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Abstract

We propose a notion of passivity for hybrid systems. Our
work is motivated by problems in haptics and teleoperation
where several computer controlled mechanical systems are
connected through a communication channel. To account
for time delays and to better react to user actions it is desir-
able to design controllers that can switch between different
operating modes. Each of the interacting systems can be
therefore naturally modeled as a hybrid system. A tradi-
tional passivity definition requires that a storage function
exists that is common to all operating modes. We show
that stability of the system can be guaranteed even if differ-
ent storage function are found for each of the modes, pro-
vided appropriate conditions are satisfied when the system
switches.

Keywords: hybrid systems, passivity, multiple Lyapunov
functions, haptics

1 Introduction

In this paper we are primarily concerned with the stability
analysis of systems that involve haptic devices. Figure 1
shows a schematic of such a system.
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Figure 1: A system with a haptic device.

A human interacts with a computer bi-directionally through
a haptic interface and uni-directionally through a visual and
audio display. The nature of this interaction depends on
the configuration of the remote site. The system will be
a virtual-reality display if the remote site consists of a com-
puter that simulates an artificial environment, a telemanip-
ulation system if the remote site consists of a robot inter-
acting with a real environment, or a collaborative haptic en-

vironment if the remote site consists of a mirror image of
the computer interface shown. All these configurations are
characterized by the interaction between a human partici-
pant and a computer interface that will attempt to make the
communication of haptic information meaningful. Because
the interaction between the participant and the computer
will be both at the signal level (i.e., motions and forces)
and the symbolic level (i.e., meaningful representations of
these), the system will necessarily be hybrid.

Stability of bilateral manipulation was investigated by a
number of researchers and passivity emerged as an espe-
cially powerful paradigm to study stability of both linear
and non-linear systems with time-delay [1, 2, 3, 4]. Re-
sults on bilateral manipulation proved to be relevant also
for the study of devices providing haptic interface to arti-
ficial environments. While such virtual displays make the
teleoperation predominantly open-loop and thus less sensi-
tive in terms of stability, stability becomes an issue due to
the interaction of the human with the virtual environment
through a mechanical haptic display. Haptic displays have
many similarities with teleoperator systems and it is there-
fore not surprising that passivity proved to be a useful tool
for the stability analysis of haptic displays too. Colgate and
his coworkers used passivity to analyze the stability of hap-
tic displays interacting with linear [5] and passive [6] en-
vironments. Passivity analysis based on linear circuit the-
ory was used for stability analysis in [7]. The most general
stability results for haptic systems are derived in [8] where
passivity is shown to be appropriate for the analysis of both
passive and non-passive, and linear and non-linear environ-
ments than can be implemented using either implicit or ex-
plicit numerical methods.

Developments in teleoperation and emergence of haptic dis-
plays both call for computer interfaces that implement sev-
eral different discrete behaviors and can be therefore repre-
sented by Figure 1. However, so far the hybrid nature of
such systems has not been acknowledged. This can be at-
tributed to the lack of techniques for the design of hybrid
controllers, a subject of considerable research [9, 10, 11].
On the other hand, stability of hybrid systems has been well
studied. Classical Lyapunov theory is extended for non-
smooth and hybrid systems in [12, 13]. Multiple Lyapunov
functions are proposed for stability analysis of hybrid sys-
tems in [14, 15, 16]. These works only provide conditions



for stability, they do not offer a method for designing con-
trollers that would satisfy such conditions. A controller de-
sign methodology based on multiple Lyapunov functions is
described in [17] and a generalized framework for stabiliza-
tion of nonlinear hybrid systems was proposed in [18]. A
practical method for designing controllers for piecewise-
linear systems using multiple Lyapunov functions is pro-
posed in [19, 20, 21]. There, the problem of finding a set
of Lyapunov functions is transformed into a (numerically
tractable) problem of solving a system of linear matrix in-
equalities. In [22], these ideas are used to derive a simplified
test for stability of a hybrid system modeled with a Petri net.

The aim of this paper is to develop a framework for the pas-
sivity analysis of hybrid systems. We argue that the classi-
cal notion of passivity is too restrictive in the hybrid systems
setting. We propose a more general notion of passivity for
hybrid systems and show that several classical results can
be generalized using stability criteria for hybrid systems.

The paper is organized as follows. We first define our model
for a hybrid systems. We then briefly review the definition
of passivity for continuous systems and show why it is de-
sirable to generalize this notion. Section 4 contains the main
results: a definition of passive hybrid systems (PHS) and the
relation between this notion of passivity and stability of hy-
brid systems. We conclude the paper with an example of a
haptic display interacting with a virtual environment where
the notion of PHS can be used to show that the interaction
will be stable.

2 Hybrid system model

Several formal models for hybrid systems have been pro-
posed in the past [23, 24, 25, 26]. Typically, a model is
selected according to problem to be addressed. We will
mainly follow the approach in [27].

Intuitively, a hybrid system can be described as a finite set
of discrete states, with each discrete state correspondingto
a different continuous dynamics. The state of a hybrid sys-
tem is therefore composed of discrete and continuous com-
ponents. The evolution of the continuous state can be de-
scribed by a vector field that is a function of the continuous
control. In general it might be possible to force the system
to switch from one discrete state to a different discrete state.
We will assume that the continuous state does not change
during such switches. A selection of a discrete state can be
modeled by a set of discrete inputs controlling the evolu-
tion of the discrete dynamics. The formal model of a hybrid
system can be thus given as:

A hybrid system is a tuple:

HS= (Ξ,M ,Γ,U,Σ,F ,H ) (1)

where

1. Ξ ⊂ ZZ is a (finite) set of discrete states.

2. M = {Mi}i∈Ξ is a collection of (differentiable, con-
nected) manifolds. For simplicity we assumeMi ⊆
IR

n.

3. Γ ⊂ ZZ is a set of discrete inputs.

4. U ⊂ IR
m is a set of continuous inputs.

5. F = { fi}i∈Ξ is a set of (C 1) controlled vector fields:

fi : Mi ×U → TMi

(x,u) 7→ fi(x,u) ∈ TxM

6. Σ : Ξ× IR
n×Γ×U → Ξ is a function describing the

discrete evolution of the system.

7. H = {hi}i∈Ξ is a set of (C 1) output mapshi : Mi ×
U → IR

m.

The evolution of a hybrid system can be described as fol-
lows. The system evolves onMi following the vector field
fi as long asΣ(i,x,η,u) = i. When Σ(i,x,η,u) becomes
equal toj 6= i, the system dynamics switches to(M j , f j). In
this paper we assume that there are finitely many switches
in any finite time interval. We therefore exclude phenomena
like chattering. The value ofΣ(i,x,η,u) can change either
because the trajectory of the system leaves the manifoldMi
and entersM j , or because the discrete inputη changes. In
general, the vector fields inF will be different, reflecting
changes in the dynamics of the system. Also the dimen-
sions of the manifolds inM might be different.

3 Passivity

We follow the development in [28]. A system defined by:

ẋ = f (x,u)

y = h(x,u) (2)

where f (0,0) = 0 andh(0,0) = 0 is passiveif there exists
a C 1 positive semidefinite functionV(x) (called the storage
function) such that:

uTy≥
dV
dt

+ εuTu+δyTy+ρψ(x) ∀(x,u) (3)

whereε,δ,ρ are nonnegative constants, andψ(x) is a posi-
tive semidefinite function ofx such that

ψ(x(t)) ≡ 0⇒ x(t) ≡ 0.

The intuitive interpretation of this definition is that passive
systems can not generate energy on their own. It can be
shown that if the system is state strictly passive the ori-
gin is an asymptotically stable equilibrium point, and the
storage functionV becomes a Lyapunov function. But
what makes passivity so useful for stability analysis is that,
loosely speaking, an interconnection of passive systems is
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Figure 2: A hybrid system composed of two subsystems. (a) Trajectories of system 1. (b) Trajectories of system 2. (c) Trajectories of the
hybrid system.

again passive. This observation has been the basis of the
stability proofs in [1, 2, 5, 6, 7, 8].

However, even if the concept of passivity and the energy
considerations that lead to stability are intuitive and there-
fore appealing, the concept might be quite misleading when
dealing with hybrid systems. It would seem reasonable to
conclude that if the system can switch between two sets of
state equations and if each set of equations defines a passive
system, the resulting hybrid system must also be passive.
The following simple example demonstrates that such con-
clusion would be wrong.

Example 1 Consider the following linear time invariant
system:

[

ẋ1
ẋ2

]

=















[

−1 50
−2 −1

][

x1
x2

]

+ I2×2

[

u1
u2

]

, x1x2 ≥ 0
[

−1 2
−50 −1

][

x1
x2

]

+ I2×2

[

u1
u2

]

, x1x2 < 0

[

y1
y2

]

=















[

0.26 0.12
0.12 6.4

][

x1
x2

]

, x1x2 ≥ 0
[

6.4 −0.12
−0.12 0.26

][

x1
x2

]

, x1x2 < 0
(4)

We can show using the Kalman-Yakubovich-Popov lemma
[28] that individually, both systems are passive (and there-
fore stable). The plots of the trajectories of the two systems
are shown in Fig. 2.a and 2.b. The trajectory for the hybrid
system (4), shown in Fig. 2.c, clearly shows that the system
is not stable (and therefore not passive). One explanation
is that to conclude that the resulting system is passive, the
storage function in (3) would have to be the same for both
systems, which is clearly not necessarily the case.

4 Passivity of hybrid systems

It has been shown in [14, 29, 15, 16] that it is not necessary
to find a global Lyapunov function in order to guarantee that
a hybrid system is stable; it suffices to analyze the stability
in each dynamic regime(M j , f j) and the switching behav-
ior of the system. Furthermore, it is known that the storage
function of a passive systems is an excellent candidate Lya-
punov function for stability analysis. This suggests that the
passivity for hybrid systems should be defined in terms of
storage functions of the individual discrete regimes; requir-
ing that a single global storage function exists would be too
strict.

In the case of smooth systems, the definition in Equation
(3) is related to the Lyapunov method for stability analysis.
Similarly, a test for stability analysis of hybrid systems can
be used to extend the notion of passivity to hybrid systems.
In this work we focus on the following stability test:

Proposition 1 ([14]) Given a hybrid system (1), assume
that for every regime i:0∈ Mi , fi(0,0) = 0, and that each
vector field fi has an associated Lyapunov function Vi which
is defined over Mi . Let ξ(t) ∈ Ξ denote the switching se-
quence such thatξ(t) = i ⇒ x(t) ∈ Mi , and in addition

Vi(x(ti,k)) ≤Vi(x(ti,k−1)) (5)

where ti,k denotes the k-th time that the vector field fi be-
comes “active”, i.e.,ξ(t−i,k) 6= ξ(t+i,k) = i. Then the system
(1) is (Lyapunov) stable.

With this stability test in mind, we propose the following
definition of passivity:

Definition 1 Take a hybrid system (1) such that for every
regime i, 0 ∈ Mi and fi(0,0) = 0. Such a system will be
called apassive hybrid system (PHS) if the following two
conditions hold:



1. Each discrete regime(Mi , fi) is passive. That is, there
exists a storage function Vi andεi ,δi ,ρi ≥ 0 such that

uTy≥
dVi

dt
+ εiu

Tu+δiy
Ty+ρiψi(x) ∀(x,u) (6)

where(x,u) is a trajectory of(Mi , fi).

2. The storage functions have the property that:

Vi(x(ti,k−1))+
Z ti,k

ti,k−1

uTydt≥Vi(x(ti,k)). (7)

Note that Equation (6) has to hold anytime the system is in
the regimei, whereas the integral in Equation (7) runs over
the regimes that the system traverses before switching back
to i. This definition allows us to state the following result:

Proposition 2 Consider a PHS according to Definition 1.
If the storage functions Vi(x) are positive definite then the
origin x = 0 of the zero-input system (u(t) = 0) is stable.

Proof: Since the system is PHS,dVi
dt ≤ uTy according to

Equation (6). Therefore, ifu= 0 the storage functionsVi(x)
are Lyapunov functions. Foru = 0 they also satisfy Equa-
tion (5) because of property (7). The system is therefore
stable according to Proposition 1.

It is thus possible to extend the notion of passivity to hybrid
systems in such a way that passivity guarantees stability.
However, an extension of passivity will only be useful if it is
possible to show that an interconnection of passive systems
such as shown in Figure 3 will be passive. The following
proposition shows that this is indeed the case.
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Figure 3: A feedback interconnection of control systems.

Proposition 3 Let S1 = (Ξ1,M1,Γ1,U1,Σ1,F1,H1) and
S2 = (Ξ2,M2,Γ2,U2,Σ2,F2,H2) be two PHS that are in-
terconnected as in Figure 3. Suppose that the feedback sys-
tem has a well-defined model S= (Ξ1×Ξ2,M1×M2,Γ1×

Γ2,U1×U2,F ,Σ) with the continuous state x=
[

xT
1 xT

2

]T
,

input u=
[

u1
Tu2

T
]T

, and output h=
[

hT
1 hT

2

]T
. Then S is a

PHS.

Proof: We will use superscripts or subscripts 1 and 2 to
refer toS1 andS2, respectively. To show thatS is a PHS we

need to show that (6) and (7) hold. Let us first show that (6)
holds. SinceS1 andS2 are PHS, we have fora = {1,2}:

eT
a ya ≥

dVa
i

dt
+ εa

i eT
a ea +δa

i yT
a ya +ρa

i ψa
i (xa) (8)

≥
dVa

i

dt
+δk

i y
T
a ya ∀(xa,ea)

Frome1 = u1−y2 ande2 = u2 +y1, we have:

e1
Ty1 +e2

Ty2 = u1
Ty1 +u2

Ty2 (9)

Now defineV(i, j)(x) = V1
i (x1) +V2

j (x2). From (8) and (9)
we obtain:

uTy≥
∂V(i, j)

∂x

[

f 1
i (x1)

f 2
j (x2)

]

+yT
[

δ1
i I 0
0 δ2

j I

]

y (10)

which shows (6).

To show (7), considert(i, j),k and t(i, j),k−1, where t(i, j),k
denotes thek-th time that the vector fieldf(i, j) becomes
“active”. Note that Equations (6) and (7) imply that if
t1 < t2 and ξa(t1) = ξa(t2) = i, Va

i (xa(t1)) +
R t2

t1
uT

a yadt ≥
Va

i (xa(t2)). This is true regardless of the number and loca-
tion of switches on the interval(t1, t2). But then it follows
that

V(i, j)(x(t(i, j),k)) = V1
i (x1(t(i, j),k))+V2

j (x2(t(i, j),k))

≤V1
i (x1(t(i, j),k−1))+

Z t(i, j),k

t(i, j),k−1

u1
Ty1dt+

+V2
j (x2(t(i, j),k−1))+

Z t(i, j),k

t(i, j),k−1

u2
Ty2dt

= V(i, j)(x(t(i, j),k−1))+
Z t(i, j),k

t(i, j),k−1

uTydt

The last two propositions lead to the following result:

Corollary 1 If S1 and S2 are PHS, then S is stable.

5 Example

Consider a feedback connection of two systemsS1 andS2
as shown in Figure 3. LetS1 be a planar Cartesian haptic
display (a 2 DOF gantry mechanism) andS2 a model of a
virtual environment. Let the model ofS1 be:

mq̈1 +bq̇1 +kq1 = u1

whereq1 denotes thex andy coordinates of the haptic dis-
play,u1 are the actuator forces,m is the mass ,b is the fric-
tion in the linear bearings (the same in both directions) andk
is the stiffness of the mechanism. By settingx1 =

[

qT
1 q̇T

1

]T
,
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Figure 4: A haptic device interacting with a hybrid virtual environment.

we can write the following state equations:

ẋ1 =









0 1 0 0
− k

m − b
m 0 0

0 0 0 1
0 0 − k

m − b
m









x1 +







0 0
1 0
0 0
0 1






u1

y1 =

[

0 1 0 0
0 0 0 1

]

x1

The outputs ofS1 are the velocities inx andy directions.
SinceS1 is a mechanical system with dissipation it is easy
to see that it is passive where the storage function is the
mechanical energy.

*** It appears to me that in the
next paragraph we mean to write
ξ not ξ2. Am I correct?

To illustrate the approach we letS2 be the hybrid system
from Example 1, but we will modify the switching rules to
make the system a PHS. Assuming thatΞ = {1,2} we set:

ξ2(t
+) =







ξ2(t−) t − ts < T or V3−ξ2(t
−
s )+

+
R t

ts u2
Ty2dt < V3−ξ2(t

−)

3−ξ2(t−) otherwise

We have used the expression 3−ξ2 to flip the discrete state
between 1 and 2 andts to denote the time when the sys-
tem last switched between the two regimes. The switching
rule therefore has a built in hysteresis (the system evolves
in every regime at least for timeT) and we have explicitly
enforced the condition (7). Since each of the regimes is pas-
sive by itself so that (6) holds, the resulting system is PHS.
Such behavior might model for example a particle moving
in a potential field that can switch between two configura-
tions. If the human interacts with the system, the human
input can be modeled as the inputu1 in Figure 3, withu2 set
to 0.

We would like to know whether the interaction between the
haptic display and the environment will be stable. SinceS1
is a passive continuous mechanical system (and therefore
trivially a PHS), and sinceS2 was designed to be a PHS,
the overall system is a PHS and therefore stable according
to Corollary 1. Figure 4 shows a trajectory of the system.
The first panel shows the evolution of the discrete stateξ(t)
and the input. The next panel shows the trajectory of the
haptic deviceS1. The third panel shows the trajectory of the
systemS2. The initial states werex1 =

[

3 0 4 0
]T

andx2 =
[

5 3
]T

.

6 Conclusion

We developed a framework for passivity analysis of hybrid
systems. We showed that the classical notion of passiv-
ity is too restrictive in the hybrid systems setting and pro-
posed a more general notion of passivity for hybrid systems.
Several classical results linking passivity and stabilitywere
then generalized using stability criteria for hybrid systems.
The work was motivated by problems in haptics and tele-
operation where passivity is extensively used for stability
analysis. An example demonstrates the applicability of the
method.

Acknowledgment

This research was supported in part by NSF grants IIS-
0093581 and CMS-0100162, and by the UIC Campus Re-
search Board.

References

[1] R. J. Anderson and M. W. Spong, “Bilateral control
of teleoperators with time delay,”IEEE Transactions on Au-
tomatic Control, vol. 34, pp. 494–501, May 1989.



[2] R. J. Anderson and M. W. Spong, “Asymptotic sta-
bility for force reflecting teleoperators with time delay,”
The International Journal of Robotics Research, vol. 11,
pp. 135–149, April 1992.

[3] G. Niemeyer and J.-J. E. Slotine, “Towards force-
reflecting teleoperation over the internet,” inProc. 1998
Int. Conf. on Robotics and Automation, (Leuven, Belgium),
pp. 1909–1915, 1998.

[4] S. Stramigioli, A. v.d. Schaft, and B. Maschke, “Ge-
ometric scattering in tele-manipulation of port controlled
Hamiltonian systems,” inProceedings of the 39th IEEE
Conference on Decision and Control, (Sydney, Australia),
2000.

[5] J. E. Colgate and G. G. Schenkel, “Passivity of a class
of sampled-data systems: Application to haptic interfaces,”
Journal of Robotic Systems, vol. 14, no. 1, pp. 37–47, 1997.

[6] J. M. Brown and J. E. Colgate, “Passive implemen-
tation of multibody simulations for haptic display,” inPro-
ceedings of the 1997 ASME International Mechanical Engi-
neering Congress and Exhibition, vol. DSC-61, pp. 85–92,
1997.

[7] R. J. Adams and B. Hannaford, “Stable haptic in-
teraction with virtual environments,”IEEE Transactions on
Robotics and Automation, vol. 15, pp. 465–474, June 1999.

[8] B. E. Miller, J. E. Colgate, and R. A. Freeman, “Guar-
anteed stability of haptic systems with nonlinear virtual en-
vironments.” Submitted to IEEE Transactions on Robotics
and Automation, September 1999.

[9] R. Alur, T. A. Henzinger, and E. D. Sontag, eds.,Hy-
brid systems III, vol. 1066 ofLecture notes in computer sci-
ence, (New York, NY), Springer Verlag, 1996.

[10] P. Antsaklis, W. Kohn, A. Nerode, and S. S. Sastry,
eds.,Hybrid systems II, vol. 999 ofLecture notes in com-
puter science, (New York, NY), Springer Verlag, 1995.

[11] R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, eds.,Hybrid systems, vol. 736 ofLecture notes
in computer science, (New York, NY), Springer Verlag,
1993.

[12] L. Hou and A. N. Michel, “Stability analysis of a gen-
eral class of hybrid dynamical systems,” inProceedings of
the 1997 ACC, (Albuquerque, NM), pp. 2805–2809, 1997.

[13] E. Sontag and H. J. Sussmann, “Nonsmooth control-
lyapunov functions,” inProceedings of the 34th IEEE Con-
ference on Decision and Control, (New Orleans, LA), 1995.

[14] M. S. Branicky, “Stability of switched and hybrid sys-
tems,” inProceedings of the 33rd IEEE Conference on De-
cision and Control, (Lake Buena Vista, FL), pp. 3498–3503,
1994.

[15] G. A. Lafferriere, “Discontinuous stabilizing feed-
back using partially defined Lyapunov functions,” inPro-
ceedings of the 33rd IEEE Conference on Decision and
Control, (Orlando, FL), 1994.

[16] P. Peleties and R. DeCarlo, “Asymptotic stability
of m-switched systems using Lyapunov-like functions,” in
American Control Conf., (Boston), pp. 1679–1684, 1991.

[17] J. Malmborg, B. M. Bernhardsson, and K. J.Åström,
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