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Abstract— This paper describes decentralized control laws technology could lead to the development and validation of
for the coordination of multiple vehicles performing spatially improved oceanographic models.
distributed tasks. The control laws are based on a gradient | jterature Review: Recent years have witnessed a large

descent scheme applied to a class of decentralized utility functions . . .
that encode optimal coverage and sensing policies. These utility research effort focused on motion planning and motion eontr

functions are studied in geographical optimization problems and  Problems for multi-vehicle systems. Issues include foromat
they arise naturally in vector quantization and in sensor alloca- control [9], [10], [11], [12], cooperative motion planniri@3],
tion tasks. The approach exploits the computational geometry of [14], cooperative manipulation [15], conflict avoidance]1
spatial structures such as Voronoi diagrams. [17], and architectures for distributed control [18]. Matied
by applications in the context of distributed sensing neksp
we identify a novel “coverage” control problem for multi-
vehicle systems and we strive to design decentralized aontr
Technological advances in wireless networking and iaws that optimize the vehicles’ locations for sensing psgs.
miniaturization of electro-mechanical systems are legdim Our starting point is the survey [19] on centroidal Voronoi
the design and deployment of swarms of interconnectégssellations and the treatment of locational optimizegimb-
robotic systems. Communicating through ad-hoc networkems in the textbook [20]. Furthermore, our approach is
large numbers of coordinated autonomous vehicles will peelated to a number of methods in (i) vector quantization
form a variety of challenging tasks in aerial, underwateace, for image processing, (ii) design optimal quadrature rules
or land environments. In scientific and commercial domaingii) clustering analysis and the-means problem, (iv) optimal
coordinated vehicles will perform search and recovery aperesource placement, and (v) mesh optimization methods. For
tions, manipulation in hazardous environments, explomati example, we refer the reader interested in algorithms fatme
surveillance and reconnaissance, distributed data t¢iolfec optimization to the surveys [21], [22].
and fusion, and environmental monitoring for pollution de- Statement of Contributions:Our technical approach is
tection and estimation. based on decentralized gradient methods for geographtc cos
Our central motivation is provided by distributed sensinfyinctions calledlocational optimization problemssee [20].
networks in scientific exploration or surveillance missionhe Decentralized control laws in robotics have traditionddgen
motion coordination problem is to maximize the informatiothe subject of behavior-based robotics [9], [18], [23] and
provided by a swarm of vehicles taking measurements of sofi@ve been designed mainly on the basis of heuristics. In this
process. A similar problem arises when the sensors arer eithgper, we propose a formal definition of decentralizedtytili
mobile or reconfigurable, e.g., range and focus or pan and filnction. We notice how a class of geographic optimization
of an active camera system. problems calledocational optimizationprecisely enjoys the
Working prototypes of such sensing networks have alreatgquired properties. We present our treatment for general
been developed; see [1], [2], [3], [4]. In [4], launchablgnanifold spaces, we provide a coordinate-free version ef th
miniature mobile robots communicate through a wireless nélifferential of the locational optimization formula (and its
work. The vehicles are equipped with various micro electrgroof), and we collect a number of elementary facts about
mechanical devices including sensors for vibrations, stiou area, centroid, and polar moment of inertia for planar Voron
magnetic, and IR signals as well as an active video modurgions. Finally, we present some ideas on how to include
(i.e., the camera or micro-radar is controlled via a pan-tiiormation constraints in the coverage problem.
unit). A related system is suggested in [5] under the name ofThe paper is organized as follows. Section Il presents some
Autonomous Oceanographic Sampling Network; see also [@PSiC ideas and tools. Section 1I-B contains the definitibn o
[7], [8]. In this case, underwater vehicles are envisionedecentralized utility function and the locational optimtion
measuring temperature, currents, and other distributedrae  Problem is discussed in Section lll. A variety of simplificets
graphic quantities. The vehicles communicate via an amusgke place when dealing with Euclidean spaces and metrics,
local area network and coordinate their motion in response@s shown in Section IV.
local sensing information and to evolving global data. This
distributed sensing network would provide the novel apilit ]
to sample the environment adaptively in space and time. By Setting up the coverage control
identifying evolving temperature and current gradientshwi In this section we investigate decentralized control lgves t
higher accuracy and resolution than current static senoss achieve “uniform coverage” of a certain space. The problem

I. INTRODUCTION

Il. PRELIMINARIES



is loosely stated as follows: given an ardaandn vehicles, I1l. L OCATIONAL OPTIMIZATION
design a decentralized control law such that the overall-veh We present a utility function that measures the ability of a

cles’ d'StgbUt'On overd is ‘%f.“f‘”m- F(.)” < {.1’ e ’".}’ let collection of vehicles to provide accurate distributedsteg.
pi(t) € R* denote the position of théh vehicle at timet, \ye rely on a class of “geographic optimization problems”
and let known within the context of geographical information scien
pi(t) = u;, (1) see [20], [26], [29].
Let ¢ : @ — Ry be adistribution density function
where the controk; can depend only on local information,that is a scalar function o). The measurep plays the
i.e., the location ofp; and of its neighbors. Since the controrole of an “information density” or of a probability density

law depends only on neighbors, we refer to it as an intemactiinction. In a uniform environment, one might setq) =
law between vehicles. Volume(Q)~!, whereas a non-uniform would be appropriate

to monitor targets that navigate over pre-identified areils w
high likelihood.

Assume each vehicle has a sensor that provides accurate
local measurements and whose performance degrades with
Consider a multi-vehicle system where each agent evolvéistance. Formally, lef (dist(g, p;)) describe the performance

on three dimensional Euclidean space or on more geneflagradation, e.g., noise, loss of resolution, etc, of tha-me
spaces such as matrix Lie groups and symmetric spaces. $wtement at the poiny € @ taken from theith sensor

the configuration space of each vehicle be the manifold wigh positionp;. The function f : R, +— R, is monotone
boundaries®. A Riemannian metrig(-, -)) on @ defines a increasing, one example being a Gaussian-shaped depgndenc
metric tensolG, a distance notion between points and bound<(x) = 1 — exp(—x).

aries on@, nearest neighbal; to the pointp;, and gradient  The overall “sensing performance” or coverage measure
vector fields of scalar functions. L&t, be the discrete group is an integral over). To avoid all sensors monitoring the

of permutations with the natural action ¢}* and letQ™/¥.,, same area, we weigh the relative contributions of each senso
be the shape space @f*. We callU : Q"/%, — R, a through a max operation, i.e., we define:

decentralized utility functioif the gradient control law

B. Decentralized utility functions

Ulpr,oop) = [ _min f (istla. p) o(a)da. (3
ui(p,.-.,pn) = —grad; U(pa, ..., pn), ) @ )
The locational optimization problenis to minimize U; in
depends only on the locatign and its nearest neighbdy;. network optimization, vector quantization, and the eqeint
The notationgrad,; U refers to the gradient of the functidid  discrete problem is known as tlemeans clustering problem.
with respect to the argumept. We shall also consider controlUsing the notion of Voronoi diagram and denoting the measure
laws that depend on a finite number of neighbors of the poielement asi¢(q) = &(¢q)dg, one can rewrite the locational
Di. optimization function as:

Ulpnem) = Y [ F(@ist(an)) dola). ()

C. Abstract Voronoi diagrams

An overview of Voronoi diagrams is presented in [24], [25],. Remark_ 3.1:.The integrgl defining the chational optimiza-
concepts and applications are discussed in [26] and abstii@n function is well defined over manifolds whenever a

Voronoi diagrams are discussed in [27]. Centroidal VorondPlume element is available. This is the case when the metric
tessellations are discussed in [19]. space( is an oriented Riemannian manifold with a volume

Let {p1.....p,} be a collection of points in a metricn—form. Examples includ®™, sphere, and any Lie group.

space(. Let the Voronoi regionV; = V(p;) be the set of

all pointsg € @ such thatdist(g, p;) < d(g,p;) for all j #i. A. Examples

If @Q is a finite dimensional Euclidean space, the boundary of

eachV; is a convex polygon. The set of regiof%7,...,V,}

is called the Voronoi diagram for the generatrs, . .., p. }.

When the two Voronoi region¥; and V; are adjacentp; is

caII_ed a(Vqrqn0|) neighborof p; (and vice-versa). We also minimize the expected value of the distanceofrom the

define th(.a(z,.])—edge ash; = Vi n Vj- . _ closest sensor, i.e., the expected value of the function
Voronoi diagrams can be defined with respect to various

distance functions, for example with respect to thg2-, s-, - min _dist(x, pi)-

and oo-norm over@ = R". Voronoi diagrams can be defined 1€{1,m}

over Riemannian manifolds such as spheres and matrix Lihis cost objective is equal to the cost function in equain

groups; see [28]. Whef) = R? and the distance function iswith f(z) = z since

Euclidean distance, it is known [20] that (i) the nearesticleh

p; to p; is a neighbor, (i) the average number of neighbors is E [mjn dist(X,pi)] = / min f (dist(x,pi)) ¢(q)dq.

SiX. ! Q "

We illustrate the locational optimization function via two
examples.

First, let y be a random variable ovep with probability
density function¢. Given sensors at locationsp;, ..., p,,



Second, consider the problem of estimating an unknowvhere we regard the functionsy(q) = f(dist(q, pr))P(q)
parameter determining the evolution of a distributed gitygnt independent op;. Since the motion op; affects the Voronoi
see [30], [31], [32], [33], [34]. Specifically, létbe a parameter regionV; and its neighboring regioris; for j € {j1,...,jx, }»
to be identified, and assume a sensor at positiog @ we have
acquires a measurement= y(0, ¢). Define a normalized ver-  9H 9V 0 0
sion of the Fisher information value ad(¢,0) = (3y/00)%. oW ap, ~ ops /V ZAOREDY op; /v do;(q).
and recall from Cramer-Rao theorem that the covarianceyf an ‘ GE{TL 0k !
estimation algorithm based on the measuremeig lower- Now, Lemma 3.2 provides the means to analyze the variation
bounded byl/M. In other words, the locatiog is a good of an integral function due to a domain change. Since the
position to observe the parameteif the sensitivity (0y/00) boundary ofV; satisfiesdV; = Uj A;j, whereA;; = Aj; is
is “large.” The approach in [31], [33] can be described ithe edge betweel; andV;, we have
our setting by the selection of density functions(q) =

E[M (q,0)], or ¢2(q) = M(q,0), whered is the current / bi(q)dg = E /
. i Jv; (p, A
estimate off. (p:)

JE€{J1se 0k, }

dq
o, (G mo@))sa)
0 dg = dg d
B. The differential of the locational optimization funatio 5, /V-(pi) ¢i(a)dq = /Ai»(pi) <<d7n » 15i(q)))dé;(a),

We start with a preliminary result that is related to th ’ ’
integral form of the conservation of mass lemma in fluids [3
and to classic divergence theorems; see [36, Chapter I].

Lemma 3.2:Let Q = Q(z) C @ be a region that depends

here we define:;; as the unit normal along;; outward of
3» and where therefore we hawg; = —n;;. Collecting these
results we write

OH oV dq
smoothly on a real parameter € & and that has a well- =% =~ — / (S5 mis(a)) (@.(q) - ¢j(q))dq,
defined boundarg(z) for all z. Let ¢ be a density function Pi GE i, } 7 Di
over@. ';hen J When W = V = V(P), we have thatf(dist(¢,p;)) =
el dé(q) :/ <<£ , n(q))do(q) , f(dist(_q,pj)) and therefore@(q) — ¢,(g) = 0 for any ¢
dz Jo(z) Q) dT belonging to the edgé\;;. This concludes the proof. =

We summarize the discussion above as follows.

where n is the unit outward normal t@)(x), and where . ) .
" (z) Proposition 3.1: The control law in equation (2) becomes

dg/dx denotes the derivative of the boundary points with

respect tar. . S  u(pryeepn) = —grad; U(pa, ..., pn)
The differential of the locational optimization functios i ) 9 .
presented in the following lemma. The proof is an extension t =-G / afp_f (dist(q, pi)) do(q)  (5)
Riemannian manifolds of the procedure in [19]. An alten&ti ) Vi T ]
proof for the Euclidean case is described in [37]. and makes the vehicles converge to an extremum point of the

Lemma 3.3:The partial derivative of the locational opti-locational optimization function.
mization function is:

oU C. Formation constraints
ap; /v 3pif (dist(g, pi)) do(q)- Formation and distance constraints might arise for a wariet
. S of reasons including communication constraints in environ
Proof: The Voronoi regiond = {V;} generated by> = oy iith obstacles. The following treatment is inspired by
{p1,...,pn} provide a tessellation of the manifol@. We

! X the presentation in [12].

let P — V(P) denote the mapping that associates a Voronoi 5 ‘formation constraint function is a differentiable, pasit
tessellation to a collection of generatafs In what follows, afinite strictly convex functio : Q x --- x Q — R, The

we let v = {W;} be a generic tessellation of the manifoldy,3he and orientation of the robot formation is uniquely de-
Q, and we define termined by(p1,...,p,) = F~1(0). A semidefinite function

n ) F allows for a free orientation and location of the formation.
H(P,W) =) /W f(dist(g,pi))do(q) - Consider for example
=1 i _ . 2
SinceU(p1, ..., pn) = H(P,V(P)), we have F(p1,...,pn) = ;Tij (dist(pi, p;) — di;)
7]
ou _ o (P,V(P)) = oH | O ov , wherer;; = 7;; > 0. Only relative distances appear, therefore
Ipi Op; Ipi  OWlw=v Ip; the formation is maintained under rigid displacements.
and since To maximize coverage while maintaining formation, the
OH 0 . vehicles need to solve the constrained nonlinear minincizat
apz (Pa W) = /W7 8p1 f(dlSt(qapz))d¢(q) ; prob|em
it suffices to show thatoH/0W)(0V/0p;) vanishes aWV = : - / dist(a. p; d
V. We therefore focus on computing i ; Vi f (dist(q, ps)) $la)dq

n . . 2
OH oV _ 0 / 61 (q)dq . subject to an (dist(ps, p;) — dij)" =0
OW Opi Opi = Ji(pr,..opn) é1. (@) =1 (dist(q.pr)) #(a) i#]

,,,,,




Algorithms for this optimization problem can be designed Additionally, the control law in equation (5) becomes

in various manners. If the formation is to be maintained U o )
accurately as the agents move, one could employ Lagrange a =/ op; (llg = pill?) pla)dq )
multipliers. If instead the formation constraint is to be re A
garded as a performance measure to be optimized together = 2/ (pi — q)p(q)dq
with the coverage measure, one could employ a penalty Vi
function method. In other words, a penalty function methods _ 9 / (g)d _/ (q)d
corresponds to a gradient descent control for the function -\ V.p 404 v, 2°\2)%9
U(pi,---,pn) + AF(p1,...,pn), for some scalai > 0. — 2My, (p; — Cy) . 8)
It is worth noting that the control law; = —0U /0p; =
IV. EUCLIDEAN SETTING 2My, (Cy, — p;) has the geometric interpretation that each

In this section we start by reviewing definitions and expregertex goes toward the centroid of its Voronoi region. Inesth
sions for the center of mass and the polar moment of inertiawérds, the equilibrium state is reached when all verticesrar
planar regions and in particular of convex polygons. Werlatéhe centroid of their respective Voronoi polygons. Funthere,
show the connection of these concepts with the treatmenttire functionU and its partial derivative depend uniquely on

the previous section. the Voronoi polygonV; and the positiorp;, which makes the
Let V be a connected subset of the plak@ with density control law decentralized. Similar arguments are at théshuds
function p(q). The massMy € R,, the centroidCy, = the Lloyd algorithm for vector quantization described i9][1
(Cv,z,Cvy) € R™, and the polar moment of inertidy,, € _ _ _ _ _ _
R, about the poinp of the regionV are defined as B. Voronoi Regions iR* with Uniform Density
In this section, we assume the Voronoi regidf is
My = / p(q) dgq a convex polygon on a plane withv; vertices labeled
{(z0,%0),--,(xN,—1,yn,—1)} such as in Figure 1. It is
1 ; ; —
Cy = 7/ qp(q)dq convenient to definézy,, yn,) = (zo,yo). Furthermore, we
My Jy assume that the density function is unity, i€q) = p(q) = 1.
Tvp = / lg — plI? p(q) dg .- By evaluating the integrals over the polygon, one can obtain

(w3,y3)

Additionally, by the parallel axis theorem, one can write,
Jvp = Jv.cy + My [p = Cv? (6)

where Jy, ¢, € R, is defined as the polar moment of inertia
of the regionV” about its centroid. (z1,91)

Next, we show how, under certain hypothesis, the integra-
tion step necessary to compute the control law (5) can be
avoided by taking into account the problem geometry. Indeed (0, 90) = (w6, Y6
we obtain analgebraicexpression of the gradient control law
in terms of the vertices of the Voronoi regions.

(T4, Ya)
(w2,92)

Fig. 1. Notation conventions for a convex polygon.

A. Voronoi Regions ifR™ the following closed form expressions
We make the following four assumptions in the locational Nl
optimization problem. Assume thesensors live on a compact My, = - Z (TkYk+1 — Thr1Yk)
polyhedra inR™, and the distance function iist(q, p;) = 2 k=0
llg — pi||. Furthermore, assume th#tx) = 22 and ¢(q) = 1 Nt
plq)- Then the locational optimization function in equation (4)  Cv, » = > @k + Tep1) (ThYks1 — Thp1Uk)
becomes Vi k=0
n N;—1
Upry-. - pn) = Z/ g — pil|? p(q) dq Cviv = Gar D Wk + Y (@RYke1 — Thiays) -
i=17Vi Vi k=0
n To present a simple formula for the polar moment of ineréa, |
= Z JVq',,;qu T = a:k—C’VM andgjk = yk—Cwy, fork e {0, e Ni—l}.
i=1 Then one can show that polar moment of inertia of a polygon
n n . .
about its centroid,/y, « becomes
=Y Jviow, Y My, |lpi — Cv,|? ’
i=1 i=1 1 N;—1

where Jy;, ,, is the polar moment of inertia of the Voronoi Jviov, = 12 Z (ZkGr+1 = Tur18) -
region V; about the pointp;, and My, is the mass of the L kfo L I o
Voronoi regionV;. (T + TeTr1 + Tioy1 + Yo + YePkt1 + Y1) -



To compute the polar moment of inerti&, ,, of the Voronoi
polygon about an arbitrary point, one can use equation (6)
as,

2.

Cost Function

Jvipi = Jvi,ov, + My, [lpi — Cy,

0.0078

0.0076

The proof of some of these formulas can be found in [38];
they are all based on decomposing the polydéninto the
union of disjoint triangles.

0.0074)

C. Simulations

In this section we provide a simulation for the control laws
described in Section IV for the planar Euclidean settinghwit
uniform density. The results are shown in the four illustnasg
in Figure 2. The vehicles’ initial locations are in a tighbgp
in the lower left corner of the admissible region; see the
bottom-left figure. The vehicles’ final locations are illized
in the bottom-right figure. The bottom left and right figureal
illustrate the initial and final Voronoi diagrams. The retion
in the cost function shown in the top-right figure provides
measure of the uniform coverage the vehicles provide. The
paths of the vehicles are also included in the top-left figur
the initial locations are shown as small diameter blacklesc

: : ; ; ig. 3. Non-uniform setting. The distribution density ftioo has an inverse
and final locations are shown as Iarger diameter red CIrCIe{Xponential about the location shown by the large circlehim bottom left

and right figures.

Cost Function
nonlinear dynamics (e.g., nonholonomic vehicles). Additi
ally, we plan to implement our algorithms on a group of all-
terrain vehicles.
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