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Analysis and design of oscillatory control systems
Sonia Mart́ınez, Jorge Cortés, and Francesco Bullo, Member IEEE

Abstract— This paper presents analysis and design results
for control systems subject to oscillatory inputs, i.e., inputs
of large amplitude and high frequency. The key analysis
results are a series expansion characterizing the averaged
system and various Lie-algebraic conditions that guarantee
the series can be summed. Various example systems provide
insight into the results. With regards to design, we recover
and extend a variety of point stabilization and trajectory
tracking results using oscillatory controls. We present novel
developments on stabilization of systems with positive trace
and on tracking for second order underactuated systems.

Keywords—oscillatory control, averaging, geometric meth-
ods, point stabilization, trajectory tracking for underactu-
ated systems

I. Introduction

The paper investigates the behavior of finite dimensional
analytic systems subject to oscillatory controls. We present
averaging analysis and control design results for systems
described by a differential equation of the form

dγ

dt
= f(t, γ(t)) +

1

ε
g

(
t

ε
, t, γ(t)

)

,

where the vector field g is periodic in its first argument
(typically of the form g =

∑

i ui(t/ε, t)gi(x) for some con-
trol signals ui), ε is a small positive parameter, and both
vector fields f and g are analytic in x. Our objective is
to provide a rigorous and general framework that allows
to obtain (i) a coordinate-free expression of the averaged
system, and a series expansion representation for it; (ii)
control design tools for point stabilization and trajectory
planning in underactuated systems.

Motivation

The study of oscillations in nonlinear differential equa-
tions is a classic and widespread research topic. Related re-
search areas include nonlinear dynamical systems [1], non-
linear and geometric control [2], [3], analysis of animal loco-
motion [4], design of robotic locomotion and manipulation
devices [5], analysis of switching circuit models and power
conversion circuits [6], control of quantum dynamics [7]
and chemical reactions [8], analysis, design, and control
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of biomineralization and crystallization processes [9], [10],
and so forth.

Furthermore, averaging analysis seems well suited to
tackle novel applications in the field of micro-electro me-
chanical systems and vibrational control is being investi-
gated within the context of active control of fluids and
separation control. Examples include [11] on the scale de-
pendence in oscillatory control of mechanical systems, [12]
on unsteady flow and separation control using oscillatory
blowing.

From a control theoretical viewpoint, we study oscilla-
tory controls for the purpose of stabilization and tracking
problems. For classes of nonlinear underactuated systems,
it is interesting to investigate what control objectives can
be obtained via the use of high frequency, high amplitude
inputs. Since modern textbooks [13], [14], [15], [16] do not
present a comprehensive approach on perturbation meth-
ods in control theory, we endeavor to develop novel tools
and shed further light onto these problems.

Literature review

This work has connections with classic averaging theory
(see [17], [18] for a standard treatment), as well as with
numerous ongoing research efforts. First of all, our analy-
sis complements the study of differential equations subject
to periodic high frequency, high amplitude forcing terms;
see [19], [20], [21]. In these works, the coupling effect be-
tween the input vector fields plays a key role: typically,
Lie brackets between them appear, and in the averaging
approximation the trajectories of the original system con-
verge to those of the averaged system. Here we shall focus
our attention on systems where the interaction takes place
between the drift and the input vector fields.

A second set of related results deals with the analysis of
high frequency vibrations in mechanical and other types of
systems [22], [23], [24], [25], [26], [27], [28], and more gen-
erally averaging analysis in locomotion, rectification and
other physical phenomenon where non-commuting vector
fields play a role; see [29], [30], [31].

Finally, there are three related areas within the context
of control design. One of these is the design of time-varying
stabilizing laws for driftless systems, (sometimes referred to
as nonholonomic), see for instance [32], [33], [34], [35], [36].
A second area deals with the design of oscillatory controls
for point stabilization in general nonlinear and mechanical
control systems; see [37], [38], [39], [2], and a third area is
devoted to the design of oscillatory controls for trajectory
planning in driftless systems [40], [41], and for constructive
controllability and approximate inversion [42], [43].
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Statement of contributions

The first contribution of this paper is a general averaging
analysis in a coordinate-free differential geometric setting.
We give a novel sufficient condition for general nonlinear
systems based on the commutativity of the input vector
fields which enables us to perform the averaging procedure.
Exploiting a generalized variation of constants formula, we
provide a new explicit representation of the averaged sys-
tem for analytic control systems with two time scales. This
representation consists of an infinite sum of Lie brackets
of the input vector fields with the drift and iterated inte-
grals of the open-loop controls. Finally, we particularize
our discussion to various classes of systems including bi-
linear, Hamiltonian, and second order systems, extending
a number of previous results on approximate descriptions
and obtaining new sufficient conditions that guarantee the
series for the averaged system is summable.

After completing this general analysis, we present var-
ious design tools and results for vibrational control. Re-
garding point stabilization, we provide sufficient conditions
for the existence of an equilibrium point for the averaged
system, we prove that the order of linearizing and averag-
ing is non-influential, and we design oscillatory controls to
stabilize the averaged systems. In particular, we recover
the known result on stabilization of systems with negative
linearization trace, and prove a novel result on stabiliza-
tion of systems with positive trace (via nonlinear feedback).
Regarding trajectory tracking, we exploit our analysis re-
sults on nonlinear systems with two time scales to steer
the averaged system along arbitrary reference paths. We
focus on second order underactuated systems and develop
a novel controller using oscillatory signals to track a desired
smooth trajectory. We apply the strategy to a second-order
nonholonomic integrator and to the PVTOL system.

Organization

We introduce some preliminary concepts in Section II.
Section III presents the main averaging analysis, and Sec-
tion IV treats various classes of systems for which the series
expansions assume a particular structure. Section V and
Section VI discuss respectively stabilization and tracking
via oscillatory controls. Finally, we present our conclusions
in Section VII.

II. Preliminaries and notation

This section contains some basic definitions and results
on iterated integrals of scalar functions and on differential
geometry.

A. Iterated integrals and their averages

Let N be the set of non negative integers and R+ =
[0,+∞). Let I be the set of all nontrivial multiindices
I = (i1, . . . , ik), where i1, . . . , ik take values in {1, . . . ,m}.
Given m bounded measurable functions ui : R+ → R, de-

fine their iterated integrals {UI : R+ → R, I ∈ I} by

U(i1,...,ik)(t) =
∫ t

0

uik(tk)

∫ tk

0

uik−1
(tk−1) . . .

∫ t2

0

ui1(t1)dt1 . . . dtk .

Let S be a set of k1+ · · ·+km elements. Let Ck1,...,km(S)
denote the collection of all possible ways of takingm classes
of members of S, with the ith class having ki elements. The
cardinality of Ck1,...,km(S) is the multinomial coefficient

(
k1 + · · ·+ km
k1, . . . , km

)

=
(k1 + · · ·+ km)!

k1! . . . km!
.

To each element α ∈ Ck1,...,km(S), we associate a multiin-
dex I(α) of length k1+· · ·+km as follows: as i ∈ {1, . . . ,m},
place the index i in the ki places corresponding to the ith
class of α.

Givenm bounded measurable functions ui : R+ → R, de-
fine their multinomial iterated integrals {Uk1,...,km : R+ →
R, k1, . . . , km ∈ N} according to

Uk1,...,km(t) =
∑

α∈Ck1,...,km
(S)

UI(α)(t) . (1)

Furthermore, let U0,...,0(t) ≡ 1.
Lemma II.1: Let u1, . . . , um be bounded measurable

functions. Their multinomial iterated integrals satisfy

Uk1,...,km(t) =

1

k1! . . . km!

(∫ t

0

u1(τ)dτ

)k1

. . .

(∫ t

0

um(τ)dτ

)km

. (2)

The functions Uk1,...,km are T -periodic if and only if
u1, . . . , um are T -periodic and zero-mean.

Proof: We prove the result by induction on k = k1 +
· · · + km. For k = 1, we have that ki = δij , for some

j ∈ {1, . . . ,m}. Then, Uk1,...,km(t) =
∫ t

0
uj(τ)dτ = U(j)(t).

Assume the claim is true for k − 1 and let us prove it
for k. Using the induction hypothesis, the derivative of the
right-hand side of eq. (2) can be written as,

1

k1! . . . km!

(

k1u1U
k1−1
(1) . . . Ukm

(m) + · · ·+ kmumU
k1

(1) . . . U
km−1
(m)

)

= u1(t)Uk1−1,...,km(t) + · · ·+ um(t)Uk1,...,km−1(t) ,

where Ul1,...,lm(t) ≡ 0 if any of the li is negative. Integrat-
ing with respect to time, we obtain
∫ t

0

(

u1(s)Uk1−1,...,km(s) + · · ·+ um(s)Uk1,...,km−1(s)
)

ds .

The claim now follows by noting that this equation is equiv-
alent to the definition of multinomial iterated integral (1).

Next, we prove the second statement. All func-
tions Uk1,...,km are T -periodic if and only if all functions
∫ t

0
ui(τ)dτ are T -periodic. Since

∫ T+t

0

ui(τ)dτ =

∫ T

0

ui(τ)dτ +

∫ T+t

T

ui(τ)dτ,
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the functions
∫ t

0
ui(τ)dτ are T -periodic if ui are zero-mean

and T -periodic. Furthermore, the ui are T -periodic if their
time integrals are T -periodic, and they are zero-mean if
∫ T

0
ui(τ)dτ =

∫ 0

0
ui(τ)dτ = 0.

In the single-input case, m = 1, u1 = u, we have
Uk(t) =

∑

α∈Ck
UI(α)(t) = U(1,...,1)(t), which we will sim-

ply denote by Uk(t). Note that U2(t) and U(2)(t) denote
different functions.

Given a T -periodic function V (t), let us define its average
by

V =
1

T

∫ T

0

V (t)dt .

Let ‖V ‖L∞ be the supremum of the absolute value V (t) for
all t ∈ R+. Note that, since V is T -periodic,

‖V ‖L∞ = sup
t∈[0,T ]

|V (t)| .

Lemma II.2: Let u1, . . . , um be bounded measurable, T -
periodic and zero-mean functions. Then

‖Uk1,...,km‖L∞ ≤
T k1+···+km

k1! . . . km!
‖u1‖k1

L∞
. . . ‖um‖kmL∞ ,

|Uk1,...,km | ≤
T k1+···+km

k1! . . . km!(1 +
∑m

j=1 kj)
‖u1‖k1

L∞
. . . ‖um‖kmL∞ .

Proof: Recall that, under the given assumptions,
Uk1,...,km(t) are T -periodic. For 0 ≤ t ≤ T ,

|Uk1,...,km(t)|

≤ 1

k1! . . . km!

(∫ t

0

|u1(τ)|dτ
)k1

. . .

(∫ t

0

|um(τ)|dτ
)km

≤ 1

k1! . . . km!
tk1 ‖u1‖k1

L∞
. . . tkm ‖u1‖kmL∞ ,

which gives the first bound. The second one is proven via
the chain of inequalities

|Uk1,...,km | ≤
1

T

∫ T

0

|Uk1,...,km(t)|dt

≤
‖u1‖k1

L∞
. . . ‖u1‖kmL∞

k1! . . . km!

1

T

∫ T

0

tk1+···+kmdt .

As an example, consider the functions ui(t) = ai cosωt,
ω ∈ R. Then,

Uk1,...,km(t) =
ak1
1 . . . akmm
k1! . . . km!

(
1

ω
sinωt

)k1+···+km

,

From the identity 4m
∫ 2π

0
(sin t)2mdt = 2π

(
2m
m

)

in [44],

the averages are

Uk1,...,km =







0 if k is odd

ak1
1 . . . akmm
k1! . . . km!

(
1

2ω

)k (
k
k/2

)

if k is even

(3)

with k =
∑m

j=1 kj .

B. Elements of differential geometry and complex analysis

We refer to [45], [46] for comprehensive references on
these topics. Let x, x0 ∈ Rn, t ∈ R+, and let the parameter
ε vary in the range (0, ε0] with ε0 ¿ 1. Let f, g : R+×Rn →
Rn be smooth time-varying vector fields. Define their Lie
bracket according to

[g, f ](t, x) =
∂f(t, x)

∂x
g(t, x)− ∂g(t, x)

∂x
f(t, x) .

In what follows, we will use the notation ad0g f = f , adg f =

[g, f ] and adkg f = adk−1g [g, f ]. Given a diffeomorphism φ
and a vector field f , the pull-back of f along φ, denoted by
φ∗f , is the vector field

(φ∗f)(x) =

(
∂φ−1

∂x
◦ f ◦ φ

)

(x).

A useful diffeomorphism is given by the flow map Φf0,T , that
assigns to each point x0 the value at time T of the solution
of the initial value problem dγ

dt = f(t, γ(t)), γ(0) = x0.
Given a positive scalar σ, define the complex σ-

neighborhood of x0 in Cn as BC
σ (x0) = {z ∈ Cn : ‖z −

x0‖ < σ}. Let f be a real analytic function on Rn that
admits a bounded analytic continuation over BC

σ (x0). The
norm of f is defined as

‖f‖σ = max
z∈BC

σ(x0)
|f(z)|,

where f denotes both the function over Rn and its analytic
continuation. Given a time-varying vector field (t, q) 7→
Y (t, q) = Yt(q), let Y

i
t be its ith component with respect to

the usual basis on Rn. Assuming t ∈ [0, T ], and assuming
that every component function Y i

t is analytic over BC
σ (x0),

we define the norm of Y as

‖Y ‖σ,T = max
t∈[0,T ]

max
i∈{1,...,n}

‖Y i
t ‖σ.

In what follows, we shall simplify notation by neglecting
the subscript T in the norm of a time-varying vector field.

III. Coordinate-free averaging under
oscillatory controls

We study averaging under oscillatory controls, using
tools from the standard treatment on averaging (the first-
order averaging theorem, see [17], [18]), and from differen-
tial geometry (the variation of constants formula and the
notion of pull-back vector field [46], [45]).

Let γ : [0, T ] → Rn be the solution to the initial value
problem

dγ

dt
= f(t, γ(t)) +

1

ε
g

(
t

ε
, t , γ(t)

)

, γ(0) = x0 . (4)

Enlarge the state space by considering x′ = (t, x), denote
by τ = t/ε the fast time scale, and rewrite equation (4) as

dγ′

dτ
= εf ′(γ′(τ)) + g′(τ, γ′(τ)) , γ′(0) = x′0 = (0, x0) ,

(5)
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where γ′(τ) = (ετ, γ(ετ)), and f ′ and g′ are defined by

f ′(x′) = (1, f(t, x)) , g′(τ, x′) = (0, g(τ, t, x)) .

In the extended space, τ is seen as the independent variable
and (t, x) are the dependent variables. We then have

Φg
′

0,τ (t, x) =
(
t,Φgt0,τ (x)

)
,

where, for fixed t, gt denotes the τ -dependent vector field
(τ, x) 7→ g(τ, t, x). Define the pull-back vector field F ′ as

F ′(τ, x′) =
((

Φg
′

0,τ

)∗

f ′
)

(x′) . (6)

Note that F ′ is of the form

F ′(τ, x′) = (1, F (τ, x′)) . (7)

Now, we give a novel sufficient condition to ensure that
the pull-back vector field F ′ is T -periodic.
Proposition III.1: Assume that the vector fields in

{(t, x) 7→ g(τ, t, x) | τ ∈ [0, T ]} are continuous, uniformly
integrable, analytic in x admitting bounded analytical con-
tinuations over BC

σ (x0), σ > 0, commutative1, T -periodic
and zero mean in τ , i.e., g(τ + T, t, x) = g(τ, t, x), and
∫ T

0
g(τ, t, x)dτ = 0. Then, the flow Φ

g′(τ,x′)
0,τ and the vector

field F ′ are T -periodic.

Proof: The assumptions on the family of vector fields
{(t, x) → g(τ, t, x) | τ ∈ [0, T ]} are automatically verified
by the family {x′ → g′(τ, x′) | τ ∈ [0, T ]}. Let ξ′(τ) =

Φg
′

0,τ (x
′
0) and X

′(τ) = ξ′(τ + T ). Then

dX ′

dτ
= g′(τ + T,X ′(τ)) = g′(τ,X ′(τ)) , X ′(0) = ξ′(T ) .

Consequently, X ′(τ) = ξ′(τ) iff ξ′(T ) = ξ′(0). To prove the
latter statement we use the Volterra series [45]. The flow
of g′ is formally represented by the expansion

ξ′(τ) ≡ Id(x′0)+ (8)

+∞∑

k=1

∫ τ

0

ds1

∫ s1

0

ds2 . . .

∫ sk−1

0

dsk(g
′(sk, x

′
0) ◦ · · · ◦ g′(s1, x′0)),

where the vector fields g′ are interpreted as derivations of
C∞(Rn+1). Given the above hypothesis, the convergence
of this series is guaranteed by Proposition 2.1 in [45]. Now,
using integration by parts and the commutativity, we have

∫ τ

0

(∫ s1

0

g′(s2, x
′
0)ds2

)

◦ g′(s1, x′0)ds1 =

(∫ τ

0

g′(s, x′0)ds

)2

−
∫ τ

0

g′(s1, x
′
0)◦
(∫ s1

0

g′(s2, x
′
0)ds2

)

ds1 ,

and hence
∫ τ

0

∫ s1

0

(g′(s2, x
′
0) ◦ g′(s1, x′0))ds2ds1 =

1

2

(∫ τ

0

g′(s, x′0)ds

)2

.

1As a referee pointed to us, the commutativity condition can be
relaxed, and it is sufficient to ask for quasi-stationary vector fields,
as defined in [45].

By induction, one can show that

∫ τ

0

ds1

∫ s1

0

ds2 . . .

∫ sk−1

0

dsk(g
′(sk, x

′
0) ◦ · · · ◦ g′(s1, x′0))

=
1

k!

(∫ τ

0

g′(s, x′0)ds

)k

. (9)

Since by hypothesis g′(τ, x′) is zero-mean, we conclude
from (8) that ξ′(T ) = ξ′(0).

Given the result in Proposition III.1, we define the aver-
aged vector field F ′ as

F ′(x′) =
1

T

∫ T

0

F ′(τ, x′)dτ .

It can be seen that F ′(x′) =
(
1, F (x′)

)
. Finally, let η, ζ :

[0, T ]→ Rn be solutions to the initial value problems

dζ

dt
= F

(
t

ε
, t, ζ(t)

)

, ζ(0) = x0, (10)

dη

dt
= F (t, η(t)), η(0) = x0. (11)

The following theorem extends Lemma 2.2 in [27] to gen-
eral nonlinear control systems with two time scales and
presents a refinement of the approximation result. It is the
first of the two main analysis theorems.
Theorem III.2 (Coordinate-free averaging) Under the hy-

pothesis of Proposition III.1, further assume that f is
continuous, bounded and admits second order continuous
derivatives in x. Then,
(i) for t ∈ R+, we have

γ(t) = Φgt0,t/ε(ζ(t)) ,

and, as ε→ 0 on the time scale 1, ζ(t)− η(t) = O(ε),
(ii) additionally, if f and g do not depend explicitly on
the slow time scale t, i.e., f = f(x) and g = g(t/ε, x) and
x∗ is a hyperbolically stable critical point for F = F (x),
then there exists ρ > 0 such that if ‖x0 − x∗‖ < ρ, then
ζ(t) − η(t) = O(ε) as ε → 0 holds for all t ∈ R+ and
the differential equation (10) possesses a unique periodic
orbit (which is hyperbolically stable) belonging to an O(ε)
neighborhood of x∗,
(iii) if T = O(1) as ε → 0, then γ(t) = Φgt0,(t/ε modT )(η(t))

+O(ε), on the time scale 1, where bsc denotes the great-
est integer less than or equal to s ∈ R, and (t/ε modT )
denotes t/ε− bt/(εT )cT .

Proof: Recall the variation of constants formula (cf.
[45]) to express the flow of the initial value problem dχ

dt =
f(t, χ(t)) + g(t, χ(t)), χ(0) = x0 at time T > 0,

χ(T ) = Φg0,T (θ(T )), with θ̇(t) =
((

Φg0,t
)∗
f
)

(θ(t)) ,

and θ(0) = x0. Applying it to (5), we get

dγ′

dτ
= g′(τ, γ′(τ)) , γ′(0) = ζ ′(τ) , (12)

dζ ′

dτ
= εF ′(τ, ζ ′(τ)) , ζ ′(0) = x′0 .
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Averaging this last system, we obtain

dη′

dτ
= εF ′(η′(τ)) , η′(0) = x′0 .

By the theorem of first-order averaging (cf. [17], pages 39
and 71, and [18], page 168), we know that ζ ′(τ)− η′(τ) =
O(ε) over the time scale τ = 1/ε. Now, if we write η′(τ) =
(v(τ), η(τ)), we get from the previous equation that v = t
and, changing the time scale back to t = ετ ,

dη

dt
= F (t, η(t)) , η(0) = x0 ,

which is the definition of equation (11). Putting ζ ′(τ) =
(u(τ), ζ(τ)), we deduce that u = t and ζ(t) − η(t) = O(ε)
over the time scale 1. In addition, we recover equation (10)

dζ

dt
= F

(
t

ε
, t, ζ(t)

)

, ζ(0) = x0 ,

and from (12) we get γ(t) = Φgt0,t/ε(ζ(t)).

As for the second statement, in case f = f(x) and g =
g(t/ε, x), if x∗ is a hyperbolically stable equilibrium point
for F , then the result follows from the theorem of first order

averaging [17]. Finally, since the flow Φg
′

0,τ is T -periodic (cf.
Proposition III.1), (t/ε modT ) = O(1) and the flow along
g depends continuously on its initial condition, we conclude

γ(t) = Φgt0,t/ε(ζ(t)) =

Φgt0,(t/ε modT )(η(t) +O(ε)) = Φgt0,(t/ε modT )(η(t)) +O(ε).

Now, we develop novel series expansions for the averaged
system for multiple input systems of the form,

dγ

dt
= f(t, γ(t)) +

1

ε

m∑

i=1

ui

(
t

ε
, t

)

gi(γ(t)). (13)

Accordingly, we shall consider the (multinomial) iterated
integrals U(i1,...,ik)(τ, t) and their averages U (i1,...,ik)(t)
with respect to the first variable of the inputs ui(τ, t). The
following theorem is the second main analysis result.
Theorem III.3 (Multiple input system) Let (τ, t) 7→

u1(τ, t), . . . , um(τ, t) be bounded measurable functions, T -
periodic and zero-mean in τ , continuously differentiable
in t. Let g1, . . . , gm be commuting vector fields. Then,
(i) the pull-back vector field F defined in eq. (7) satisfies

F (τ, t, x) = f(t, x) +
+∞∑

k=1

∑

(i1,...,ik)∈I

(14a)

U(i1,...,ik)(τ, t) adgi1 . . . adgik f(t, x)−
m∑

i=1

∂U(i)

∂t
(τ, t)gi(x)

=
+∞∑

k1,...,km=0

Uk1,...,km(τ, t) adk1
g1 . . . ad

km
gm f −

m∑

i=1

∂U(i)

∂t
(τ, t)gi(x),

(14b)

and its average F satisfies

F (t, x) = f(t, x) +
+∞∑

k=1

∑

(i1,...,ik)∈I

(15a)

U (i1,...,ik)(t) adgi1 . . . adgik f(t, x)−
m∑

i=1

dU (i)

dt
(t)gi(x)

=

+∞∑

k1,...,km=0

Uk1,...,km(t) adk1
g1 . . . ad

km
gm f −

m∑

i=1

dU (i)

dt
(t)gi(x).

(15b)
(ii) if f and g1, . . . , gm are analytic in x admitting bounded
analytical continuations over BC

σ (x0) and

T

m∑

j=1

‖uj‖L∞ ‖gj‖σ <
σ − σ′
4n

. (16)

for 0 < σ′ < σ, where ‖u‖L∞ denotes the supremum of the
absolute value of u(τ, t) for τ, t ∈ R+, then the series ex-
pansions (14) and (15) converges absolutely and uniformly
for x ∈ BC

σ′(x0) and t ∈ R+.

Proof: We first prove the result for the single input
case. Let us compute F ′ as in equation (6), where we let
f ′ = f ′(x′) be τ -invariant and g′ = g′(τ, x′) be τ -varying.
The following statement is proved in [46, Theorem 4.2.31]

d

dτ

((

Φg
′

0,τ

)∗

f ′
)

(τ, x′) =
(

Φg
′

0,τ

)∗

[g′(τ, x′), f ′(x′)].

At fixed x′ ∈ Rn+1, we integrate the previous equation
from time 0 to τ to obtain

((

Φg
′

0,τ

)∗

f ′
)

(τ, x′) = f ′(x′) +

∫ τ

0

(Φg
′

0,s)
∗[g′(s, x′), f ′(x′)]ds.

Iteratively applying the previous equality, we get

((

Φg
′

0,τ

)∗

f ′
)

(τ, x′) = f ′(x′)+

+∞∑

k=1

∫ τ

0

. . .

∫ sk−1

0

(
adg′(sk,x′) . . . adg′(s1,x′) f

′(x′)
)
dsk . . . ds1

Now, it can be proven by induction that

adg′(s1,t,x) f
′ =

(

0, u(s1, t) adg(x) f −
∂u

∂t
(s1, t)g(x)

)

,

adg′(sk,x′) . . . adg′(s1,x′) f
′ =

(

0, u(sk, t) . . . u(s1, t) ad
k
g(x) f

)

.

with k ≥ 2. Finally,

F (τ, t, x) = f(t, x) +

+∞∑

k=1

Uk(τ, t) ad
k
g f(t, x)−

∂U1

∂t
(τ, t)g(x),

and the result follows. In the multiple input case, the series
expansions (14a) and (15a) can be deduced similarly. As
for (14b) and (15b), since g1, . . . , gm commute, then

adgiσ(1)
. . . adgiσ(k)

f = adgi1 . . . adgik f ,



6 TO APPEAR, REGULAR PAPER, VOLUME 48, ISSUE 7, JULY 2003, IEEE TRANSACTIONS ON AUTOMATIC CONTROL

2

1

3 421

(1, 0)

(0, 1)

(0, 0)

(1, 1)

(i, 0) deg(f)

deg(g) (0, j) (i, j)

Fig. 1. Table of degrees of the drift vector field f and the input vector
field g for homogeneous systems. The (i, j)th position refers to
the case when f ∈ Hi and g ∈ Hj .

for any σ ∈ Σk. Therefore, for each k,

∑

(i1,...,ik)∈I

U(i1,...,ik)(τ, t) adgi1 . . . adgik f(t, x) =

∑

k1,...,km≥0
k1+···+km=k

Uk1,...,km(τ, t) adk1
g1 . . . ad

km
gm f(t, x) .

As for the convergence of the series, we have from
Lemma II.2 and Proposition 3.1 in [45],

∥
∥
∥Uk1,...,km(τ, t) adk1

g1 . . . ad
km
gm f

∥
∥
∥
σ′

≤
(

4nT

σ − σ′
)k

‖u1‖k1

L∞
. . . ‖um‖kmL∞ ‖g1‖

k1

σ . . . ‖gm‖kmσ ‖f‖σ

≤
(

4nT

σ − σ′
)k




m∑

j=1

‖uj‖L∞ ‖gj‖σ





k

‖f‖σ ,

where k = k1 + · · ·+ km. As a consequence, equation (16)
implies that the series in F is convergent. This also implies
the convergence of the series expansions of F .

Note that in the single-input case, m = 1, both series
in (14) (resp. (15)) coincide.

IV. Extensions and applications

In this section we investigate classes of differential equa-
tions for which the series expansions in Section III assume
a particular structure. By doing so, we recover and ex-
tend a variety of earlier results on bilinear, polynomial and
Hamiltonian systems. Before proceeding, we summarize
the averaging procedure from Theorem III.2 as

γ(t) = Φgt0,(t/ε modT )(η(t)) +O(ε) , η̇(t) = F (η(t)),

with η(0) = x0. For simplicity, we focus on single input
systems with a single time scale, i.e., g(τ, t, x) = u(τ)g(x).

A. Homogeneous systems

Here we focus on homogeneous systems. Let f be a vec-
tor field on Rn. We say that f is homogeneous of degree i
if each of its components with respect to the usual basis of
Rn is a homogeneous function of degree i. The set of ho-
mogeneous vector fields of degree i is denoted by Hi. For

instance, H0 is the set of constant vector fields and H1 is
the set of linear vector fields. By convention, Hi = {0}, for
i ≤ −1. If f ∈ Hi and g ∈ Hj , then [f, g] ∈ Hi+j−1.

It is straightforward to obtain the relevant quantities
from Theorems III.2 and III.3 for the lower triangular cases
(0, 0), (0, 1) and (1, 0) in Figure 1. Indeed, we have that

Case (0,0): γ̇(t) = a+
1

ε
u

(
t

ε

)

b , γ(0) = x0

Φ
u(τ)b
0,τ (x0) = b

∫ τ

0

u(s)ds+ x0 , F = a .

Case (0,1): γ̇(t) = a+
1

ε
u

(
t

ε

)

Bγ(t) , x(0) = x0

Φ
u(τ)Bx
0,τ (x0) = eB

∫ τ
0
u(s)dsx0 , F = a+

+∞∑

k=1

Uk(−B)ka .

Case (1,0): γ̇(t) = Aγ(t) +
1

ε
u

(
t

ε

)

b , γ(0) = x0

Φ
u(τ)b
0,τ (x0) = b

∫ τ

0

u(s)ds+ x0 , F = Ax+ U1Ab .

B. Bilinear systems

We refer the reader to [14, Section 2.4] for a treatment
on bilinear systems. Let

γ̇(t) = Aγ(t) +
1

ε
u

(
t

ε

)

Bγ(t), γ(0) = x0 . (17)

This system corresponds to the case (1, 1) in Figure 1. Lie
brackets between linear vector fields are expressed in terms
of matrix commutators

adBxAx = −(adB A)x , where adB A = AB −BA.
One can compute

Φ
u(τ)Bx
0,τ (x0) = eB

∫ τ
0
u(s)dsx0 ,

F (x) =

(

A+

+∞∑

k=1

(−1)kUk ad
k
B A

)

x.

The following proposition shows a particular structure
of the series expansion (15) and extends a result in [24].
Proposition IV.1: Consider the bilinear control system

γ̇(t) = Aγ(t) +
1

ε

m∑

i=1

ui

(
t

ε
, t

)

Biγ(t) ,

and assume BiBj = 0 for all i, j. Consider also

η̇(t) =

(

A−
m∑

i=1

U (i)(t) adBi
A

+
m∑

i,j=1

U (i,j)(t) adBi
adBj

A−
m∑

i=1

(
d

dt
U (i)(t)

)

Bi



 η(t) ,

with initial condition η(0) = γ(0). Then,

γ(t) = e
∑m

i=1 Bi

∫ (t/ε modT )
0 ui(s,t)dsη(t) +O(ε) .

The result follows from equation (15) by noting that
adBi

adBj
adBk

A = 0 for all i, j, k.
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C. Polynomial systems

Consider the system

γ̇(t) = f(γ(t)) +
1

ε
u

(
t

ε

)

g, γ(0) = x0, (18)

where the components of f are polynomials in x of degree
at most M , and g(x) = g is constant. This system is the
combination of a finite number of (i, 0) cases in Figure 1.
This structure leads to the following simplifications. The
degree of adkg f is M − k, and therefore all the brackets

adkg f with k > M are vanishing. Accordingly, we have

Φ
u(τ)g
0,τ (x0) = x0 +

(∫ τ

0

u(s)ds

)

g ,

F (x) = f(x) +

M∑

k=1

Uk
∂kf

∂xk
(g, . . . , g
︸ ︷︷ ︸

k times

)(x) .

Note that F is a finite sum of polynomial vector fields.

D. Second order systems

We next focus on control systems described by second
order differential equations. This setting is representative
of interesting examples. Consider the system on Rn

γ̈(t) =
1

ε
u

(
t

ε

)

g(γ(t)) . (19)

To write the equation in the standard (first order)
form (13), define the vector fields on R2n

f(x, ẋ) =

[
ẋ
0

]

, g(x, ẋ)lift =

[
0

g(x)

]

,

and compute the relevant Lie brackets as

adglift f =

[
g

− ∂g
∂xẋ

]

, ad2glift f = −〈g : g〉lift , adkglift f = 0 ,

for k > 2 and where we define the operation of symmetric
product between vector fields ga, gb on Rn as

〈ga : gb〉 =
∂ga
∂x

gb +
∂gb
∂x

ga .

From Theorems III.2 and III.3, we have

Φ
u(τ)g(x,ẋ)lift

0,τ

(
x0
ẋ0

)

=

(
x0
ẋ0

)

+

[
0

(∫ τ

0
u(s)ds

)
g(x0)

]

,

F = f + U1 adglift f + U2 ad
2
glift f

=

[
ẋ
0

]

+ U1

[
g

− ∂g
∂xẋ

]

− U2

[
0

〈g : g〉

]

,

so that, using the variables (η1, η2) for the averaged system,

η̇1(t) = η2(t) + U1g(η1(t)) ,

η̇2(t) = −U1
∂g

∂x
(η1(t))η2(t)− U2〈g : g〉(η1(t))

with initial conditions (η1(0), η2(0)) = (γ(0), γ̇(0)). It is
instructive to compute the second time derivative of η1(t),
and write the averaged system again as an equation of sec-
ond order. Some straightforward simplifications lead to

η̈1(t) =

(
1

2
U
2

1 − U2

)

〈g : g〉(η1(t)), (20)

with initial conditions (η1(0), η̇1(0)) = (γ(0), γ̇(0) +
U1g(γ(0))). In summary, we have

γ(t) = η1(t) +O(ε)

γ̇(t) = η̇1(t) + g(η1(t))

(
∫ (t/ε modT )

0

u(s)ds− U1

)

+O(ε).

Remark IV.2: Analogues to the result in equation (20)
and their physical meaning have been long studied; e.g.,
see [22], [23], [25], [26], [27]. In particular, if g is a potential
field, g = ∂V/∂x, then one can compute 〈g : g〉 = ∂W/∂x,

where W = (∂V/∂x)
2
is the classical Kapitsa’s poten-

tial [22], [25] (also called the averaged potential). It is easy
to see that every isolated critical point of V is a minimum
of W . Using Hölder inequality, we obtain

1

2
U
2

1 − U2 =
1

2T




1

T

(
∫ T

0

U1(s)ds

)2

−
∫ T

0

U2
1 (s)ds





<
1

2T






1

T





(
∫ T

0

U2
1 (s)ds

) 1
2

· 1





2

−
∫ T

0

U2
1 (s)ds




 = 0 ,

and hence every isolated equilibrium point of (19) is a
Lyapunov-stable equilibrium point of (20) (see [26]).

Reasoning as before, one can prove the next result.
Proposition IV.3: Consider the control system

γ̈(t) + f1(γ(t))γ̇(t) + f0(γ(t)) =
1

ε

∑

i

ui

(
t

ε
, t

)

gi(γ(t)) ,

and the initial value problem

η̈(t) + f1(η(t))η̇(t) + f0(η(t)) =

1

2

∑

i,j

(

U (i)(t)U (j)(t)−U (i,j)(t)−U (j,i)(t)
)

〈gi : gj〉(η(t))

with initial conditions η(0) = γ(0), η̇(0) = γ̇(0) +
∑

i U (i)(0)gi(γ(0)). Then, we have

γ(t) = η(t) +O(ε)

γ̇(t) = η̇(t) +
∑

i

gi(η(t))

(
∫ (t/ε modT )

0

ui(s, t)ds− U (i)(t)

)

+O(ε) .

E. Hamiltonian control systems

Second order systems as in equation (19) are examples
of Lagrangian control systems, and the analysis presented
above can be generalized to a coordinate-free setting on
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manifolds; e.g., the result in equation (20) agrees with the
results in [27]. We present here a coordinate-free based
treatment for Hamiltonian control systems as described for
example in [47], [13]. Consider the control system

γ̇(t) = XH(γ(t)) +

m∑

i=1

1

ε
ui

(
t

ε

)

XHi
(γ(t)) , γ(0) = x0 ,

where x0 = (q0, p0) ∈ T ∗Rn, H, Hi ∈ C∞(T ∗Rn), and
XH , XHi

denote the corresponding Hamiltonian vector
fields with respect to the canonical symplectic form ΩRn on
T ∗Rn. Let {·, ·} denote the Poisson bracket associated with
ΩRn . Assume that the vector fields XH1

, . . . , XHm
com-

mute, or equivalently, that the Poisson bracket {Hi, Hj} is
constant for any i, j ∈ {1, . . . ,m}.

The pull-back vector field F in Theorem III.3 is again
Hamiltonian with respect to

H∗ = H +
+∞∑

k=1

(−1)k
∑

(i1,...,ik)∈I

U(i1,...,ik){Hi1 , . . . {Hik , H}} . . .}.

In particular, let ϕ1, . . . , ϕm be functions defined on Rn

and consider their natural lift, ϕlift
i = ϕi ◦ πRn , where

πRn : T ∗Rn → Rn is the canonical projection. It is straight-
forward to verify that {ϕlift

i , ϕliftj } = 0. Consider a control

system with input Hamiltonian functions Hi = ϕlifti . If H
has a polynomial dependence on the momentum variables
p, say of order l, then the series for H∗ is finite,

H∗ = H+

l∑

k=1

(−1)k
∑

(i1,...,ik)∈I

U(i1,...,ik){ϕlifti1 , . . . {ϕ
lift
ik
, H}} . . .}.

This is the case, for instance, of the so-called simple
mechanical systems, where the Hamiltonian corresponds
to kinetic plus potential energy, H = 1

2p
TM−1(q)p +

V (q), with M the mass matrix. Indeed, one gets
{ϕlifti , {ϕliftj , {ϕliftk , H}}} = 0.

F. Systems with recurrence relations

Next, we investigate a summing method based on recur-
sive Lie bracket relationships and generating functions [48].
Let 〈g |f〉 be the smallest g-invariant distribution contain-
ing f . Let the distribution 〈g |f〉 be finite-dimensional.
Note that any pair of linear vector fields satisfies this as-
sumption because of the Cayley-Hamilton theorem.
Lemma IV.4: Assume adpg f = λ adqg f for some integers

p > q ≥ 0, where λ : Rn → R belongs to ker g. Then

F (x) =

q−1
∑

k=0

Uk ad
k
g f +

(
+∞∑

k=0

U q+(p−q)kλ
k

)

adqg f

+ · · ·+
(

+∞∑

k=0

U (p−1)+(p−q)kλ
k

)

adp−1g f .

Let (m)H(n) be the generalized hypergeometric func-
tion [44] of indexes m, n ∈ N. If u(t) = a sinωt, the

generating function is

+∞∑

k=0

Umk+nλ
k =

1

πn!
β(

1

2
,
1

2
+ n)

(
2a

ω

)n

(m+1)H(2m)

([
1, 1

2m
+ n

m
, 3
2m

+ n
m
, . . . , 2m−1

2m
+ n

m
1+n
m

, 1+n
m

, 2+n
m

, 2+n
m

, . . . , m+n
m

, m+n
m

]

, λ

(
2a

ωm

)m)

.

If u(t) = a cosωt, the generating function for m even is

+∞∑

k=0

Umk+nλ
k = 0 ,

+∞∑

k=0

Umk+nλ
k =

1

Γ
(
1 + n

2

)2

( a

2ω

)n

(1)H(m)

([
1

2+n
m

, 2+n
m

, 4+n
m

, 4+n
m

, . . . , m+n
m

, m+n
m

]

, λ
( a

mω

)m
)

,

for n odd and even respectively; and form odd we compute

+∞∑

k=0

Umk+nλ
k =

1

Γ
(
1 + m+n

2

)2
λ
( a

2ω

)m+n

(1)H(2m)

([
1

2+m+n
2m

, 2+m+n
2m

, . . . , 3m+n
2m

, 3m+n
2m

]

, λ2
( a

2mω

)2m
)

,

+∞∑

k=0

Umk+nλ
k =

1

Γ
(
1 + n

2

)2

( a

2ω

)n

(1)H(2m)

([
1

2+n
2m

, 2+n
2m

, 4+n
2m

, 4+n
2m

, . . . , 2m+n
2m

, 2m+n
2m

]

, λ2
( a

2mω

)2m
)

,

for n odd and even respectively.

The simplest example of Lemma IV.4 is (p, q) = (1, 0).
Accordingly,

F sin(x) = f(x)

(

e(
aλ
ω )I0

(
aλ

ω

))

, F cos(x) = f(x) I0

(
aλ

ω

)

,

where I0 denotes the modified Bessel function of the first
kind. Another case which we will use later is (p, q) = (4, 2),

F sin(x) = f(x) +
a

ω
adg f

+
1

λ
ad2g f

(

−1 + I0

(

a
√
λ

ω

)

cosh

(

a
√
λ

ω

))

+
1

λ
√
λ
ad3g f

(

− a
ω

√
λ+ I0

(

a
√
λ

ω

)

sinh

(

a
√
λ

ω

))

,

F cos(x) = f(x) +
1

λ
ad2g f

(

−1 + I0

(

a
√
λ

ω

))

.

V. On stabilization via oscillatory controls

In this section we discuss the problem of stabilization of
the nonlinear system γ̇(t) = f(γ(t)) by means of highly
oscillatory controls of the form (1/ε)u (t/ε) g(γ(t)). The
starting point is the result in Theorem III.2 about the ex-
istence of hyperbolically stable periodic orbits for γ̇(t) =
f(γ(t)) provided an hyperbolically stable equilibrium of
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F exists. In some cases, we shall prove asymptotic sta-
bility for the original equilibrium point (this is what was
termed as t-stabilizability in [38]) and in some others we
shall prove that the equilibrium bifurcates to an asymptot-
ically stable periodic orbit contained in an O(ε)-neighbor
(v-stabilizability in [38]).

We start by studying whether the origin is an equilibrium
point for the averaged system. We say that a vector field
h : Rn → TRn, h(x) = (x, h̃(x)) is odd (resp. even) iff
h̃(x) = −h̃(−x) (resp. h̃(x) = h̃(−x)).
Lemma V.1 (Equilibrium points) The origin is an equi-

librium point of the averaged system, F (0) = 0, if either of
the following conditions are satisfied:
(i) f(0) = g1(0) = · · · = gm(0) = 0,
(ii) f(0) = 0 and f is odd, gj is even for all 1 ≤ j ≤ m,
there exists i such that gi(0) 6= 0, and the odd multinomial
iterated averages of the inputs vanish, i.e., Uk1,...,km = 0
whenever k1 + · · ·+ km is odd.

Proof: In case (i), one can prove recursively that

adk1
g1 . . . ad

km
gm f(0) = 0 , k1, . . . , km ≥ 0 ,

and hence F (0) = 0. To see (ii), consider the (k1, . . . , km)-
th term Uk1,...,km adk1

g1 . . . ad
km
gm f in the expansion of F . If f

is odd and gj is even for all j, the vector field adk1
g1 . . . ad

km
gm f

is odd whenever k1 + · · · + km is even. Accordingly, each
term Uk1,...,km adk1

g1 . . . ad
km
gm f is either odd or it vanishes.

Therefore, F is an odd function, and F (0) = 0.
Next, we study the linearization of the averaged system.
Proposition V.2: Assume f(0) = g1(0) = · · · = gm(0) =

0. At the origin, the linearization of the averaged system
equals the average of the linearized system.

Proof: We prove it for the single input setting. Let
f =

∑+∞
i=1 f

[i], g =
∑+∞

i=1 g
[i] be the Taylor expansions

around x = 0 of f and g. Accordingly, f [i], g[i] ∈ Hi and

adkg f =

+∞∑

j=1
i1,...,ik=1

adg[i1] . . . adg[ik] f [j] = adkg[1] f
[1] + h ,

where h is an infinite sum of homogeneous polynomials of
degree ≥ 2. Consequently,

∂

∂x

(

adkg f
)

(0) = adk∂g
∂x (0)

∂f

∂x
(0) ,

where one adjoint operator is a Lie bracket and the other
a matrix commutator. This implies that the linearization
of the averaged system is equal to

∂F

∂x
(0) =

∂f

∂x
(0) +

+∞∑

k=1

Uk ad
k
∂g
∂x (0)

∂f

∂x
(0) ,

which is the average of the linearized system (see the pre-
vious section of bilinear systems).

Note that the setting of bilinear systems (cf. Section IV-
B) is very important as it represents the linearization of
the average of any nonlinear system with f(0) = g1(0) =
· · · = gm(0) = 0.

Corollary V.3: Let f(0) = g1(0) = · · · = gm(0) = 0.
If the trace of the linearization of the drift vector field f
is positive, then the averaged system is unstable for any
oscillatory control law.

Proof: Since tr(adC D) = 0 for any matrix C, D,

tr

(
∂F

∂x
(0)

)

= tr





+∞∑

k1,...,km≥0

Uk1,...,km

adk1
∂g1
∂x (0)

. . . adkm∂gm
∂x (0)

∂f

∂x
(0)

)

= tr

(
∂f

∂x
(0)

)

> 0 ,

and therefore the averaged system is unstable.

The corollary is a generalization in two directions of the
result in [38] about the stabilizability of the system (17)
by linear multiplicative vibrations. First, we do not re-
quire ∂f

∂x (0) to be nonderogatory. Recall that a matrix is
nonderogatory if its eigenvalues have geometric multiplic-
ity equal to one [49]. Second, we consider general nonlinear
systems and vibrations. Next, we present a classical result
on stabilization by means of oscillatory controls.

Proposition V.4: Consider the nonlinear system γ̇(t) =
f(γ(t)), with f(0) = 0. If A = ∂f/∂x(0) is nonderogatory
and trA < 0, then there exist commuting linear vector
fields {g1, . . . , gn−1} and oscillatory controls {u1, . . . , un−1}
such that the origin is locally asymptotically stable for

γ̇(t) = f(γ(t)) +
1

ε

n−1∑

i=1

ui

(
t

ε

)

gi(γ(t)) . (21)

Proof: The proof goes along the lines of [37], [38]. As-
sume A is in companion form (otherwise, we first perform
a change of coordinates). This means that

A =










0 1 0 . . . 0
0 0 1 . . . 0

...
0 . . . . . . 0 1
an an−1 . . . a2 a1










= Com(an, . . . , a2, a1) .

Let i ∈ {1, . . . , n− 1} and consider the linear vector fields

gi(x) = Enix ,

where Eni is the matrix which has a 1 in the row n and
column i and zero otherwise. Since EniEnj = 0, for all
i, j ∈ {1, . . . , n − 1}, the input vector fields commute and
the result in Proposition IV.1 applies. Furthermore, the
only non-vanishing second order commutators are

ad2En(n−1)
A = −2En(n−1) ,

adEnj
adEn(n−1)

A = −Enj ,
(22)

for j < n− 1 and therefore the linearized averaged system
is again in companion form. Taking the input functions
ui = ri cos(ωt), the first averages U (i) vanish, and from
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Proposition IV.1 we have that A = ∂F
∂x (0) equals

A− 2U (n−1,n−1)En(n−1) −
n−2∑

i=1

(U (i,n−1) + U (n−1,i))Eni

= Com

(

an −
r1rn−1
2ω2

, . . . , a2 −
r2n−1
2ω2

, a1

)

,

where in the last equality we have used the result in
Lemma II.1 and the equality (3). By assumption tr(A) =
a1 < 0. Let λi denote the ith eigenvalue of A, define

λ̄i =
a1
n

+ jImλi ,

and the Hurwitz polynomial (x − λ̄1) . . . (x − λ̄1) = xn +
ā1x

n−1+ · · ·+ ān−1x+ ān. Note that ā1 = a1 and ā2 ≤ a2.
Now, it is clear that there exists an appropriate selection
of the amplitudes ri that makes A = Com (ān, . . . , ā2, a1).
Therefore the origin is locally asymptotically stable for the
averaged system. From Theorem III.2, we know that equa-
tion ζ̇(t) = F (t/ε, ζ(t)) possesses a unique (asymptotically
stable) periodic orbit ζp(t) in a O(ε)-neighbourhood of the
origin. Since ζ(t) = 0 is trivially periodic, we deduce that

ζp(t) = 0, and finally γ(t) = Φ
g(t,x)
0,t/ε (0) = 0 is a locally

asymptotically stable equilibrium point for equation (21).

An interesting observation is that systems with posi-
tive trace may be stabilized by means of vibrations g with
g(0) 6= 0: the example in [50] is a linear system γ̇(t) =
Aγ(t), with tr(A) > 0 and a control input g = g[0] + g[2],
g[0] ∈ H0, g

[2] ∈ H2. Here, we give the following result.

Proposition V.5: Consider the linear system γ̇(t) =
Aγ(t), and let A be a nonderogatory matrix with trA > 0.
Then, there exist a nonlinear vector field gnl, commut-
ing vector fields {g1, . . . , gn−1} and controls {u1, . . . , un−1}
such that the equilibrium x = 0 of the linear system be-
comes an asymptotically stable periodic orbit contained in
an O(ε) neighborhood of the origin for the equation

γ̇(t) = Aγ(t) + gnl(γ(t)) +
1

ε

n−1∑

i=1

ui

(
t

ε

)

gi(γ(t)) .

Proof: Assume A is in companion form. Let

gnl(x) = f [3](x) = (0, . . . , 0, bx31 + cx21xn) ∈ H3.

For i ∈ {2, . . . , n− 1}, define the commuting vector fields

g1(x) = (1, 0, . . . , 0) ∈ H0 , gi(x) = Enix ∈ H1 ,

and the controls ui = ri cos(ωt). The averaged system is

F (x) =

+∞∑

k1,...,km=0

Uk1,...,km adk1
g1 . . . ad

km
gm (Ax+ f [3])

We first verify that the origin is an equilibrium point for
the averaged system. Because of homogeneity arguments,

the 0th order term in F is

F (0) =

+∞∑

k2,...,km=0

(

U1,k2,...,km adk2
g2 . . . ad

km
gm (adg1 Ax)

+U3,k2,...,km adk2
g2 . . . ad

km
gm

(

ad3g1 f
[3]
))

x=0
.

Since adgi adg1 Ax = 0 and adgi ad
3
g1 f

[3](x) = 0 for all
i, j ∈ {2, . . . , n− 1},

F (0) = U1,0,...,0 adg1 Ax+ U3,0,...,0 adg1 f
[3] = 0 ,

where in the last equality we have used equation (3). With
regards to the linearization of F , we have that

A =
∂F

∂x
(0) =

+∞∑

k2,...,km=0

(

U0,k2,...,km adk2
g2 . . . ad

km
gm Ax

+U2,k2,...,km adk2
g2 . . . ad

km
gm

(

adg1 f
[3]
))

x=0
.

The first term is computed as in the previous proposition
via equation (22). As for the second one, note that

ad2g1 f
[3] = (0, . . . , 6bx1 + 2cxn) , adgi adgj f

[3] = 0 ,

adgi ad
2
g1 f

[3] = (0, . . . , 2cxi) , i, j ∈ {2, . . . , n− 1} .

Using again equation (3), we conclude that A is also in
companion form. Indeed, A equals

Com

(

an +
3br21
2ω2

, an−1 −
r2rn−1
2ω2

, . . . , a2 −
r2n−1
2ω2

, a1 +
cr21
2ω2

)

.

Selecting c < −a1ω2/r21, we get trA < 0. Then, an ap-
propriate choice of b, r1, . . . , rn−1 makes A Hurwitz. This
implies that the origin is asymptotically stable for F . The
application of Theorem III.2, ii) concludes the proof.
Remark V.6: In summary, stabilization has been achieved

building on strong nilpotency assumptions of the type
BiBj = 0. The less restrictive nilpotency properties dis-
cussed in Section IV-F may also be instrumental to provide
alternative stabilization schemes. The interesting observa-
tion is that the full series expansion is taken into account,
not just a truncated version. Consider the bilinear sys-
tem on R2, γ̇(t) = Aγ(t) + (1/ε)u(t/ε)Bγ(t). Assume A is
diagonal and tr(A) < 0. Let A = A1 +A2, with

A1 =

(
tr(A)/2 0

0 tr(A)/2

)

, A2 =

(
α 0
0 −α

)

.

Note that A1 is a stable matrix. Let B =

(
0 1/2
−1/2 0

)

,

and compute

ad2B A = −A2 , ad4B A = A2 = − ad2B A .

Let u = a cosωt and, following Lemma IV.4 with (p, q) =
(4, 2), compute

F (x) = (A1 +A2)x− ad2B A
(

−1 + I0

( a

ω

√
−1
))

x

=
(

A1 +A2I0

( a

ω

√
−1
))

x .
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The modified Bessel function with imaginary arguments
possesses an infinite number of positive zeros. The smallest
z1 ∈ R+ such that I0(z1

√
−1) = 0 is an irrational number

belonging to the interval [2.424, 2.425]. Therefore, the av-
eraged system is asymptotically stable provided the input
parameters satisfy a = z1ω.

VI. On tracking via oscillatory controls

We present an application of our averaging analysis to
the problem of trajectory tracking via oscillatory controls.
We consider the tracking problem for second order sys-
tems, and we design control laws inspired by the inversion
algorithm in [51]. In what follows, let i, j, k take values in
{1, . . . ,m} unless otherwise stated. Consider the system

γ̈(t) + f1(γ(t))γ̇(t) + f0(γ(t)) =
∑

i

wi gi(γ(t)) , (23)

and the next tracking problem: given a desired smooth
curve γd : [0, T ]→ Rn with initial conditions γd(0) = γ(0),
γ̇d(0) = γ̇(0), find controls wi : R2n×[0, T ]→ Rm such that
the solution γ of (23) approximates γd up to O(ε)-errors.

We make the following controllability assumption:
span{gi , 〈gj : gk〉} is full rank, and 〈gj : gj〉 belongs to
span{gi}. Accordingly,
(i) there exist functions zdi , z

d
jk : [0, T ]→ R, j < k, with

γ̈d(t) + f1(γ
d(t))γ̇d(t) + f0(γ

d(t))

=
∑

i

zdi gi(γ
d(t)) +

∑

j<k

zdjk〈gj : gk〉(γd(t)) ,

(ii) there exist smooth functions αij : Rn → R such that

〈gi : gi〉(x) =
∑

j

αij(x)gj(x) , ∀x ∈ Rn .

There are N = m(m − 1)/2 pairs of integers (j, k), with
j < k. Let (j, k) 7→ a(j, k) ∈ {1, . . . , N} be a enumeration
of these pairs, and define the scalar functions

ψa(j,k)(t) =
√
2 a(j, k) cos(a(j, k)t) .

Proposition VI.1: Let xd : [0, T ] → Rn be a desired
curve with initial conditions xd(0) = x(0), ẋd(0) = ẋ(0).
The solution x to equation (23) equals xd up to an error of
order ε over the time scale 1 when the control laws wi are

wi = vi(t, x) +
1

ε
ui

(
t

ε
, t

)

,

vi(t, x) = zdi (t) +
1

2

∑

j

αji(x)



j − 1 +
m∑

`=j+1

(zdj`(t))
2



 ,

ui(τ, t) = −
i−1∑

`=1

ψa(`,i)(τ) +
m∑

`=i+1

zdi`(t)ψa(i,`)(τ) .

Proof: The control system (23) is written as

γ̈(t) + f1(γ(t))γ̇(t) + f0(γ(t)) =

∑

i

vi(t, γ(t))gi(γ(t)) +
1

ε

∑

i

ui

(
t

ε
, t

)

gi(γ(t)) ,

and, according to Proposition IV.3, its averaged system is

η̈(t) + f1(η(t))η̇(t) + f0(η(t)) =
∑

i

vi(t, η(t))gi(η(t))

+
∑

i

(
1

2
U
2

(i)(t)− U (i,i)(t)

)

〈gi : gi〉(η(t))

+
∑

i<j

(
U (i)(t)U (j)(t)− U (i,j)(t)− U (j,i)(t)

)
〈gi : gj〉(η(t)) ,

with initial conditions (η(0), η̇(0)) = (γ(0), γ̇(0) +
∑

i U (i)(0)gi(γ(0)). We compute the iterated integrals of
the given oscillatory inputs ui as

U (i)(t) =
1

T

∫ T

0

ui(τ, t)dτ = 0 ,

U (i,j)(t) + U (j,i)(t) = U(i)U(j)(t)

=
1

T

∫ T

0

(∫ τ

0

ui(s, t)ds

)(∫ τ

0

uj(s, t)ds

)

dτ = −zdij(t) ,

for i < j, so that the averaged system reads

η̈(t) + f1(η(t))η̇(t) + f0(η(t)) =
∑

i

vi(t, η(t))gi(η(t))

−
∑

i

U (i,i)(t)〈gi : gi〉(η(t)) +
∑

i<j

zdij(t)〈gi : gj〉(η(t)) .

Next, we examine the definition of the vi inputs. Note that

U (j,j)(t) =
1

2T

∫ T

0

(∫ τ

0

uj(s, t)ds

)2

dτ

=
1

2



j − 1 +

m∑

`=j+1

(zdj`(t))
2





and therefore
∑

i

vi(t, x)gi(x) =
∑

i

zdi (t)gi(x) +
∑

i,j

U (i,i)(t)αij(x)gj(x)

=
∑

i

zdi (t)gi(x) +
∑

i

U (i,i)(t)〈gi : gi〉(x)

where we have exploited the property of the functions αij .
In summary, we have shown that

η̈(t) + f1(η(t))η̇(t) + f0(η(t))

=
∑

i

zdi gi(η(t)) +
∑

i<j

zdij〈gi : gj〉(η(t)) ,

with η(0) = γd(0) , η̇(0) = γ̇d(0). Since η and γd are the
solution to the same initial value problem, they are iden-
tical. Finally, from Proposition IV.3, we conclude that
γ(t) = η(t) +O(ε) = γd(t) +O(ε).
Remark VI.2 (Lagrangian systems on manifolds)

Proposition VI.1 can be extended to a large class of La-
grangian control systems and written in a coordinate-
free setting within the so-called affine connection formal-
ism [27], [52]. Let q be the system’s configuration on the n-
dimensional manifold Q, and let {Γabc, a, b, c ∈ {1, . . . , n}}
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be the n3 Christoffel functions associated to the system’s
kinetic energy. Define the operation of symmetric product
between the vector fields gi, gj on Q according to

〈gi : gj〉a =
∂gai
∂qb

gbj +
∂gaj
∂qb

gbi + Γabc
(
gbi g

c
j + gci g

b
j

)
,

and define the quantity (∇q̇ q̇)a = q̈a + Γabc(q)q̇
bq̇c. Then,

the Euler-Lagrange equations read

∇q̇ q̇ + f1(q)q̇ + f0(q) =
∑

i

wigi(q) .

Under a controllability assumption analogous to the previ-
ous one, the result in Proposition VI.1 holds verbatim.

We end this section by considering two examples.

A second-order nonholonomic integrator

There are many interesting dynamical extensions of
Brockett’s nonholonomic integrators [53] (see the discus-
sion in [43]). We consider

ẍ1 = w1 , ẍ2 = w2 , ẍ3 = w1x2 + w2x1 ,

and note that this system fulfills the controllability assump-
tion (A). We design control inputs to track a desired tra-
jectory, (xd1(t), x

d
2(t), x

d
3(t)), following Proposition VI.1,

w1 = ẍd1 +
1√
2ε

(
ẍd3 − ẍd1xd2 − ẍd2xd1

)
cos

(
t

ε

)

w2 = ẍd2 −
√
2

ε
cos

(
t

ε

)

(24)

An illustration of the performance of these controls is
shown in Figure 2.
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Fig. 2. Tracking for the modified nonholonomic integrator with the
controls defined in equation (24) and with ε = .05.

A PVTOL model

We consider the model of a simple planar vertical take-
off and landing aircraft model based upon that of [54]
with added viscous damping forces; see Figure 3. We
parametrize its configuration and velocity space via the
state variables (x, z, θ, vx, vz, ω). We let x and z be the
horizontal and vertical displacement of the aircraft, and θ
be its roll angle. The angular velocity is ω and the linear

�

�
�

���

���
	���� ������
� �

������
� �

Fig. 3. Diagram of the PVTOL model.

velocities in the body-fixed x (respectively z) axis are vx
(respectively vz). The equations are written as:

ẋ = cos θvx − sin θvz

ż = sin θvx + cos θvz

θ̇ = ω (25)

v̇x = (−k1/m)vx − g sin θ + vzω + (1/m)w2

v̇z = (−k2/m)vz − g(cos θ − 1)− vxω + (1/m)w1

ω̇ = (−k3/J)ω + (h/J)w2

Control w1 corresponds to the body vertical force minus
gravity, while w2 corresponds to coupled forces on the
wingtips with a net horizontal component. The other forces
depend upon the constants ki, which parameterize a linear
damping force, and g, the gravity constant. The constant h
is the distance from the center of mass to the wingtip, while
m and J are mass and moment of inertia, respectively.

Equations (25) can be written as a second order system
in the variables (x, z, θ) and the model fulfills the control-
lability assumption (A). We design control inputs to track
a desired trajectory (xd(t), zd(t), θd(t)) as

w1 =
J

h
θ̈d +

k3
h
θ̇d −

√
2

ε
cos

(
t

ε

)

w2 =
h

J
− f1 sin θd + f2 cos θ

d

− J
√
2

hε

(
f1 cos θ

d + f2 sin θ
d
)
cos

(
t

ε

)

, (26)

where we let c = J
h θ̈

d + k3

h θ̇
d and

f1 = mẍd +
(
k1 cos

2 θd + k2 sin
2 θd
)
ẋd

+
sin(2θd)

2
(k1 − k2)żd +mg sin θd − c cos θd ,

f2 = mz̈d +
sin(2θd)

2
(k1 − k2)ẋd +

(
k1 sin

2 θd

+k2 cos
2 θd
)
żd +mg(1− cos θd)− c sin θd .

The simulations are run with m = 20, J = 10, h = 5,
k1 = 12, k2 = 11, k3 = 10, g = 9.8. Figure 4 shows an
example of the behavior of the controls (26). Figure 5 il-
lustrates the linear decay of the tracking error. Finally,
Figure 6 shows how the convergence to the desired trajec-
tory improves as ε decreases.
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Fig. 4. Tracking for the PVTOL model with the controls defined in
equation (26) and with ε = .01.
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Fig. 5. Illustration of the tracking errors for the PVTOL model at
t = 10 with the controls defined in equation (26).

VII. Conclusions

We have presented a novel and comprehensive
coordinate-free averaging analysis for control systems sub-
ject to oscillatory inputs. Based on the analysis, we have
developed design methodologies for stabilization and tra-
jectory tracking in certain classes of nonlinear systems.

Future directions of research include deriving extensions
of these results to the case of higher-order averaging, dis-
tributed parameter systems, time-delayed systems, and
systems with resonances.
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