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Abstract

This paper presents a novel trajectory planning algo-
rithm for nonlinear dynamical systems evolving in en-
vironments with complex obstacles. The incremental
search algorithm entails (i) a global exploration strat-
egy based on randomization and on a rapidly-exploring
heuristic, and (ii) a local planner based on collocation
and nonlinear programming. To numerically validate
the design, we consider a six degree of freedom vehicle
model subject to saturation limits on the control inputs
and obstacles on the state variables. Experimental re-
sults indicate that the proposed scheme outperforms
implementations based solely on nonlinear program-
ming or on randomization.

1 Introduction

This paper investigates trajectory design algorithms for
high dimensional and highly nonlinear nonlinear sys-
tems evolving in complex environments. The objective
is to solve trajectory generation and optimization prob-
lems for high-fidelity models of air, land and underwa-
ter vehicles, as well as robotic manipulators and loco-
motion systems. Of particular interest are autonomous
underwater vehicles (AUVs) and unmanned air vehi-
cles (UAVs) for use in tasks such as search and rescue,
surveillance, exploration, and area coverage.

Various numerical techniques deal with trajectory and
path planning problems. In numerical optimal con-
trol, the optimal open-loop inputs and the resulting
trajectories are often obtained through nonlinear pro-
gramming. Because the optimization problem is in-
finite dimensional, various forms of transcription are
used to cast the variational problem into a nonlin-
ear program; see [2, 3, 16] for various recent surveys.
Within the context of robotic path planning, the most
successful solution are randomized methods, e.g., see
the recent overview article [8]. Specific examples of al-
gorithms include randomized potential field [1], prob-
abilistic roadmaps [5], and rapidly-exploring random
trees [10]. Connections of the latter scheme with con-
trol theoretical concepts are explored in [4, 15].

In this paper we consider a second order model of a ve-

hicle moving in three dimensional Euclidean space. We
assume three control torques and one control force are
available. All variables are subject to various bounds
including two obstacles in configuration space. The
system is a simplified version of a vehicle models, but
it describes aircraft motion in a more accurate fashion
than a kinematic or driftless model.

We start by comparing the effectiveness of incremen-
tal search and nonlinear programming methods. Even
though our implementation is suboptimal in various re-
spects, numerical experiments confirm the conjecture
that incremental search methods are well suited for
environment with obstacles, whereas collocation and
nonlinear programming methods perform very nicely
on systems with smooth nonlinear dynamics. A second
outcome of this phase is a novel way of discretizing the
kinematic equations of motion for a rigid body.

Next, we develop a hybrid approach building on the rel-
ative strengths of each method. Our algorithms com-
bines a randomized incremental search with a local
planner based on collocation and nonlinear program-
ming. The local planner is designed as follows. The
number of collocation points is reduced to a minimum,
and the nonlinear programming solver is given a maxi-
mum number of iterations to ensure that the total run-
ning time remain upper bounded. The overall scheme
is evaluated in two settings: with and without geomet-
ric obstacles in configuration space. In both cases, we
present numerical experiments in which the hybrid al-
gorithm outperforms both previous approaches.

The paper is organized as follows. Section 2 describes
models of vehicles and of the environment. Section 3
presents numerical methods for optimal control based
on collocation and nonlinear programming. Section 4
presents randomized incremental search algorithms for
path planning. Section 5 presents our novel algorithm,
simulation results and comparisons.

2 Models of vehicle and environment

2.1 Unit quaternions to represent rotations

Quaternions generalize complex numbers and are used
to represent rotation matrices in SO(3). A quaternion



is [13] a vector quantity of the form

q = q0 + q1i + q2j + q3k, qi ∈ R, i = 0, . . . , 3

where q0 is the scalar component and qv is the vector
component of q. A convenient notation for the quater-
nion q, is q = (q0,qv). The unit quaternions are the
subgroup of all quaternions with unit norm ‖q‖2 = 1.
Given a rotation matrix in SO(3), we define the asso-
ciated unit quaternion as

q = (cos(θ/2), w sin(θ/2)),

where w ∈ R
3 represents the unit axis of rotation and

θ ∈ R represents the angle of rotation. Vice-versa,
given a unit quaternion, q = (q0,qv), the associated
rotation matrix R ∈ SO(3) is

R(q) = I3 + 2q0q̂v + 2q̂2

v,

where the ·̂ operator satisfies: x̂y = x×y, for x, y ∈ R
3.

If the rotation matrix R evolves in time with constant
body-fixed angular velocity ω = [ωx ωy ωz]

T , the unit
quaternion representation of R propagates forward in
time via the closed-form equation [12]

q(t+ ∆t) =

(
cos

(
‖ω‖

∆t

2

)
I4

+
1

‖ω‖
sin

(
‖ω‖

∆t

2

)
F1(ω)

)
q(t), (1)

where I4 is the identity matrix in R
4, ‖ω‖2 = ωTω, and

F1(ω) ,





0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0



 .

2.2 Ordinary differential equation model

We consider a simplified model of a typical aircraft fly-
ing in three dimensional Euclidean space. The vehicle
configuration is described by location of the center of
mass and rotation of the body-fixed frame, and the
vehicle velocity is composed of angular and transla-
tional velocity. More specifically, the system has 11
states. The first 4 states are the quaternion represent-
ing the rotation of the body written in inertial coordi-
nate frame, the next three states are the angular ve-
locity written in the body coordinate frame, the next
three states are the location of center of mass of the
rigid body written in the inertial coordinate frame, and
the last state represent the velocity in the direction of
translation (fixed in the body coordinate frame). In
other words, we have x = [xT

1
, xT

2
, xT

3
, xT

4
]T and

x1 =
[
q0 q1 q2 q3

]T

x3 =
[
px py pz

]T

x2 =
[
ω1 ω2 ω3

]T

x4 = vx

According to these definitions, the system is written as

ẋ1 =
1

2
F1(x2) · x1

ẋ2 = u1

ẋ3 = F2(x1) · x4

ẋ4 = u2

(2)

where u1 ∈ R
3, u2 ∈ R, and

F2(x1) =




1 + 2(−q2

2
− q2

3
)

2q1q2 + 2q0q3
−2q0q2 + 2q1q3



 .

2.3 Bounds on States and inputs

We assume that the velocity and acceleration variables
have upper and lower bounds. Additional bounds ex-
ists for configuration variables. the bounds on config-
uration and velocity variables can be shown as x ∈ X
and the bounds on acceleration variables u ∈ U , where
X ⊂ R

11 and U ⊂ R
4. Some problems will also have

obstacles as excluded regions in configuration variables.

2.4 Obstacles in Configuration Space

In order to consider problems with obstacles in the con-
figuration space, we will rely on standard algorithms
for collision detection, and representation of obstacles;
see [7, 11]. The collision detection algorithm used in
this study is borrowed from Proximity Query Package
(PQP); see [6]. The PQP library considers objects
formed of surfaces, where each surface is defined as
unions of triangles in 3D space.

3 Collocation and nonlinear programming

The optimal control problem of interest can be stated
as follows. Given an initial time tinit and state xinit,
determine the final time tfinal, the control input u :
[tinit, tfinal] → R

m, and the corresponding trajectory
x : [tinit, tfinal] → R

n, that minimize the cost functional

φ(x(t), t) = ϕ(x(tfinal), tfinal) +

∫ tfinal

tinit

L(x(t), u(t))dt,

(3)
subject to the differential equation

ẋ = f(x, u), x(tinit) = xinit, (4)

and the terminal constraints

ψ(x(tfinal), tfinal) = 0. (5)

We present an algorithm based on collocation and non-
linear programming. The idea is to transcribe the opti-
mal control problem into a finite dimensional nonlinear
optimization problem to be solved by a nonlinear pro-
gramming solver. We proceed as follows. The time in-
terval of interest is divided into N segments; the values
of input and state variables and of their derivatives over
the (N + 1) grid points are called collocation parame-
ters. Cubic polynomials are defined for each variable on
each segment using the collocation parameters, so that
the cost functional in equation (3) becomes a function
of these parameters. Similarly, the differential equa-
tion (4) relating state to input variables is discretized
using trapezoidal or Simpson’s quadrature rules, and
becomes a set of nonlinear constraints on the colloca-
tion parameters. A successive quadratic program solves
numerically the resulting nonlinear program.



3.1 Discretizing the differential equations for

the velocity variables

Introduce the uniform partition {t0, t1, . . . , tN}, with
t0 = tinit, tN = tfinal, and ti−1 + h = ti for all i ∈
{1, . . . , N}. Consider the differential equation relating
to angular and translational velocities to the controls:

ẋ2(t) = u1(t), ẋ4(t) = u2(t). (6)

The xj(t), j ∈ {2, 4} are approximated by the values
at the nodes, xi

j ≈ xj(ti) for i ∈ {1, . . . , N}. Similarly,

ui
k ≈ uk(ti) for k ∈ {1, 2}, and i ∈ {1, . . . , N}. Next,

we introduce the intermediate values

yi
j = xj(ti−1 + h/2), vi

k = uk(ti−1 + h/2).

We approximate the equations (6) as follows. Compute
estimates of yi

j using cubic interpolation, and vi
k using

linear interpolation, for j ∈ {2, 4}, k ∈ {1, 2}, i.e.

yi
j =

1

2
(xi

j + xi−1

j ) +
h

8

[
fj(x

i−1, ui−1) − fj(x
i, ui)

]

vi
k =

1

2
(ui

k + ui−1

k ).

Next, evaluate the differential equation at the center
values (yi

j ,v
i
k), j ∈ {2, 4}, k ∈ {1, 2}, and integrate

across the segment using Simpson’s quadrature, i.e.

xi
j = xi−1

j +
h

6

[
ui−1

j + 4vi
j + ui

j)
]
.

3.2 Discretizing the differential equations for

the configuration variables

Consider the differential equation that describes the
rotational and translational velocities

ẋ1(t) =
1

2
F1(x2) · x1, ẋ3(t) = F2(x1) · x4. (7)

The xj(t), j ∈ {1, 2, 3, 4} are approximated by the val-
ues at the nodes, xi

j ≈ xj(ti). To increase the ac-
curacy of the integration, introduce the sub-partition
ti,l = ti + h

K
· (l − 1

2
) where l ∈ {1, . . . ,K}. As before,

we introduce the intermediate values

yi,l
j = xj

(
ti−1 +

h

K

(
l −

1

2

))
.

We approximate the equations (7) as follows. Compute

estimates of yi,l
j , j ∈ {1, 3} using cubic interpolation
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fj(x
i, ui) · h



 .

Next, evaluate the differential equation at the interpo-

lated center value yi,l
j , j ∈ {1, 3}, and integrate across

the segment using the “Midpoint Rule” and the explicit
integration formula for rotation (1), i.e.

xi
1

=

K∏
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2
‖
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2K

)
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2
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1

(8)
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1

)
)
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]
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3

where yi,0
1

= xi−1

1
, and for l ∈ {1, . . . ,K} we have
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Note that the solution to the equation (8) is the exact
solution to the equation (2), assuming x2(t) is constant

over the interval of time [ti−1, ti] and it is equal to yi,l
2

.

3.3 Resulting nonlinear program

We are now ready to bring it all together and cast
the optimal control problem into a nonlinear program.
Given initial time tinit, and initial state x(tinit), deter-
mine the control sequence [u0, . . . , uN ], the correspond-
ing trajectory [x0, . . . , xN ], and the final time tfinal that
minimize the cost function

φ(x0, . . . , xN , t0, . . . , tN ) =

ϕ(xN , tN ) +

N∑

i=1

h

2

[
L(xi, ui) + L(xi−1, ui−1)

]
,

subject to the collocation conditions

∆i
j = 0, i ∈ {1, . . . , N}, j ∈ {1, 2, 3, 4},

and the boundary constraints ψ(xN , tN ) = 0, and x0 =
xinit, where

∆i
1

= −xi
1

+

K∏

l=1

[
cos

(
‖yi,l

2
‖
h

2K

)
I4

+
1

‖yi,l
2
‖

sin

(
‖yi,l

2
‖
h

2K

)
F1(y

i,l
2

)

]
· xi−1

1

∆i
2

= −xi
2

+ xi−1

2
+ h · vi

1

∆i
3

= −xi
3

+ xi−1

3

+
K∑

l=1

[
h

2K
·
(
F2(y

i,l−1

1
) + F2(y

i,l
1

)
)
· yi

4

]

∆i
4

= −xi
4

+ xi−1

4
+ h · vi

2
.



To solve this nonlinear program, we employ a suc-
cessive quadratic programming algorithm (SQP) bor-
rowed from the NAG library [14].

3.4 Simulation Results

We consider a simple setting where no obstacles are
present and therefore no collision detection is necessary.
The objective is to find a minimum-time trajectory,
with boundary conditions

xinit =
[

1 0 0 0 0 0 0 0 0 0 1
]T
,

xfinal =
[

1 0 0 0 0 0 0 −3 2 −4 1
]T
,

and subject to the following component-wise con-
straints on velocities and inputs:
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ω3
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2
2
2
3



 ,
[
−2
−2

]
≤

[
u1

u2

]
≤

[
2
2

]
.

For this case we have used three segments (i.e., N =
2), and eleven sub-segments within each segment (i.e.,
K = 10). A numerical solution is presented in Figure 1.
The computation time was 14 seconds on a dual Intelr
Pentium II CPU at 350MHz, and Linux RedHatr 6.2
operating system installed. As the figure illustrates,
the discretization error is almost negligible.
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Figure 1: Evolution of the center of mass for the optimal
solution. The plots are obtained by numerically
integrating the optimal control inputs.

4 Incremental Search Algorithms

Collocation and nonlinear programming are not well
suited to planning problems where the environment has
complex obstacles. In the robotics literature, the latter
problem is referred to as the “piano mover” or the path
planning problem.

Most path planning algorithms can be placed into two
classes. First, roadmap methods rely on precomput-
ing a finite network, called a roadmap, of collision-free
paths that allow future reachability queries over free

space, Cfree, to be answered quickly and efficiently. In-
stead of precomputing a data structure to assist in fu-
ture queries, incremental search methods perform an
iterative search to try to connect the initial configu-
ration to the goal configuration. Both roadmap and
incremental methods can be deterministic or random-
ized [5, 10]. In what follows we shall focus on a recently
introduced randomized incremental search method.

4.1 Rapidly-Exploring Random Trees

The RRT algorithm was first introduced in [10] as an
efficient incremental search method which quickly and
uniformly searches high dimensional spaces that have
both algebraic constraints (due to obstacles) and dif-
ferential constraints. The basic RRT algorithm is de-
scribed in Figure 2. The algorithm requires a distance

Name: RRT algorithm
Goal: find path from xinit to xfinal

1: initialize a tree T with initial vertex xinit

2: while distance(xfinal, T) > ε do

3: obtain a random sample p

4: find vertex v ∈ T with minimum distance to p

5: find path from v to p

6: if path is collision free then

7: add p to T as new vertex
8: end if

9: end while

Figure 2: A simplified version of the RRT algorithm [10].

function, a random sampling algorithm, and a colli-
sion detection algorithm over the configuration space.
The algorithm randomly grows a rapidly-exploring
tree until it reaches the final state within a speci-
fied tolerance ε. In systems with dynamics, the path
(roughly) connecting p and v is computed by (i) search-
ing through a finite dimensional sample of available in-
puts and (ii) selecting the one which best steers the
state toward p.

4.2 Simulation Results

In this section we numerically evaluate the RRT algo-
rithm in two settings. The numerical implementation
is borrowed from the Motion Strategy Library [9]. The
first setting is the same of Section 3. Since the algo-
rithm involves randomization, we present results av-
eraged over 20 trials: we obtained a solution time of
230 ± 200 seconds with the same computer configura-
tion. This is a poor performance compared to collo-
cation and nonlinear programming. Figure 3 displays
the center of mass locations of the entire tree and of
the resulting connecting path.

The second setting includes two objects and a vehicle,
all having the shape of a prism, i.e. each of the sur-
face is formed of triangles as defined in Section 2.4.
Thus, the problem becomes that of finding a collision-
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free path with boundary condition

xinit =
[

1 0 0 0 0 0 0 0 0 −7.5 1
]T

xfinal =
[

1 0 0 0 0 0 0 0 0 7.5 1
]T
,

and subject to the same constraints on velocities and
inputs as in previous section. For this setting, a so-
lution time of 630 ± 250 seconds is obtained after 20
trials. Dealing with the same setting, the collocation
and nonlinear programming algorithm was unable (in
our implementation) to provide a feasible solution. Fig-
ure 4 displays the center of mass locations of the entire
tree and of the resulting connecting path.

5 A hybrid method

In the last two sections we have seen how collocation
and nonlinear programming is a very efficient method
for planning for systems with differential constraints,
which is unfortunately not applicable when some kind
of geometrical constraint is introduced. On the other
hand, randomized algorithms for path planning are well
suited to overcome the difficulty posed by geometri-
cal constraints, although their performance degrades
significantly when differential constraints are present.
These observation lead us to the design of a new al-
gorithm that merges randomization and nonlinear pro-
gramming features. The objective is for the new algo-
rithm to inherit the strength of both methods.

5.1 Merging randomization and collocation

As described in Section 4.1, the RRT algorithm de-
pends on a metric to drive the search process. This

also means that performance relies significantly on the
selection of an appropriate metric. As argued in [10],
the optimal metric is the cost-to-go or value function
from the minimum-time optimal control problem. In-
deed, the value function provides a meaningful mea-
sure of the distance between points. Unfortunately, it
is impossible for most systems to compute the value
function or other metric functions which take into ac-
count differential and geometric constraints. The mis-
leading information from the mismatched metric leads
to a significant reduction in performance and final ac-
curacy. To reduce the RRT sensitivity to the metric
selection, we replace the local planner (which depends
on the metric) with a planner utilizing collocation and
NLP equation from Section 3.

Table 1: Number of nodes in the tree for second setting
after solution, hybrid algorithm vs. RRT

Approach With Obstacles

Hybrid 94 ± 41 (sec)
RRT 4050 ± 1150 (sec)

As local planner, we use a collocation approach based
on a single segment (i.e., no partition of the time in-
terval). We assume that the control inputs are second
and states variables are third order polynomial func-
tion of time. The collision constraints and the bounds
on the state variables are checked only after calculat-
ing candidate inputs. Furthermore, the nonlinear pro-
gramming solver is invoked with a maximum number of
iterations. All these settings concur to ensure that the
total running time of the local planner is low and upper
bounded. If the local planner is successful, the input
parameters and final state are added to the search tree,
similarly to the RRT algorithm. As in Table 1, the pro-
posed hybrid algorithm obtains a connecting path with
many fewer nodes than to the original RRT algorithm.

5.2 Simulation Results

We evaluate the algorithm in the same two settings of
last section. In both cases the novel algorithm showed
better performance than the previous two methods. In
the first setting the solution time is 8± 9 seconds aver-
aged over 20 trials. In the second setting, the solution
time is 170 ± 70 seconds averaged over 20 trials. Fig-
ures 5 and 6 display the center of mass of the entire tree
and of the resulting connecting path for both settings.

Table 2: Computation time for each approach, hybrid al-
gorithm, RRT, and NonLinear Programming.

Approach Without Obstacles With Obstacles

Hybrid 8 ± 9 (sec) 170 ± 70 (sec)
RRT 232 ± 204 (sec) 652 ± 243 (sec)
NLP 14 (sec) no solution
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6 Summary

We have presented a novel hybrid approach to trajec-
tory design for nonlinear dynamical systems evolving
in environments with state and input constraints. The
proposed algorithm combines the best features of ran-
domized incremental searches and of collocation meth-
ods. In two typical settings, the hybrid approach pro-
vides better performance than approaches based solely
on nonlinear programming or on randomization.

As a final remark, we note numerous aspects of our im-
plementation are suboptimal. A more accurate setup
should include the closed-form computation of partial
derivatives in the collocation method, and an algorithm
for incremental distance computations in the incremen-
tal search method. These and other lines of investiga-
tion are open for further research.
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