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Abstract— This paper describes decentralized control laws
for the coordination of multiple vehicles performing spatially
distributed tasks. The control laws are based on a gradient
descent scheme applied to a class of decentralized utility functions
that encode optimal coverage and sensing policies. These utility
functions are studied in geographical optimization problems and
they arise naturally in vector quantization and in sensor alloca-
tion tasks. The approach exploits the computational geometry of
spatial structures such as Voronoi diagrams.

I. I NTRODUCTION

Technological advances in wireless networking and in
miniaturization of electro-mechanical systems are leading to
the design and deployment of swarms of interconnected
robotic systems. Communicating through ad-hoc networks,
large numbers of coordinated autonomous vehicles will per-
form a variety of challenging tasks in aerial, underwater, space,
or land environments. In scientific and commercial domains,
coordinated vehicles will perform search and recovery opera-
tions, manipulation in hazardous environments, exploration,
surveillance and reconnaissance, distributed data collection
and fusion, and environmental monitoring for pollution de-
tection and estimation.

Our central motivation is provided by distributed sensing
networks in scientific exploration or surveillance missions. The
motion coordination problem is to maximize the information
provided by a swarm of vehicles taking measurements of some
process. A similar problem arises when the sensors are either
mobile or reconfigurable, e.g., range and focus or pan and tilt
of an active camera system.

Working prototypes of such sensing networks have already
been developed; see [1], [2], [3], [4]. In [4], launchable
miniature mobile robots communicate through a wireless net-
work. The vehicles are equipped with various micro electro-
mechanical devices including sensors for vibrations, acoustic,
magnetic, and IR signals as well as an active video module
(i.e., the camera or micro-radar is controlled via a pan-tilt
unit). A related system is suggested in [5] under the name of
Autonomous Oceanographic Sampling Network; see also [6],
[7], [8]. In this case, underwater vehicles are envisioned
measuring temperature, currents, and other distributed oceano-
graphic quantities. The vehicles communicate via an acoustic
local area network and coordinate their motion in response to
local sensing information and to evolving global data. This
distributed sensing network would provide the novel ability
to sample the environment adaptively in space and time. By
identifying evolving temperature and current gradients with
higher accuracy and resolution than current static sensors, this

technology could lead to the development and validation of
improved oceanographic models.

Literature Review: Recent years have witnessed a large
research effort focused on motion planning and motion control
problems for multi-vehicle systems. Issues include formation
control [9], [10], [11], [12], cooperative motion planning[13],
[14], cooperative manipulation [15], conflict avoidance [16],
[17], and architectures for distributed control [18]. Motivated
by applications in the context of distributed sensing networks,
we identify a novel “coverage” control problem for multi-
vehicle systems and we strive to design decentralized control
laws that optimize the vehicles’ locations for sensing purposes.
Our starting point is the survey [19] on centroidal Voronoi
tessellations and the treatment of locational optimization prob-
lems in the textbook [20]. Furthermore, our approach is
related to a number of methods in (i) vector quantization
for image processing, (ii) design optimal quadrature rules,
(iii) clustering analysis and thek-means problem, (iv) optimal
resource placement, and (v) mesh optimization methods. For
example, we refer the reader interested in algorithms for mesh
optimization to the surveys [21], [22].

Statement of Contributions:Our technical approach is
based on decentralized gradient methods for geographic cost
functions calledlocational optimization problems; see [20].
Decentralized control laws in robotics have traditionallybeen
the subject of behavior-based robotics [9], [18], [23] and
have been designed mainly on the basis of heuristics. In this
paper, we propose a formal definition of decentralized utility
function. We notice how a class of geographic optimization
problems calledlocational optimizationprecisely enjoys the
required properties. We present our treatment for general
manifold spaces, we provide a coordinate-free version of the
differential of the locational optimization formula (and of its
proof), and we collect a number of elementary facts about
area, centroid, and polar moment of inertia for planar Voronoi
regions. Finally, we present some ideas on how to include
formation constraints in the coverage problem.

The paper is organized as follows. Section II presents some
basic ideas and tools. Section II-B contains the definition of
decentralized utility function and the locational optimization
problem is discussed in Section III. A variety of simplifications
take place when dealing with Euclidean spaces and metrics,
as shown in Section IV.

II. PRELIMINARIES

A. Setting up the coverage control

In this section we investigate decentralized control laws that
achieve “uniform coverage” of a certain space. The problem
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is loosely stated as follows: given an areaA andn vehicles,
design a decentralized control law such that the overall vehi-
cles’ distribution overA is uniform. For i ∈ {1, . . . , n}, let
pi(t) ∈ R

2 denote the position of theith vehicle at timet,
and let

ṗi(t) = ui , (1)

where the controlui can depend only on local information,
i.e., the location ofpi and of its neighbors. Since the control
law depends only on neighbors, we refer to it as an interaction
law between vehicles.

B. Decentralized utility functions

Consider a multi-vehicle system where each agent evolves
on three dimensional Euclidean space or on more general
spaces such as matrix Lie groups and symmetric spaces. Let
the configuration space of each vehicle be the manifold with
boundariesQ. A Riemannian metric〈〈· , ·〉〉 on Q defines a
metric tensorG, a distance notion between points and bound-
aries onQ, nearest neighborNi to the pointpi, and gradient
vector fields of scalar functions. LetΣn be the discrete group
of permutations with the natural action onQn and letQn/Σn

be the shape space ofQn. We call U : Qn/Σn 7→ R+ a
decentralized utility functionif the gradient control law

ui(p1, . . . , pn) = − gradi U(p1, . . . , pn), (2)

depends only on the locationpi and its nearest neighborNi.
The notationgradi U refers to the gradient of the functionU
with respect to the argumentpi. We shall also consider control
laws that depend on a finite number of neighbors of the point
pi.

C. Abstract Voronoi diagrams

An overview of Voronoi diagrams is presented in [24], [25],
concepts and applications are discussed in [26] and abstract
Voronoi diagrams are discussed in [27]. Centroidal Voronoi
tessellations are discussed in [19].

Let {p1, . . . , pn} be a collection of points in a metric
spaceQ. Let the Voronoi regionVi = V (pi) be the set of
all pointsq ∈ Q such thatdist(q, pi) ≤ d(q, pj) for all j 6= i.
If Q is a finite dimensional Euclidean space, the boundary of
eachVi is a convex polygon. The set of regions{V1, . . . , Vn}
is called the Voronoi diagram for the generators{p1, . . . , pn}.
When the two Voronoi regionsVi and Vj are adjacent,pi is
called a(Voronoi) neighborof pj (and vice-versa). We also
define the(i, j)-edge as∆ij = Vi ∩ Vj .

Voronoi diagrams can be defined with respect to various
distance functions, for example with respect to the1-, 2-, s-,
and∞-norm overQ = R

m. Voronoi diagrams can be defined
over Riemannian manifolds such as spheres and matrix Lie
groups; see [28]. WhenQ = R

2 and the distance function is
Euclidean distance, it is known [20] that (i) the nearest vehicle
pj to pi is a neighbor, (ii) the average number of neighbors is
six.

III. L OCATIONAL OPTIMIZATION

We present a utility function that measures the ability of a
collection of vehicles to provide accurate distributed sensing.
We rely on a class of “geographic optimization problems”
known within the context of geographical information science;
see [20], [26], [29].

Let φ : Q 7→ R+ be a distribution density function,
that is a scalar function onQ. The measureφ plays the
role of an “information density” or of a probability density
function. In a uniform environment, one might setφ(q) =
Volume(Q)−1, whereas a non-uniformφ would be appropriate
to monitor targets that navigate over pre-identified areas with
high likelihood.

Assume each vehicle has a sensor that provides accurate
local measurements and whose performance degrades with
distance. Formally, letf (dist(q, pi)) describe the performance
degradation, e.g., noise, loss of resolution, etc, of the mea-
surement at the pointq ∈ Q taken from theith sensor
at position pi. The function f : R+ 7→ R+ is monotone
increasing, one example being a Gaussian-shaped dependency
f(x) = 1 − exp(−x).

The overall “sensing performance” or coverage measure
is an integral overQ. To avoid all sensors monitoring the
same area, we weigh the relative contributions of each sensor
through a max operation, i.e., we define:

U(p1, . . . , pn) =

∫

Q

min
i∈{1,...,n}

f (dist(q, pi)) φ(q)dq. (3)

The locational optimization problemis to minimize U ; in
network optimization, vector quantization, and the equivalent
discrete problem is known as then-means clustering problem.
Using the notion of Voronoi diagram and denoting the measure
element asdφ(q) = φ(q)dq, one can rewrite the locational
optimization function as:

U(p1, . . . , pn) =
n∑

i=1

∫

Vi

f (dist(q, pi)) dφ(q). (4)

Remark 3.1:The integral defining the locational optimiza-
tion function is well defined over manifolds whenever a
volume element is available. This is the case when the metric
spaceQ is an oriented Riemannian manifold with a volume
n-form. Examples includeRn, sphere, and any Lie group.

A. Examples

We illustrate the locational optimization function via two
examples.

First, let χ be a random variable overQ with probability
density functionφ. Given sensors atn locationsp1, . . . , pn,
minimize the expected value of the distance ofχ from the
closest sensor, i.e., the expected value of the function

min
i∈{1,...,n}

dist(χ, pi).

This cost objective is equal to the cost function in equation(3)
with f(x) = x since

E
[
min

i
dist(χ, pi)

]
=

∫

Q

min
i

f (dist(χ, pi)) φ(q)dq.
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Second, consider the problem of estimating an unknown
parameter determining the evolution of a distributed quantity;
see [30], [31], [32], [33], [34]. Specifically, letθ be a parameter
to be identified, and assume a sensor at positionq ∈ Q
acquires a measurementy = y(θ, q). Define a normalized ver-
sion of the Fisher information value asM(q, θ) = (∂y/∂θ)2,
and recall from Cramer-Rao theorem that the covariance of any
estimation algorithm based on the measurementy is lower-
bounded by1/M . In other words, the locationq is a good
position to observe the parameterθ if the sensitivity(∂y/∂θ)
is “large.” The approach in [31], [33] can be described in
our setting by the selection of density functionsφ1(q) =
E [M (q, θ)], or φ2(q) = M(q, θ̂), where θ̂ is the current
estimate ofθ.

B. The differential of the locational optimization function

We start with a preliminary result that is related to the
integral form of the conservation of mass lemma in fluids [35]
and to classic divergence theorems; see [36, Chapter I].

Lemma 3.2:Let Ω = Ω(x) ⊂ Q be a region that depends
smoothly on a real parameterx ∈ R and that has a well-
defined boundary∂Ω(x) for all x. Let φ be a density function
over Q. Then

d

dx

∫

Ω(x)

dφ(q) =

∫

∂Ω(x)

〈〈 dq

dx
, n(q)

〉〉
dφ(q) ,

where n is the unit outward normal to∂Ω(x), and where
dq/dx denotes the derivative of the boundary points with
respect tox.

The differential of the locational optimization function is
presented in the following lemma. The proof is an extension to
Riemannian manifolds of the procedure in [19]. An alternative
proof for the Euclidean case is described in [37].

Lemma 3.3:The partial derivative of the locational opti-
mization function is:

∂U

∂pi

=

∫

Vi

∂

∂pi

f (dist(q, pi)) dφ(q).

Proof: The Voronoi regionsV = {Vi} generated byP =
{p1, . . . , pn} provide a tessellation of the manifoldQ. We
let P 7→ V(P ) denote the mapping that associates a Voronoi
tessellation to a collection of generatorsP . In what follows,
we let W = {Wi} be a generic tessellation of the manifold
Q, and we define

H(P,W) =

n∑

i=1

∫

Wi

f(dist(q, pi))dφ(q) .

SinceU(p1, . . . , pn) = H(P,V(P )), we have

∂U

∂pi

=
∂H

∂pi

(P,V(P )) =
∂H

∂pi

+
∂H

∂W

∣∣∣
W=V

∂V

∂pi

,

and since
∂H

∂pi

(P,W) =

∫

Wi

∂

∂pi

f(dist(q, pi))dφ(q) ,

it suffices to show that(∂H/∂W)(∂V/∂pi) vanishes atW =
V. We therefore focus on computing

∂H

∂W

∂V

∂pi

=
∂

∂pi

n∑

k=1

∫

Vk(p1,...,pn)

φk(q)dq
∣∣∣
φk(q)=f(dist(q,pk))φ(q)

where we regard the functionsφk(q) = f(dist(q, pk))φ(q)
independent ofpi. Since the motion ofpi affects the Voronoi
regionVi and its neighboring regionsVj for j ∈ {j1, . . . , jki

},
we have

∂H

∂W

∂V

∂pi

=
∂

∂pi

∫

Vi

dφi(q) +
∑

j∈{j1,...,jki
}

∂

∂pi

∫

Vj

dφj(q).

Now, Lemma 3.2 provides the means to analyze the variation
of an integral function due to a domain change. Since the
boundary ofVi satisfies∂Vi =

⋃
j ∆ij , where∆ij = ∆ji is

the edge betweenVi andVj , we have

∂

∂pi

∫

Vi(pi)

φi(q)dq =
∑

j∈{j1,...,jki
}

∫

∆ij(pi)

〈〈 dq

dpi

, nij(q)
〉〉

dφi(q)

∂

∂pi

∫

Vj(pi)

φj(q)dq =

∫

∆ij(pi)

〈〈 dq

dpi

, nji(q)
〉〉

dφj(q),

where we definenij as the unit normal along∆ij outward of
Vi, and where therefore we havenji = −nij . Collecting these
results we write
∂H

∂W

∂V

∂pi

=
∑

j∈{j1,...,jki
}

∫

∆ij

〈〈 dq

dpi

, nij(q)
〉〉(

φi(q) − φj(q)
)
dq.

When W = V = V(P ), we have thatf(dist(q, pi)) =
f(dist(q, pj)) and thereforeφi(q) − φj(q) = 0 for any q
belonging to the edge∆ij . This concludes the proof.

We summarize the discussion above as follows.
Proposition 3.1:The control law in equation (2) becomes

ui(p1, . . . , pn) = − gradi U(p1, . . . , pn)

= −G
−1

∫

Vi

∂

∂pi

f (dist(q, pi)) dφ(q) (5)

and makes the vehicles converge to an extremum point of the
locational optimization function.

C. Formation constraints

Formation and distance constraints might arise for a variety
of reasons including communication constraints in environ-
ment with obstacles. The following treatment is inspired by
the presentation in [12].

A formation constraint function is a differentiable, positive
definite, strictly convex functionF : Q× · · · ×Q → R+. The
shape and orientation of the robot formation is uniquely de-
termined by(p1, . . . , pn) = F−1(0). A semidefinite function
F allows for a free orientation and location of the formation.
Consider for example

F (p1, . . . , pn) =
∑

i6=j

τij (dist(pi, pj) − dij)
2

whereτij = τji ≥ 0. Only relative distances appear, therefore
the formation is maintained under rigid displacements.

To maximize coverage while maintaining formation, the
vehicles need to solve the constrained nonlinear minimization
problem

min

n∑

i=1

∫

Vi

f (dist(q, pi))φ(q)dq

subject to
∑

i6=j

τij (dist(pi, pj) − dij)
2

= 0
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Algorithms for this optimization problem can be designed
in various manners. If the formation is to be maintained
accurately as the agents move, one could employ Lagrange
multipliers. If instead the formation constraint is to be re-
garded as a performance measure to be optimized together
with the coverage measure, one could employ a penalty
function method. In other words, a penalty function methods
corresponds to a gradient descent control for the function
U(p1, . . . , pn) + λF (p1, . . . , pn), for some scalarλ > 0.

IV. EUCLIDEAN SETTING

In this section we start by reviewing definitions and expres-
sions for the center of mass and the polar moment of inertia of
planar regions and in particular of convex polygons. We later
show the connection of these concepts with the treatment in
the previous section.

Let V be a connected subset of the planeR
m with density

function ρ(q). The massMV ∈ R+, the centroidCV =
(CV,x, CV,y) ∈ R

m, and the polar moment of inertiaJV,p ∈
R+ about the pointp of the regionV are defined as

MV =

∫

V

ρ(q) dq

CV =
1

MV

∫

V

q ρ(q) dq

JV,p =

∫

V

‖q − p‖2 ρ(q) dq .

Additionally, by the parallel axis theorem, one can write,

JV,p = JV,CV
+ MV ‖p − CV ‖2 (6)

whereJV,CV
∈ R+ is defined as the polar moment of inertia

of the regionV about its centroid.
Next, we show how, under certain hypothesis, the integra-

tion step necessary to compute the control law (5) can be
avoided by taking into account the problem geometry. Indeed,
we obtain analgebraicexpression of the gradient control law
in terms of the vertices of the Voronoi regions.

A. Voronoi Regions inRm

We make the following four assumptions in the locational
optimization problem. Assume then sensors live on a compact
polyhedra inR

m, and the distance function isdist(q, pi) =
‖q − pi‖. Furthermore, assume thatf(x) = x2 and φ(q) =
ρ(q). Then the locational optimization function in equation (4)
becomes

U(p1, . . . , pn) =

n∑

i=1

∫

Vi

‖q − pi‖
2 ρ(q) dq

≡

n∑

i=1

JVi,pi

=

n∑

i=1

JVi,CVi
+

n∑

i=1

MVi
‖pi − CVi

‖2

where JVi,pi
is the polar moment of inertia of the Voronoi

region Vi about the pointpi, and MVi
is the mass of the

Voronoi regionVi.

Additionally, the control law in equation (5) becomes

∂U

∂pi

=

∫

Vi

∂

∂pi

(
‖q − pi‖

2
)
ρ(q)dq (7)

= 2

∫

Vi

(pi − q)ρ(q)dq

= 2

(
pi

∫

Vi

ρ(q)dq −

∫

Vi

qρ(q)dq

)

= 2MVi
(pi − CVi

) . (8)

It is worth noting that the control laẇpi = −∂U/∂pi =
2MVi

(CVi
− pi) has the geometric interpretation that each

vertex goes toward the centroid of its Voronoi region. In other
words, the equilibrium state is reached when all vertices are in
the centroid of their respective Voronoi polygons. Furthermore,
the functionU and its partial derivative depend uniquely on
the Voronoi polygonVi and the positionpi, which makes the
control law decentralized. Similar arguments are at the basis of
the Lloyd algorithm for vector quantization described in [19].

B. Voronoi Regions inR2 with Uniform Density

In this section, we assume the Voronoi regionVi is
a convex polygon on a plane withNi vertices labeled
{(x0, y0), . . . , (xNi−1, yNi−1)} such as in Figure 1. It is
convenient to define(xNi

, yNi
) = (x0, y0). Furthermore, we

assume that the density function is unity, i.e.φ(q) = ρ(q) = 1.
By evaluating the integrals over the polygon, one can obtain

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)
(x0, y0) = (x6, y6)

(x1, y1)

(Cx, Cy)

Fig. 1. Notation conventions for a convex polygon.

the following closed form expressions

MVi
=

1

2

Ni−1∑

k=0

(xkyk+1 − xk+1yk)

CVi,x =
1

6MVi

Ni−1∑

k=0

(xk + xk+1)(xkyk+1 − xk+1yk)

CVi,y =
1

6MVi

Ni−1∑

k=0

(yk + yk+1)(xkyk+1 − xk+1yk) .

To present a simple formula for the polar moment of inertia, let
x̄k = xk−CVi,x andȳk = yk−CVi,y, for k ∈ {0, . . . , Ni−1}.
Then one can show that polar moment of inertia of a polygon
about its centroid,JVi,C becomes

JVi,CVi
=

1

12

Ni−1∑

k=0

(x̄kȳk+1 − x̄k+1ȳk) ·

(x̄2
k + x̄kxk+1 + x̄2

k+1 + ȳ2
k + ȳkȳk+1 + ȳ2

k+1) .
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To compute the polar moment of inertiaJVi,pi
of the Voronoi

polygon about an arbitrary pointpi, one can use equation (6)
as,

JVi,pi
= JVi,CVi

+ MVi
‖pi − CVi

‖2.

The proof of some of these formulas can be found in [38];
they are all based on decomposing the polygonVi into the
union of disjoint triangles.

C. Simulations

In this section we provide a simulation for the control laws
described in Section IV for the planar Euclidean setting with
uniform density. The results are shown in the four illustrations
in Figure 2. The vehicles’ initial locations are in a tight group
in the lower left corner of the admissible region; see the
bottom-left figure. The vehicles’ final locations are illustrated
in the bottom-right figure. The bottom left and right figure also
illustrate the initial and final Voronoi diagrams. The reduction
in the cost function shown in the top-right figure provides a
measure of the uniform coverage the vehicles provide. The
paths of the vehicles are also included in the top-left figure:
the initial locations are shown as small diameter black circles
and final locations are shown as larger diameter red circles.

0.14

0.16

0.18

0.2

0.22

20 40 60 80 100

Cost Function

Fig. 2. Uniform distribution of sensors obtained by 16 vehicles in a polygonal
environment. The vehicles’ initial positions are in a tight group in the lower
left corner and their final positions are optimally distributed.

V. CONCLUSIONS

We have presented some new control laws for networks
of mobile agents performing a spatially distributed sensing
task. The technical approach relies on ideas from locational
optimization and centroidal Voronoi diagrams. The approach
in this note leads to a variety of interesting avenues of research
that seem amenable to technical progress.

Future research directions include extending the control
laws to the setting of time-varying environments (e.g., consider
a time-varying distribution density function), non-isotropic
sensors (e.g., such as cameras and directional antennas), and

0.007

0.0072

0.0074

0.0076

0.0078

20 40 60 80 100

Cost Function

Fig. 3. Non-uniform setting. The distribution density function has an inverse
exponential about the location shown by the large circle in the bottom left
and right figures.

nonlinear dynamics (e.g., nonholonomic vehicles). Addition-
ally, we plan to implement our algorithms on a group of all-
terrain vehicles.
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