isotropic dissipation.
Consider a mechanical system as in (3), and let I is the dis-
tribution generated by the input vector fields {Y1, . . . , Ym}. A
controlled solution to equations (3) is a curve t 7→ q(t) ∈ Q

satisfying
∇q̇ q̇ − kdq̇ ∈ Iq(t) . (8)

Let s : [0, T ] → [0, 1] be a twice-differentiable function such
that s(0) = 0, s(T ) = 1, ṡ(0) = ṡ(T ) = 0, and ṡ(t) > 0 for all
t ∈ (0, T ). We call such a curve s a time scaling. A vector field
V is a decoupling vector field for the mechanical system (3) if,
for any time scaling s and for any initial condition q0, the curve
t 7→ q(t) on Q solving

q̇(t) = ṡ(t)V (q(t)), q(0) = q0, (9)

satisfies the conditions in (8). Additionally, the integral curves
of V defined on the time interval [0, 1] are called kinematic mo-
tions.
Lemma III.5: The vector field V is decoupling for system (3)

iff V ∈ I and 〈V : V 〉 ∈ I.
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Proof: Given a curve γ : [0, T ] → Q satisfying equa-
tion (9), we compute ∇γ̇ γ̇ = s̈V + ṡ∇γ̇V = s̈V + ṡ2∇V V , where
we used (1) for vector fields along curves [16]. Now, γ is a kine-
matic motion if, for all time scalings s, the constraints (8) are
satisfied. Thus

∇γ̇ γ̇ − kdγ̇ = (s̈− kdṡ)V +
ṡ2

2
〈V : V 〉 ∈ I .

Since s is an arbitrary time scaling and q0 is an arbitrary point,
V and 〈V : V 〉 must separately belong to the input distribution
I. The other implication is trivial.

We shall say that the system (3) is locally kinematically con-
trollable if for any q ∈ Q and any neighborhood Uq of q, the
set of reachable configurations from q by kinematic motions re-
maining in Uq contains q in its interior.
Proposition III.6: The system (3) is locally kinematically

controllable if there exist p ∈ {1, . . . ,m} vector fields
{V1, . . . , Vp} ⊂ I such that
(i) 〈Vc : Vc〉 ∈ I, for all c ∈ {1, . . . , p}, and
(ii) Lie(V1, . . . , Vp) has rank n at all q ∈ Q.

IV. Series expansion for the forced evolution

starting from rest

The result in this section extends the treatment in [6] and
sets the basis for the design of motion planning strategies [7]
and the sharpening of the controllability tests [20]. Consider
the system (3), with initial condition q̇(0) = 0.
Proposition IV.1: Given any integrable input vector field

(q, t) 7→ Y (q, t), consider

V1(q, t) =

∫ t

0

ekd(t−τ)
Y (q, τ)dτ ,

Vk(q, t) = −
1

2

k−1
∑

j=1

∫ t

0

ekd(t−τ) 〈Vj(q, τ) : Vk−j(q, τ)〉 dτ , k ≥ 2 .

There exists a T > 0 such that the series (q, t) 7→
∑+∞

k=1 Vk(q, t)
converges absolutely and uniformly for t ∈ [0, T ] and for q in
an appropriate neighborhood of q0. Over the same interval, the
solution γ : [0, T ]→ Q to the system (3) with γ̇(0) = 0 satisfies

γ̇ =

+∞
∑

k=1

Vk(γ, t) . (10)

Proof: Step I. A time-varying vector field (q, t) 7→ X(q, t)
gives rise to the initial value problem on Q, q̇(t) = X(q, t),
q(0) = q0. We denote its solution at time T via q(T ) = ΦX

0,T (q0),
and we refer to it as the flow of X. Consider the initial value
problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0,

where X and Y are analytic (in q) time-varying vector fields.
Regarding X as a perturbation to Y , we can describe the flow of
X+Y in terms of a nominal and perturbed flow. The following
relationship (variation of constants formula after [21]) describes
this flow:

ΦX+Y
0,t = ΦY

0,t ◦ Φ
(ΦY0,t)

∗X

0,t , (11)

where (ΦY
0,t)

∗X is the pull-back of X along ΦY
0,t. This pull-back

admits the series expansion representation [21]

(ΦY
0,t)

∗
X(q, t) = X(q, t) (12)

+

+∞
∑

k=1

∫ t

0

. . .

∫ sk−1

0

(

adY (q,sk) . . . adY (q,s1) X(q, t)
)

dsk . . . ds1.

Step II. In equation (4), let the Liouville vector field play the
role of the perturbation to the vector field Z + Y lift. Then the

application of (11) yields ΦZ+kdL+Y lift

= ΦkdL ◦Φ∆, where we
compute ΦkdL(q0, v0) = (q0, e

kdtv0), and where the homogene-
ity leads to

∆ =

+∞
∑

k=0

tk

k!
adkkdL(Z + Y

lift) =

+∞
∑

k=0

(kdt)
k

k!
adkL(Z + Y

lift)

=

+∞
∑

k=0

(kdt)
k

k!
(Z + (−1)kY lift)

=

+∞
∑

k=0

(

(kdt)
k

k!
Z +

(−kdt)
k

k!
Y

lift

)

= ekdtZ + e−kdtY
lift

.

Let Z ′ = ekdtZ, and accordingly 〈X1 : X2〉
′ = ekdt 〈X1 : X2〉.

The initial value problem associated with ∆ is therefore,

ẏ = Z
′(y) + e−kdtY (y, t)lift . (13)

Step III. Let k ∈ N and consider the differential equation

ẏk =
(

Z
′ + [X lift

k , Z
′] + Y

lift
k

)

(yk, t) . (14)

We recover (13) by setting k = 1, X1 = 0, Y1 = e−kdtY (q, t),
and accordingly y(t) = y1(t). We can now see the vector
field Z ′ + [X lift

k , Z′] as the perturbation to Y lift
k . Using equa-

tions (11) and (12), we set yk(t) = Φ
Y lift
k

0,t (yk+1(t)). Some ma-
nipulations lead to

ẏk+1(t) =

(

(

Φ
Y lift
k

0,t

)∗ (

Z
′ + [X lift

k , Z
′]
)

)

(yk+1(t))

= Z
′+[X lift

k +Y
lift
k , Z

′]−e−kdt
〈

Y k : Xk

〉lift
−
ekdt

2

〈

Y k : Y k

〉lift
.

Therefore, the differential equation for yk+1(t) is of the same
form as (14), where

Xk+1 = Xk + Y k , Yk+1 = −ekdt
〈

Y k : Xk +
1

2
Y k

〉

.

We easily compute Xk =
∑k−1

m=1 Y m and set

Yk+1 = −ekdt
〈

Y k :

k−1
∑

m=1

Y m +
1

2
Y k

〉

.

One can iterate this procedure for an infinite number of times as
in the case of no dissipation [6] to obtain the formal expansion
(note y = (r, ṙ)),

ṙ =

+∞
∑

k=1

V
′(r, t) , V

′
1 (r, t) =

∫ t

0

e−kdτY (r, τ)dτ ,

V
′
k(r, t) = −

1

2

k−1
∑

j=1

∫ t

0

ekdτ
〈

V
′
j (r, τ) : V

′
k−j(r, τ)

〉

dτ.

To obtain the flow of Z + kdL + Y lift, we compose the flow of
∆ with that of kdL to compute

q̇ = ekdtṙ =

+∞
∑

k=1

V (q, t) , V1(q, t) =

∫ t

0

ekd(t−τ)
Y (q, τ)dτ ,

Vk(q, t) = −
1

2

k−1
∑

j=1

∫ t

0

ekd(τ−2τ+t) 〈Vj(q, τ) : Vk−j(q, τ)〉 dτ.
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Step IV. Select a coordinate chart at q0. In this way,
we locally identify Q with Rn. Let Bσ(q0) = {z ∈ Cn :
‖z − q0‖ < σ}. Resorting to the analysis in [6], one
can see that there exists a L > 0 such that ‖Vk‖σ′ ≤

L1−k ‖Y ‖σ
(

tekdt
)2k−1

, where σ′ < σ, ‖·‖σ denotes ‖Y ‖σ =

maxs∈[0,t]maxi∈{1,...,n}maxz∈Bσ(q0) |Y
i(q, s)|, and Y i is the ith

component of Y with respect to the coordinate basis. As a con-
sequence, for ‖Y ‖σ T 2e2kdT < L, the previous expansion con-
verges absolutely and uniformly in t ∈ [0, T ] and q ∈ Bσ′(q0).

V. Conclusions

This paper extends previous important results on nonlinear
controllability in mechanical systems. The main limitation of
the approach is the assumption of isotropic dissipation.
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