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Abstract

This work considers small-time local controllability (STLC) of single and multiple-input systems,
& = fo(x) + >0, fiu; where fo(x) contains homogeneous polynomials and f1,... , fm are constant
vector fields. For single-input systems, it is shown that even-degree homogeneity precludes STLC
if the state dimension is larger than one. This, along with the obvious result that for odd-degree
homogeneous systems STLC is equivalent to accessibility, provides a complete characterization of
STLC for this class of systems. In the multiple-input case, transformations on the input space are
applied to homogeneous systems of degree two, an example of this type of system being motion of
a rigid-body in a plane. Such input transformations are related via consideration of a tensor on the
tangent space to congruence transformation of a matrix to one with zeros on the diagonal. Conditions
are given for successful neutralization of bad type (1,2) brackets via congruence transformations.

1 Introduction

Various concepts of controllability for nonlinear systems were initially explored in [1, 2, 3]. In particular, [2] is
primarily concerned with the property of accessibility of the analytic control system @ = F(z,u), namely that
the set of points attainable from a given initial point via application of feasible input is full in the sense of having
a nonempty interior. Sussmann and Jurdjevi¢ demonstrated in [2] that a necessary and sufficient condition for
accessibility of these systems is that the Lie algebra generated by the system have full rank, the so-called Lie
Algebra Rank Condition (LARC).

In [4], Sussmann explored the property of small-time local controllability (STLC) for affine analytic single-
input systems @ = fo(z)+ f1(z)u with |u| < 1. A system is said to be STLC at a point z, if that initial point is in
the interior of the set of points attainable from it in time 7T for all T > 0. In this case, the Lie algebra generated
by the system, denoted by L({f., f1}), is the smallest involutive distribution containing {f., f1} or, similarly,
the distribution spanned by iterated Lie brackets of f, and f;. Sussmann gave various necessary and sufficient
conditions for STLC in [4]. For example, a necessary condition for STLC is that the tangent vector [f1, [f1, fol]z.
be in the subspace spanned by all tangent vectors at x, generated by brackets with only one occurrence of fi,
which is denoted £1({f., f1})z,- More importantly, the conditions conjectured by Hermes were proved to be
sufficient conditions for STLC. These Hermes Local Controllability Conditions (HLCC) consist of (1) z, is a
(regular) equilibrium point, (2) the LARC is satisfied, and (3) S¥({fo, fi})z, € S**({fo, f1})x, for all even
k > 1 where S¥({f, fi})z, denotes the span of all tangent vectors at x, generated by brackets with k or less
occurrences of fi. Stefani [5] provided an extension of Sussmann’s necessary condition by demonstrating that
STLC implies (zaudf{”,}"o)m0 € 821 for all m € {1,2,...}. For an excellent summary and tutorial of these as
well as other results in the single-input case, the inquisitive reader is directed to Kawski [6].

STLC of multiple-input affine analytic control systems was addressed by Sussmann in [7], where a general
sufficiency theorem was proven for analytic systems of the form & = fo(z) + >, fi(#)u; with the constraints
|u;] < 1 for all ¢ € {1,...,m}. In order to understand this result, it is necessary to distinguish between
formal brackets and evaluated brackets. On the one hand, a formal bracket is a pairwise parenthesized word
(i.e., an element of the free magma) with well-defined left and right factors, number of factors, and degree.
On the other hand, an evaluated bracket is the vector field that results from an iterated Lie bracketing of
particular vector fields. When we speak of the vector field generated by a formal bracket, we mean specifically
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the vector field that results from evaluating the formal bracket with respect to particular vectors fields, an
operation that is theoretically captured by the evaluation map in [7]. This distinction is captured by the
following notation, which we employ both in the statement of Sussmann’s general sufficiency theorem and

throughout the sequel: if B = (i1,...(ig—1,%)...) represents a formal bracket of indeterminates {0,... ,m},
then fB = [fi,,...[fix_ys fir]---] denotes the corresponding vector field generated by the evaluation map from
the formal bracket B with respect to a particular set of vector fields {f.,..., fm}. ! Hence, for example, we

have the formal bracket B = (1, (1,0)) that generates the vector field resulting from evaluating the corresponding
iterated Lie bracket [f1,[f1, fo]] for a particular pair of vector fields f, and f;. Several results were presented
by Sussmann in [7], but in the context of this paper the most appropriate result is based on the &y degree of
a formal bracket. For a given formal bracket B of indeterminates {i}7,, | B|; is used to denote the number of
occurrences of ¢ as a factor in B. For 6 € [0, 1], dp is defined by dg(B) := 6|B|o+ .-, | Bl;. The general theorem
states that systems that satisfy the LARC at z, and have fo(z,) = 0 are STLC if there exists a 6 € [0, 1] such
that the tangent vector at z, generated by each formal bracket B with |B|, odd and |Bl|1,... ,|B|m all even can
be expressed as a linear combination of tangent vectors at x, generated by some set of brackets { By} _; with
do(Bk) < dp(B) for all k € {1,...,N}. It has become conventional to refer to the formal brackets with |B|,
odd and |Bl|1,...,|B|m all even as bad brackets, and if these bad brackets have corresponding vector fields that
are not contained in the span of vector fields generated by good brackets of lower dy degree at x, then they are
referred to as potential obstructions to STLC. The obstructions are only potential because they only obstruct
the known sufficient conditions. In [6], Kawski presents several examples are given of systems with potential
obstructions that are known to be STLC.

Both Sussmann in [7] and Kawski in [6] apply a generalized definition of homogeneity to STLC. This con-
cept of homogeneity begins with definition of a dilation J. as a parameterized map of IR™ to IR™ of the form
de(x) = (€M xq,€™2xy,...€™mx,) where r; are non-negative integers. A polynomial p : IR™ — IR is then said to
be homogeneous of degree k with respect to the dilation, symbolically p € Hy, if p(Jc(z)) = *p(z). Traditional
homogeneity is recovered via the dilation with r; = --- = r,, = 1. The definition of homogeneity is then extended
to vector fields in the following manner: a vector field f is said to be homogeneous of degree j if fp € Hy_;
whenever p € Hy, for all £ > 0. A related area of research that capitalizes on this generalized concept of homo-
geneity is that of nilpotent and high-order approximation of control systems presented by Hermes for example
in [9]. One pertinent outcome of Hermes’s research is that a system is STLC if its Taylor approximation is STLC.
However, the converse question of whether STLC can be determined from a finite number of differentiations is
still open [10].

In the remainder of this paper, we restrict our attention to homogeneous nonlinear systems that are linear in
control, using the traditional definition of homogeneity. We begin by addressing single-input systems. Building
on Stefani’s necessary condition [5] and the concepts of good and bad brackets of Sussmann’s general sufficiency
theorem [7], we demonstrate that such single-input homogeneous systems of even degree are STLC if and only
if they have a scalar state. This result, combined with the obvious fact that for odd-degree homogeneous single-
input systems STLC is equivalent to the LARC, completely characterizes STLC for these systems. Next, we
address multiple-input systems with the additional restriction that they be homogeneous of degree two. In this
case, we extend the applicability of Sussmann’s general sufficiency theorem by incorporating a linear transforma-
tion on the multidimensional input in order to neutralize potential obstructions that arise from type (1,2) bad
brackets (i.e., brackets with |B|o = 1 and |B|io = 2). In particular, we present a formal method for neutralizing
these type (1,2) potential obstructions wherein the problem of finding the desired linear transformation on the
input space is reduced to finding a particular matrix congruence transformation.

2 Problem Exposition

In this paper, we address STLC of systems of the form
&= fo(x) + ) fiui (1)
i=1

where |u;] < 1 and € R". f; for i € {1,...,m} are assumed to be constant vector fields, i.e., fi(x) = f;,
and the components of f,(z) are homogeneous polynomials of degree k > 1. We use the traditional definition of
homogeneous polynomial p, namely that p(ez) = ¢*p(x). The set of such homogeneous vector fields is denoted
by Hy. Our definition of degree-k homogeneous vector fields is equivalent to that used in [6, 7, 9] in the following

IReaders interested in the rich detail of formal Lie Algebras may refer to [8].



manner: take . : z +— ez and then Hy, is in the general framework the set of vector fields homogeneous of degree
1 — k. With this traditional definition, we have the following elementary facts: (i) f(0) = 0 for f € Hj, with
k> 1, and (ii) [f,g] € Hj4r—1 for all f € H; and g € Hy,, where H_; is interpreted as the singleton containing
the zero vector field.

Systems of this form are theoretically interesting because their Lie algebra at z, = 0 has a diagonal structure,
as depicted in Figure 1. In particular, the only brackets B that generate vector fields with nonzero value at x,
are those with |B|io = (k —1)|Blo + 1, where |B|io :== >_." | | B|;. This follows directly from the elementary facts
given above. Keeping in mind that f, € Hy and f; € H, for all ¢ # 0, from fact (ii) it is clear that brackets
above the diagonal have homogeneity degree greater than zero, and hence by fact (i) have zero value at ..
Similarly, from fact (ii) we have that brackets below this line have homogeneity degree less than zero, and hence
by definition are identically zero.
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Figure 1: Graphical depiction of brackets that generate nonzero vector fields of polynomial system (3) with
homogeneity degree k.

Furthermore, systems of the form (1) commonly arise in mechanics. An example of such a system is the
motion of a rigid body in a plane expressed in body-fixed coordinates, as depicted in Figure 2. The equations of
motion for this system are

w = us + huy
Uy = —wy, (2)

Uy = WU, + U7.

The state consists of rotational velocity w and the two body-fixed translation velocities v, and v,. The input
consists of the torque uy and the force u; applied at a moment arm of h. Hence f,(x) = (0, —z123, z122),
f1 = (h,0,1) for some constant h, fo = (1,0,0), and the system is of the form (1) with homogeneity degree
two. This provides a simple example of a system for which Sussmann’s sufficient condition in [7] is not invariant
with respect to input transformations. In particular, if a pure force (h = 0) and a torque are used as inputs,
then the system satisfies Sussmann’s sufficient condition for the multiple-input case.? However, if an offset force
(h # 0) is used, then potential obstructions appear as vector fields generated from the type (1,2) brackets, i.e.,
brackets with |B|, =1 and |B|i, = 2. In general, we employ the phrase type (k,¢) brackets to refer to all formal
brackets B of indeterminates {0,...,m} with |[B|, = k and |B|i, = ¢, and denote the distribution spanned
by such brackets as £+ (F).3 Using this system as a motivating example, we explore the neutralization via
congruence transformation of potential obstructions generated by bad brackets of type (1,2) with vector fields
generated by other brackets (perhaps also bad) of type (1,2).

2A generalized force on a rigid body consists of a pure force component which induces only a translational motion and a torque
component which induces only a rotational motion.
3The notation £ is used instead of L to emphasize that £(5€)(F) is not necessarily a Lie subalgebra.
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Figure 2: Motion of a rigid body in a plane expressed in body-fixed coordinates.
3 Single-Input Systems
In this section we consider the single-input system

= fo(r) + fru (3)

where z € R", u € [-1,1], f1 € R" and f, € Hj. Inlight of HLCC and Sussmann’s general sufficiency result [7],
it is clear that for a system as in (3) with odd homogeneity degree, accessibility is equivalent to STLC, since
there are no nonzero brackets with | - | odd and | - |; even. In other words, the question of STLC reduces to the
LARC. The following lemma asserts that if the vector fields generated by brackets of type (1,k) do not add to
the Lie algebra rank, then neither do the vector fields generated by higher-degree brackets.

LEmMA 1

For system (3) with homogeneity degree k > 0, if (adéﬁlfo)zo € span{ f1}, then L({fo, f1})s, = span{fi}.

PRrROOF 1

Since the Lie algebra structure is invariant to (analytic) coordinate transformations, without loss of generality we
can take fi to be the basis vector e;. Let H}!' be the set of vector fields of homogeneity degree k with the form
(Cx¥ + m(x),m2(x),... ,na(x)) where C is any scalar constant and the power of z; in 7; is less than k for all
i€{l,...,m}. Then (ad} fo)s, € span{e1} implies that f, € H}!, since ad’, corresponds to the partial derivative
operator 9% /0z%. Furthermore, if g € H}.! for some m > 1, then ady, g € H}! | and ads. g € H, ! 1. Since the Lie
subalgebra of (3) is spanned by vector fields of the form [f;,, [fiy, " [fi._1» fi.] -+ ]] (apply for example Proposition
3.8 of [11]), all vector fields in L({fs, f1})s, are a multiple of e;.

Turning our attention to systems with even homogeneity degree k, we see that in general L({f,, f1})z, does
include potential obstructions generated from bad brackets, i.e., there are bad brackets along the diagonal of
Figure 1. In particular, type (m, (k — 1)m + 1) brackets are (odd, even) when m is odd. We make use of the
necessary condition of Stefani restated here for convenience.

THEOREM 2 (STEFANI [5])
If the system & = f,(x) + f1(z)uy is STLC, then (adfc’ffo)xo € S 1{fo, fil)e.-

When applied to even systems, Theorem 2 states that (ad?-’f fo)z, € span{fi} is necessary for STLC. But if
(ad?ffo)xo € span{fi}, then Lemma 1 asserts dimL({ fs, f1}) = 1, and systems with n > 2 cannot be STLC (for

otherwise LARC is violated). This reasoning and the fact that the system & = 22* + u with € IR is STLC
provides the following result.

PROPOSITION 3
If the system in (3) has odd homogeneity degree, then it is STLC if and only if it satisfies the LARC. On the other
hand, if the system has even homogeneity degree 2k > 0, then it is STLC if and only if the state z is scalar.



4 Multiple-Input Systems

We now return to consideration of the system in (1) where f, € Hy(z). An extension of the above results to
this multiple-input case is problematic. In particular, the necessary condition of Stefani in [5] runs into the
problem of a possibility of balancing between potential obstructions generated from bad brackets of the same
degree. This consideration, along with the motivating example of planar rigid-body motion lead us to investigate
neutralization of potential obstructions by vector fields generated from brackets of the same type.

Of course, for the system in (1) the general sufficient condition of Sussmann [7] can be applied to determine
STLC. Since the Lie algebra has a diagonal structure, the choice of 6 € [0,1] in the theorem is immaterial.
Using Sussmann’s concepts of good and bad brackets, the sufficient condition allows us to neutralize potential
obstructions from bad brackets with vector fields generated by good brackets of lower degree. Our goal with this
section is to address the case where there are potential obstructions that cannot be neutralized in this manner,
and to neutralize these potential obstructions with vector fields generated by other brackets of the same degree
via appropriate choice of linear transformation on the input space. In this endeavor, the diagonal structure of
the Lie algebra is particularly useful.

Returning to the motivating example of planar motion in equation (2), it is clear that this system is STLC.
(For example, use the feedback transformation u; = wv, +@; and ugy = @ — huy to obtain the system described
by w = Uy, U, = —wv,, and ¥, = u;.) However, in attempting to apply Sussmann’s general sufficiency result
directly on the unchanged equations of motion, we have the potential obstruction [f1, [f1, f5]](0) = (0,—2h,0) &
span{ f1(0), f2(0)}. This potential obstruction prevents the use of Sussmann’s sufficient condition for any h # 0.
On the other hand, if h = 0 (corresponding to a force input w; through the center of mass) then we can apply the
sufficient condition, for we have the vector field [f1, [f2, fo]] generated by the good bracket (1, (2,0)) is (0, —1,0),
bringing the Lie algebra to full rank, and STLC is demonstrated. Furthermore, the system for h # 0 can be
transformed into the pure-force system (h = 0) via the input transformation

U\ _ 1 0 U
(i) = (G 1) ()

Since STLC is clearly invariant to full-rank input transformations, we see that a particular choice of input
transformation may provide a means of removing a potential obstruction, thus extending the applicability of
Sussmann’s general theorem for this class of systems.

Remark. It is worth noting that Kawski in [6] has considered techniques for neutralizing and balancing bad
brackets. However, this technique is not clearly related to ours. Kawski’s technique applies in the single-input
setting, and neutralizes brackets possibly with brackets of different degree via parameterized families of controls
carefully tailored to the system and the brackets in question. In some cases these families of controls involve
switching between control limits, with the parameter affecting the switching times. Our technique utilizes the
freedom of multiple independent inputs to enforce a linear relation between the inputs in order to neutralize
brackets of the same type.

4.1 Neutralization via congruence transform

Moving to the generic multiple-input homogeneous system of degree two, suppose that there is some bad bracket
of the form (3, (¢,0)) that generates a potential obstruction, i.e., [f;, [fi, follz, ¢ span{ fi(z.)}},. We would like
to find a full-rank, linear transformation 7" on the input space such that the transformed system

.
i = fo(z) + Z(Z fiTi;) 4

j=1 i=1

has the corresponding potential obstruction removed. Of course, the full-rank input transformation will not
affect span{ f,}™ . We make the restriction |u;| < 1/X where X is the spectral radius of 7' in order to have the
resulting u; satisfy the bounds |u;| < 1. *

Suppose that there is at least one type (1,2) potential obstruction, i.e., there is some 7 € {1,... ,m} such
that [[f, [f7 folles & LOV(F),,. Consider the codistribution Ker £V (F) that annihilates the distribution
LOD(F). Then there must exist some differential one-form v € Ker £V (F) such that (y[f;, [, foll)zs # O

4While modification of the control bound can result in difficulties in the balancing of brackets in [6], this is not a concern in our
case, since the neutralization that we achieve is independent of the relative magnitudes of ;.




Let 812 be the codistribution containing all covectors v € Ker £V (F) with the property (Y[f;, [fj, fol])zs # 0

for some j. Let us suppose that %&30’2) has exactly dimension one. Choosing any nonzero 3 € B2 we define
the map g from TIR™ x TIR" to IR by ¥g : (f,9) — (B[f,19, fo]])z.. This map inherits bilinearity from the Lie
bracket, and hence is a tensor of covariant order two at z,. Next we derive a matrix Wg € IR™*™ from 15 via

(Up)ij == vp(fi, f) (4)

for i,j5 € {1,... ,m} and where f;, f; are the input vector fields of the system in (1). By employing the Jacobi
1dent1ty and the fact that the input vector fields commute, it is clear that Wg is also symmetric. Denoting by
\I’g the corresponding matrix for the transformed system, it is easy to see that \I’g =T T\IIBT In this manner,
the question of whether the obstructing brackets can be neutralized is reduced to the linear algebra question:

Given a symmetric matrix Wg # 0, is there a full rank, square matrix 7" such that the
congruence transformation of Vg, W3 = TT\IIBT, has all zeros along the diagonal?

Supposing for a moment that such a congruence transform exists, since it is full rank it must be true that
there is some particular 7 and 7 with 7 # 7 such that (\Ifg)u 75 0. In simplified terms, such an input transformation
not only neutralizes the potential obstructions along ‘Bmo but also replaces them with vector fields generated

)

by good brackets along %(1 2, Furthermore, the input transformation will not create type (1,2) potential

obstructions that are annihilated by %(1 2, (This would be tantamount to T70T # 0.) Of course, the input
transformation will also affect the vector fields generated by higher-degree brackets, possibly creating potential
obstructions.

Recalling that a symmetric matrix is called indefinite if it has at least one positive eigenvalue and at least
one negative eigenvalue, we have the following answer to the posed question.

LEMMA 4
Given a matrix Ug = \Ilg = 0, there exists a full rank matrix 7" such that \flg = TT\IIﬂT has all zeros on the diagonal
if and only if Ws is indefinite.

PRroOOF 2
First recall that by virtue of the symmetry of the matrix Wg, there exists a choice of orthonormal eigenvectors V :=
(V1,--. , V) such that VT W5V = diag(A1, ... , \m) where \; are the real eigenvalues of ¥5. Expressing the columns

t; of T" in terms of the orthonormal eigenvectors, we have (\ilﬂ)“ = Z;nzl A (tTv;)2. If U5 # 0 is semidefinite, then
without loss of generality, we can take Wg > 0, and hence (U3);; = ETZl A;j(tTv;)? > 0. For necessity, we must
show that (¥3);; > 0. For any full rank 7" there is some column t; and some eigenvalue \; such that A;(t7v;)2 > 0,

and since \; > 0 for all j, we have (¥3);; > 0.
Suppose \Ifg is indefinite, and group the eigenvalues into those which are positive {)\+}Zn+1 those which are

negative {\; } "', and those which are zero {A\}}7"°,. The eigenvectors are similarly grouped into {v;"}"} Av; }] t
and {vp}ite,. We proceed by constructing the matrix T'. The first m, columns ¢; of T" are chosen so that t =v;

achieving t7Wgt; = 0 for i € {1,... ,mo}. The next m columns t; are chosen according to t;,,, = vj*/()\j*)l/2 —
vy /(A])Y/? for all j € {1,...,m,}. For this choice, t; Lt; for all i € {1,... ,mo} and all j € {1,...,m}, and
s ‘l/ﬁt]+mo =0 forall j € {1 .,my4}. The final m_ columns ¢, are chosen to be tjim,4m, = v /(}\+)1/2

ve /(Ag)Y2 for all k € {1,... ,m,}. Similarly, this final group of columns is orthogonal to {#;}"% and has the
property tf+mo+m+ Vg tk+mo+m+ =0 forall k € {1,...,m_}. Furthermore, {t,};>, ., is linearly independent.

This completes the construction of T

4.2 The planar vehicle example revisited

Applying this line of reasoning to the planar vehicle example presented above, the codistribution ‘BSO’Q) is spanned
by 8 = (0,—2h,0). In this example, if we use the canonical isomorphisms T'IR™ ~ T*R" ~ IR™ and furthermore
if we endow IR™ with the natural inner product based on a particular choice of basis, we can interpret %5510’2)
as the projection of the vector fields generated by the type (1,2) brackets onto the orthogonal complement of
LOD(F). It represents the direction in which the vector fields generated by the type (1,2) brackets cannot be
neutralized by vector fields generated by the type (0,1) brackets, i.e., the direction of potential obstruction. The
tensor ¢ in coordinates is (0,0,2h;0,0,0;2h,0,0). The associated matrix Uz = (4h?, 2h; 2h,0) has eigenvalues



2h2 £ 2¢/h% + h2. Of course h # 0 is assumed, for otherwise there is no potential obstruction. It is easy to see
that g is sign indefinite, and hence the construction in the proof of Lemma 4 provides the transformation

Tw = (0’1(h)h—0’2(h)\/1+h2 Ug(h)h—01(h)\/1+h2>
B o1(h) o2(h)

where o1 and o5 are continuous functions of h > 0 with o; > 0 for all finite A > 0. This transformation yields \ilg =
(0,—2;—2,0), and the resulting type (1,2) brackets of the transformed system generate [f1,[f1, f.]] = (0,0,0),
[f1, [f2, fo]] = (0,1/h,0), and [fa, [fa, fo]] = (0,0,0). Thus the potential obstruction to STLC is removed, and the
Lie subalgebra generated by the system at x, is spanned by vector fields corresponding to good brackets, namely
{f1, f2, [f1, [f2, fo]]}. Hence application of Sussmann’s general result [7] demonstrates STLC. It is interesting to
note that while 73 is not equal to 1" determined above, it does transform the system into one with a pure force
and a torque input for any h > 0.

4.3 An example of balancing two bad brackets

Not only can this technique neutralize a potential obstruction from a bad type (1,2) bracket with a vector
field generated by a good type (1,2) bracket, but it may also balance two potential obstructions generated by
two type (1,2) brackets. Consider the two input example with f,(x) = (2213, x173, 23 — 23), f1 = (1,0,0),
and fo = (0,1,0). This system has two potential obstructions of type (1,2), namely [fi,[f1, f.]] = (0,0,2)
and [fa,[f2, fo]] = (0,0,—2). Furthermore, the good bracket (1,(2,0)) evaluates as [f1,[f2, fo]] = (0,0,0).
For this example, ¥ = (4,0;0,—4) is clearly indefinite, and hence we have the desired transformation 7' =
(0.5, —0.5;0.5,0.5). The resulting type (1,2) brackets for the transformed system evaluate as [f1,[f1, f-]] =
(0,0,0), [f1, [f2; fo]] = (0,0,1), and [fa, [fa, f-]] = (0,0,0), and again STLC is achieved. An interesting variation
on this example is obtained if we replace f,(z) above with (z2x3, T173, T3 + 23 + az173) where o € IR. This
system has ¥g = (4,2q;2a,4) indefinite for |a| > 2. This condition has the interpretation that even when
the vector fields generated by the two bad brackets have values along (8 with the same sign, they can still be
neutralized with the a vector field generated by a good bracket provided that its value along [ is large enough.

4.4 Effect of neutralization on other directions

Next we consider the effect of neutralization of potential obstructions along one direction within %5510’2) on the
value of the brackets along another direction within %5010’2). We consider the system that evolves on 2 € IR*
described by fo(z) = (wamy, 0, 22 + 2179, 7172), f1 = (1,0,0,0), and f>(0,1,0,0). The type (1,2) brackets
for this system are [fla [fla fo]] = (05 0, 270)5 [f27 [fQ; fOH = (0705 0, 0)7 and [fla [fZafOH = (Oa 0,1, 1)7 and hence
28;10’2) is spanned by the covectors (0,0,1,0) and (0,0,0,1). If we concentrate on neutralizing the bad bracket
in the direction 3 = (0,0,2,0), then we have U5 = (4,2;2,0) with eigenvalues A = 2 + 21/2. The constructed
transformation matrix 7' = (—271/4,271/4,0, 21/4) neutralizes the bad bracket along 3. However, the transfor-
mation produces a potential obstruction along the covector (0, 0,0, 1), as evidenced by the resulting vector fields
[fla [fla fo]] = (Oa 0,0, 7\/5)7 [fla [f?a fo]] = (05 0,1, *1)5 and [f2a [an fOH = (07 0,0, 0) In faCta this system is
known to be not STLC, as can be seen by applying the coordinate transformation y3 := z3 — z4 and y; = z; for

i # 3.

4.5 Interpretation and impact

We have developed a methodology for neutralizing potential obstructions generated by bad brackets of type (1,2)
for homogeneous degree-two systems that requires indefiniteness of the matrix Wg defined in (4). To interpret
this requirement, we recall that a matrix is positive definite if and only if all of its principal minors are positive
definite. On the other hand, a matrix is negative definite if and only if all of its principal minors are negative
definite when of odd dimension and positive definite when of even dimension. Hence W3 will be indefinite if
some principal minor is itself indefinite. Recalling that the ij*" entry of WUz is the value of the evaluated bracket
[fi,[fj, fo]] along the covector 3, the implications of the indefiniteness test become intuitively clear. For the
moment let us restrict our attention to cases where 535510’2) has dimension one, say %5510’2) = span{ [, } for some
B. If there is a potential obstruction from a single, type (1,2) bad bracket and a type (1,2) good bracket is not
annihilated at xz, by 3, then the obstruction can always be removed since the principal minor corresponding
to these two brackets is always indefinite (i.e., the matrix (2a, b;b,0) has eigenvalues a + v/a? + 4b2.) If two or
more evaluated bad brackets are not annihilated at z, by (3, then they can all be simultaneously neutralized so
long as a pair of the evaluated bad brackets provide opposite signs when operated on by 5. On the other hand,



if one or more evaluated bad brackets all have the same sign at x, along the covector # and all good brackets
are annihilated by 3 at x,, then the technique fails. Notice that while the examples all had just two inputs, the
technique applies without modification to homogeneous degree-two systems with more than two inputs (m > 2).

Table 1: Applicability of neutralization via congruence transformation.
# of good  # of bad

dim(%élo’m ) brackets  brackets outcome
0 n.a. n.a. no obstr.
1 1 0 no obstr.
1 1 1 neutralized
1 >0 2 possible neut.
> 2 open question

When other directions are involved, the neutralization may encounter difficulties. Supposing that 235510’2)
is spanned by {ﬁi}le with k& > 2, the question of neutralization of potential obstructions becomes one of
simultaneously transforming the matrices Wg, so that they all have zeros on their diagonals. If the ranges of
the matrices W, are orthogonal, then the problem can be solved with a block diagonal transformation 7", where
each block appropriately transforms each Wg,. This procedure requires a straightforward modification of the
construction of 7. These interpretations are summarized in Table 1.

Finally, notice that the homogeneity of f, is not essential to the development of neutralization via congruence
transform, the construction of the matrix ¥z being sufficiently general that it applies to any nonlinear system
that is linear in control. For example, neutralization of potential obstructions from type (1,2) brackets for
the system fo(z) = (w23, T123, sin®z; — sin®a,), fi = (1,0,0), and fo = (0,1,0) proceeds identically to
that of the previous example with f,(z) = (zax3, 123, 1 — x2). Clearly the proposed technique provides for
neutralization of potential obstructions from type (1,2) brackets for these more general systems. A generalization
of neutralization via congruence transformation to inhomogeneous nonlinear systems would involve incorporation
of the rich differential geometry of nilpotent and higher-order approximations and foliations described for example
by Hermes in [9].

5 Conclusion

We have presented a complete characterization of STLC for the class of single-input, homogeneous polynomial
systems linear in control, where homogeneous is used in the traditional sense. Specifically for odd-degree systems,
STLC is equivalent to the Lie Algebra Rank Condition, while even-degree systems are never STLC except for the
degenerate case of a scalar state. For multiple-input homogeneous systems linear in control, we have investigated
neutralization of bad brackets with brackets of the same type. The methodology presented in this paper provides
a means of neutralizing bad brackets of type (1,2). By consideration of the tensor generated from the bracket
structure [-, [-, fo]] applied to the direction containing a potential obstruction, we have reduced the question of
neutralizing an obstruction to that of finding a congruence transform that results in a matrix with all zeros along
its diagonal. It is shown that such a transformation exists if and only if the matrix in question is indefinite. When
this test is translated back to type (1,2) brackets, it has intuitive implications, which are illustrated with several
simple examples. The methodology presented is limited in its effectiveness by the fact that it removes a potential
obstruction only along a particular direction in the tangent space, although an extension to multiple directions
appears attainable. Although the neutralization via congruence transformation result has been presented in the
context of homogeneous systems, its development does not rely on the homogeneity of the drift vector field, and
hence applies to neutralization of type (1,2) brackets for any nonlinear system that is linear in control.
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