
On mechanical control systems with nonholonomic constraints

and symmetries 1

Francesco Bullo a

aCoordinated Science Laboratory and General Engineering Department
University of Illinois at Urbana-Champaign, 1308 W. Main St, Urbana, IL 61801

Tel: (+1) 217 333 0656, Fax: (+1) 217 244 1653, Email: bullo@uiuc.edu
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Abstract

This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and

the affine connection describing a class of Lagrangian systems. We consider mechanical systems endowed with symmetries and

subject to nonholonomic constraints and external forces. The method is demonstrated on two robotic locomotion mechanisms

known as the snakeboard and the roller racer. The resulting coordinate representations are compact and lead to straightforward

proofs of various controllability results.
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1 Introduction

Over the past few years a wealth of geometric structure

of Lagrangian systems subject to symmetries and con-

straints was uncovered through the study of robotic

locomotion and manipulation [2]. For example, a me-
chanical device called the snakeboard illustrates the

dynamical interplay between the nonholonomic con-
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straints and symmetries [13,15]. A system that portrays

similar dynamical issues is the roller racer described

in [8,9]. Other related works on nonholonomic systems
include [3,18,16,7].

Systems with constraints, external forces and sym-

metries can be described by a so-called constrained
affine connection. An early contribution in this direc-
tion is the work of Synge [17]. Vershik [19], Bloch

and Crouch [1] and Lewis [10,11] present various ver-

sions of constrained affine connections, investigate

Lagrangian reduction of the equations of motion, and

provide a coordinate-free treatment of various proper-
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ties of this object. We base this paper on the treatment

in [10,11]. The formalism of affine connections is par-

ticularly useful for nonlinear controllability analysis,

studies in vibrational control, and motion planning.
In particular, Lewis et al. [12] characterize a variety of

controllability notions, including controllability and

configuration controllability, whereas Bullo et al. [4,5]

present a perturbation analysis for systems subject to

small amplitude or oscillatory forces and apply this

analysis to design motion planning algorithms.

This paper provides novel, computationally efficient

tools for analyzing systems with constraints, external

forces and symmetries. We present efficient formulas

(1) to compute the Christoffel symbols of constrained

affine connections, and (2) to determine the effect of

external forces while properly taking into account the
system’s symmetries. These formulas lead to simpli-

fied versions of the equations of motion and of the

controllability computations. In particular, we present

a concise, complete and straightforward treatment of

the snakeboard and roller racer examples.

2 Simple mechanical control systems

A robotic manipulator with generalized forces applied

at its joints is an example of a simple mechanical con-
trol system. More generally, a simple mechanical con-

trol system can be formally described by the following

objects:

(i) an n-dimensional configuration manifold Q with

coordinate system
�
q1, . . . , qn � ,

(ii) an inertia tensor M � �
Mi j

� describing the ki-

netic energy and defining an inner product ����� , ���	�
between vector fields on Q, and

(iii) m one-forms F1, . . . , Fm, describing m external con-
trol forces.

The Christoffel symbols
��
 i

jk : i, j, k � �
1, . . . , n ��� of

the inertia tensor M are defined by
 i
jk � 1

2
M  i � ∂M  j

∂qk � ∂M  k
∂q j � ∂Mk j

∂q �� , (1)

where M  i are the components of M � 1 (the summa-

tion convention is assumed throughout the paper). All

relevant quantities are assumed to be smooth. In coor-

dinates the equations of motion are

q̈k � 
 k
i jq̇

i q̇ j � m

∑
a � 1

Mk j � Fa � jua , (2)

where � Fa � j is the jth component of Fa.

To formulate these equations in a coordinate-free set-

ting, it is useful to introduce some geometric concepts;

see [6]. Given two vector fields X and Y, the covariant
derivative of Y with respect to X is the vector field � XY
with coordinates

� � XY � i � ∂Yi

∂q j X j � 
 i
jkX jYk ,

where Xi and Yi are the ith and jth component of X
and Y. The operator � is called an affine connection
and it is determined by the functions


 i
jk. When these

functions are computed according to equation (1), the
affine connection is called Levi-Civita.

Let � X f be the Lie derivative of a scalar function f
with respect to the vector field X. Given a scalar func-

tion f , its gradient grad f is the unique vector field

defined implicitly by

�	� grad f , X �	����� X f .

Given a one-form F, the vector field M � 1F is defined

implicitly by � F , X �����	� M � 1F , X �	� . The equations of

motion (2) can be written in a coordinate-free fashion

as

� q̇ q̇ � m

∑
a � 1

� M � 1Fa � ua . (3)

3 Systems with constraints, external forces, and
symmetries

Rolling without sliding is a constraint on the system’s

velocity which cannot be written as a constraint on the
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system’s configuration. A non-integrable constraint of

this sort is called nonholonomic and can be written as

� ω , q̇ � � 0 ,

whereω is a constraint one-form, and ��� , � � is the natu-

ral pairing between tangent and cotangent vector fields
on Q.

A simple mechanical control system subject to nonholo-
nomic constraints is described by a manifold, an in-

ertia tensor, m input forces, and a collection of con-
straint one-forms

�
ω1, . . . ,ωp

� . The annihilator of

span
�
ω1, . . . ,ωp

� is the � n � p � -dimensional distri-

bution of feasible velocities that we call the constraint
distribution

�
.

3.1 Coordinate-free expressions for the equations of motion

Let P : TQ � �
denote the orthogonal projection onto�

. Orthogonality is taken with respect to the inertia

tensor M. Let
���

denote the orthogonal complement

to
�

with respect to M and let P
� � I � P, where I

is the identity map. The Lagrange-d’Alembert princi-

ple [14] leads to the equations of motion

� q̇ q̇ � λ � m

∑
a � 1

� M � 1Fa � ua

P
� � q̇ � � 0 ,

(4)

where λ � ���
is the Lagrange multiplier enforcing

the constraints. Define the covariant derivative of the
tensor P

�
along the vector field X as

� � XP
��� � Y � � � X

�
P
� � Y � � � P

� � � XY � .

Lemma 3.1 (Constrained affine connection [11]) The
equations of motion (4) can be written as

�� q̇ q̇ � m

∑
a � 1

� PM � 1Fa � ua , (5)

where
�� is the affine connection given by

�� XY � � XY � � � XP
��� � Y � , (6)

for all vector fields X and Y. Furthermore, for all Y � � :

�� XY � P � � XY � . (7)

Equation (7) makes it possible to efficiently compute
the constrained affine connection

�� without covari-

antly differentiating the orthogonal projection P
�

.

3.2 Coordinate expressions for the equations of motion

Given a basis of vector fields
�
X1, . . . , Xn

� on Q, we

introduce the generalized Christoffel symbols of � as

� Xi X j � 
 k
i jXk .

We are now ready to state the main result of the paper.

Theorem 3.2 Let
�
X1, . . . , Xn � p

� be an orthogonal basis
of vector fields for

�
. The generalized Christoffel symbols of�� are

� 
 k
i j � 1	

Xk
	

2 ��� � Xi X j , Xk �	� ,

and the equations of motion (5) read

v̇k � � 
 k
i jv

iv j � m

∑
a � 1

Yk
a ua ,

where vi are the components of q̇ along
�
X1, . . . , Xn � p

� ,
i.e., q̇ � viXi, and where the coefficients of the control forces
are

Yk
a � 1	

Xk
	

2 � Fa , Xk � .

Furthermore, if the control forces are differential of func-
tions, that is, if Fa � dϕa for some a � �

1, . . . , m � , then
Yk

a � 1

Xk



2 � Xkϕa.

PROOF. We compute

�� q̇ q̇ � �� q̇
� viXi � � v̇iXi � vi

� �� q̇Xi
�

� v̇iXi � viv j
�� X j Xi ,
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and the inner product with Xk as

�	� Xk ,
�� q̇ q̇ ��� � v̇i �	� Xk , Xi ��� � viv j �	� Xk ,

�� X j Xi �	�� v̇k 	 Xk
	 2 � viv j �	� Xk ,

�� X j Xi �	� ,

where we used the equality ��� Xk , Xi ��� � 0 for all k �� i.
From equation (7) we further simplify:

�	� �� Xi X j , Xk �	������� P � Xi X j , Xk ��� � �	� � Xi X j , Xk ��� .

A similar simplification takes place when computing

the effect of control forces:

��� Xk , P � gradϕa � ��� � �	� Xk , gradϕa ��� � � Xkϕa .

The usual definition of Christoffel symbols requires
the basis

�
X1, . . . , Xn

� to be of the form Xi � ∂ � ∂qi

for some coordinate system
�
q1, . . . , qn � . Only under

this assumption the velocity variables vi satisfy the

usual relationship vi � q̇i. In general, the equality

q̇ � viXi
� q � in Theorem 3.2 is a nontrivial kinematic

equation, and the components vi are sometimes re-

ferred to as pseudo-velocities, as they do not corre-
spond to the time derivative of any configuration vari-

able. For example, when no constraints are present and

the configuration space is the group itself, the equa-

tions of motion in Theorem 3.2 coincide with the clas-

sic Euler-Poincarè equations; see [2,14].

Theorem 3.2 leads to remarkable simplifications in

computing the Christoffel symbols of a constrained
affine connection. First of all, the formulas in the

theorem do not require knowledge of the orthogo-

nal projection P nor of the covariant derivative � P
�

.

Since the tensor � P
�

is a complex object to com-

pute and simplify symbolically, this is a considerable

simplification over the procedure in [11] that directly

uses equation (6). Furthermore, our approach relies
on computing the generalized Christoffel symbols of�� only over the constraint distribution

�
as opposed

to the whole space TQ. Finally, the computation of

Christoffel symbols and control coefficients can be

further simplified by properly accounting for group

actions and symmetries; we discuss this topic in the

next section.

3.3 Invariance under group actions

We start by reviewing some basic definitions from [6,15].

Let G be a Lie group with identity element e. A map�
: Q � G � � Q;

� � q, g � � �
g
� q � is a (left) group action

on Q if it satisfies
�

e
� q � � q and

�
g1

�
g2
� q � � �

g1g2
� q �

for all q � Q and g1, g2 � G. We let Tq
�

g denote the

tangent map to
�

g.

Given a group action on Q, a scalar function f is in-
variant if f � � g

� q � � � f � q � for all q � Q and g � G. For

simplicity, we shall neglect the argument q, and write
f � � g � f . A vector field X is invariant if X � � g �
T
�

g � X for all g � G. A one-form ω is invariant

if � ω , X � is an invariant function for any invariant

vector field X. An metric tensor M, or equivalently

the inner product �	��� , � ��� , is invariant if ��� X , Y �	� ���� T � g � X , T
�

g � Y ����� � g, for all g � G and for all X
and Y tangent vectors at q. Finally, a simple mechanical
control systems subject to nonholonomic constraints is

invariant if its inertia tensor, its input forces, and con-

straint one-forms are invariant.

Lemma 3.3 Consider an simple mechanical control sys-
tems subject to nonholonomic constraints and invariant un-
der a group action. Select a base of invariant vector fields�

X1, . . . , Xm
� for the constraint distribution. Then the cor-

responding generalized Christoffel ˜
 k
i j and control force co-

efficients Yk
a are invariant functions.

PROOF. The key notion is that invariance is preserved
under natural operations on a manifold. For example,

the inner product of invariant vector fields X and Y is

an invariant function:

��� X , Y �	��� � g ���	� T � g � 1 � X � � g , T
�

g � 1 � Y � � g �	�����	� X , Y �	� .

Similarly, one can prove that Lie derivative of

an invariant function along an invariant vector
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field is invariant, and that the Levi-Civita connec-

tion of an invariant system is invariant, that is� � T � g � X � � T � g � Y � � T
�

g � � XY for all vector fields

X and Y and for all g � G. In summary, the gen-
eralized Christoffel symbols and the control forces

coefficients are invariant functions since their cor-

responding equalities in Theorem 3.2 involve only

natural operations on a manifold (inner products, Lie

and covariant derivatives of invariant quantities).

4 The snakeboard

�
��

�
��

	
Fig. 1. The snakeboard is a modified skate-board where the

angles of the front (top-right) and back (bottom-left) wheels

are free to rotate. The absolute angle of the front wheels is

θ 
 φ, the angle of the back wheels is θ � φ.

We study the snakeboard system presented in [13],
see Figure 1. The configuration manifold SE � 2 � �� 2

is the Cartesian product of the group of planar dis-

placements and a torus. In coordinates we write q ��
x, y,θ,ψ,φ � , where � x, y � is the location of the sys-

tem’s center of mass, θ is the angle of the main body

relative to the horizontal axis, ψ is the relative angle

between the main body and the rotor, andφ is the rela-
tive angle between the main body and the back wheel.

The inertia tensor is

M �
��������������
�

m 0 0 0 0

0 m 0 0 0

0 0 � 2m Jr 0

0 0 Jr Jr 0

0 0 0 0 Jw

���������������
�

and therefore the Christoffel symbols of the Levi-Civita

connection � all vanish,

 k

i j � 0. The system is subject

to two control inputs: a torque uψ that controls the an-

gleψ, and a torque uφ controlling the angleφ. The loca-
tion of front wheel is � xfront, yfront � � � x � � cosθ, y �� sinθ), and a similar relationship holds for the back

wheel. The non-slip constraints are

ẋfront sin � θ � φ � � ẏfront cos � θ � φ � � 0

ẋback sin � θ � φ � � ẏback cos � θ � φ � � 0 ,

which can be expressed via the one-forms

ω1 � sin � φ � θ � dx � cos � φ � θ � dy � � cosφdθ

ω2 � � sin � φ � θ � dx � cos � φ � θ � dy � � cosφdθ.

We refer to [15,11] for more details on the assumptions

in this model.

4.1 An orthogonal basis for the feasible velocities

We start by introducing the convenient vector fields

Vx � cosθ
∂

∂x � sinθ
∂

∂y

Vy � � sinθ
∂

∂x � cosθ
∂

∂y
.

(8)

They are motivated by the SE � 2 � symmetry and de-

scribe body fixed translation along the x and y body

fixed axis. The set of feasible velocities is generated by

the three vector fields

X1 ��� � cosφ � Vx � � sinφ � ∂
∂θ

,

X �2 � ∂
∂ψ

, X �3 � ∂
∂φ

.

Note that X �3 is perpendicular to X1 and X �2. A direct
way of computing an orthogonal basis

�
X1, X2, X3

�
from the basis

�
X1, X �2, X �3 � is to define

X2 � X �2 � �	� X �2 , X1 ����	� X1 , X1 ��� X1 , (9)

and X3 � X �3. After a rescaling step, X2 becomes

X2 � Jr

m � � cosφ sinφ � Vx � Jr

m � 2
� sinφ � 2 ∂

∂θ � ∂
∂ψ

.
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These vector fields have the following physical in-

terpretation: X1 describes the instantaneous rotation

when the internal angles
�
ψ,φ � are fixed, while�

X �2, X �3 � correspond to changes in the internal angles.

4.2 The equations of motion

We use the results in Theorem 3.2 to obtain the equa-

tions of motion in coordinates. 2 The required compu-

tations are performed with a symbolic manipulation

package. The only non-vanishing Christoffel symbols
are

� 
 1
32 � Jr

m � 2 cosφ ,
� 
 2

31 � � m � 2 cosφ
m � 2 � Jr

� sinφ � 2 ,

� 
 2
32 � � Jr

� cosφ sinφ �
m � 2 � Jr

� sinφ � 2 .

The next step is to compute how the two inputs come

into the equations. All relevant Lie brackets vanish,

except for � X2ψ � 1, and � X3φ � 1. We also compute

the two norms

	
X2
	 2 � Jr � J2

r
� sinφ � 2
m � 2 ,

	
X3
	 2 � Jw .

Next, we write the kinematic equations of motion q̇ �
X1v � X2ψ̇ � X3φ̇. We write ψ̇ and φ̇ for the veloc-

ity components along X2 and X3 since X2 has a unit

component along ∂ � ∂ψ, and X3 has a unit component

along ∂ � ∂φ. In coordinates the kinematic equations are

������
�

ẋ

ẏ

θ̇

�������
� �

������
�
� cosφ cosθ

� cosφ sinθ

� sinφ

�������
� v �

������
�

Jr
m  cosφ sinφ cosθ

Jr
m  cosφ sinφ sinθ

� Jr
m  2 � sinφ � 2

�������
� ψ̇

2 The code is available at
�����������	��
�������������	�����������������������! #"	���	�	���$
%���� .

and the dynamic equations are

v̇ � Jr

m � 2
� cosφ � φ̇ψ̇ � 0

ψ̈ � m � 2 cosφ
m � 2 � Jr

� sinφ � 2 vφ̇ � Jr cosφ sinφ
m � 2 � Jr

� sinφ � 2 vψ̇

� m � 2

m � 2 Jr � J2
r
� sinφ � 2 uψ

φ̈ � 1
Jw

uφ .

5 The roller racer

&

'

(*)

( +

,

-

Fig. 2. The roller racer is a planar two-link device with

wheels on both links and a control torque applied to the

central joint.

We study the roller racer system presented in [8], see

Figure 2. The configuration manifold is SE � 2 � � � . In
coordinates we write q � �

x, y,θ,ψ � , where θ is the

angle of the main body relative to the horizontal axis,

andψ is the relative angle between the main body and

the front link. Neglecting the inertia of the front link,

see [8], we get

M �
����������
�

m 0 0 0

0 m 0 0

0 0 I1 � I2 I2

0 0 I2 I2

�����������
�

.

Therefore, the Christoffel symbols of the Levi-Civita

connection � all vanish. The system is subject to a
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single control input: a pure torque uψ that controls the

angle ψ. The constraint one-forms are

ω1 � sinθdx � cosθdy

ω2 � sin � θ � ψ � dx � cos � θ � ψ � dy� � � 2 � � 1 cosψ � dθ � � 2dψ .

The system has a kinematic singularity at � 2 �� 1 cosψ � 0. At that value, the system can only rotate
about its center of mass, and (x, y,ψ) are constants.

5.1 An orthogonal basis for the feasible velocities

The set of feasible velocities is generated by the vector

fields

X1 � Vx � � sinψ� 2 � � 1 cosψ � ∂
∂θ

X �2 � � � � 2� 2 � � 1 cosψ � ∂
∂θ � ∂

∂ψ
,

where Vx is defined as in equation (8) above. Equa-

tion (9) can then be used to obtain an orthogonal basis�
X1, X2

� . We define the shorthands:

f1
� ψ � � m � � 2 � � 1 cosψ � 2 � � I1 � I2 � � sinψ � 2

f2
� ψ � � m � 2

2 I1 � � 2
1 I2m � cosψ � 2 � I1 I2

� sinψ � 2 .

In coordinates we have

X2 � � � 2 I1 � � 1 I2 cosψ � sinψ
f1
� ψ � Vx

� m � 2
� � 2 � � 1 cosψ � � I2

� sinψ � 2
f1
� ψ � ∂

∂θ � ∂
∂ψ

.

These vector fields have the following physical inter-

pretation: X1 encodes the instantaneous rotation when

the internal angle ψ is fixed, and X2 encodes a change

in ψ and other variables.

5.2 The equations of motion

From Theorem 3.2 we compute the non-vanishing

Christoffel symbols as

� 
 1
21 � � � 1 � � 2 cosψ� 2 � � 1 cosψ � � I1 � I2 � sinψ

f1
� ψ �� 
 1

22 � � m � � 1 � � 2 cosψ � � � 2 � � 1 cosψ � � � 1I2 cosψ � � 2 I1 �
f1
� ψ � 2� 
 2

21 � � � 1 � � 2 cosψ� 2 � � 1 cosψ � m � � 1I2 cosψ � � 2 I1 �
f2
� ψ �� 
 2

22 � � m � � 1I2 cosψ � � 2 I1 � � sinψ � f3
� ψ �

f1
� ψ � f2

� ψ � ,

where f3
� ψ � � � � 1 I2 � � 2 I1 cosψ � � m � 1 � 2

� � 2 �� 1 cosψ � . Note that all the Christoffel symbols are

well-defined away from the kinematic singularity. To

establish how the input torque comes into the equa-

tions we compute

� X1ψ � 0,
1	

X2
	

2 � X2ψ � f1
� ψ �

f2
� ψ � .

We are now ready to write the kinematic equations

of motion as q̇ � X1v � X2ψ̇, where we write ψ̇ for

the velocity component along X2 since X2 has unit

component along ∂ � ∂ψ. In coordinates the kinematic

equations are������
�

ẋ

ẏ

θ̇

�������
� �

������
�

cosθ

sinθ

sinψ 2 �  1 cosψ

�������
� v �

������
�

�  2 I1 �  1 I2 cosψ � sinψ
f1

�
ψ � cosθ

�  2 I1 �  1 I2 cosψ � sinψ
f1

�
ψ � sinθ

m  2 �  2 �  1 cosψ � � I2
�
sinψ � 2� f1

�
ψ �

�������
� ψ̇

and the dynamic equations are

v̇ � � 
 1
21
� ψ � ψ̇v � � 
 1

22
� ψ � ψ̇2 � 0

ψ̈ � � 
 2
21
� ψ � ψ̇v � � 
 2

22
� ψ � ψ̇2 � f1

� ψ �
f2
� ψ � uψ .

6 Controllability analysis

In this section we show how the expressions in exam-

ples’ Christoffel symbols and control input coefficients

can be combined with the approach in [12] to perform
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an effective controllability analysis. We start with some

definitions. A system is locally configuration accessible
at a configuration q0 if the set of all configurations that

are reachable from q0 starting with an initial velocity
equal to zero is a non-empty open subset of Q. It is lo-
cally configuration controllable at q0 if q0 belongs to the

interior of this set. The reference [12] presents suffi-

cient conditions in the form of simple algebraic tests

for local configuration accessibility and controllability.

An algebraic operation that plays a prominent role in

these tests is the symmetric product between two vector
fields X and Y, which is defined as:

� X : Y � � � XY � � YX .

6.1 Controllability analysis for the snakeboard

With the notation in Section 4, the snakeboard has in-
put vector fields X2 and X3. Compute the symmetric

products

� X2 : X2 � � 0 , � X3 : X3 � � 0 ,� X2 : X3 � � Jr

m � 2
� cosφ � X1 � Jr

� cosφ sinφ �
m � 2 � Jr

� sinφ � 2 X2 .

Therefore, span
�
X2, X3, � X2 : X3 � � equals the con-

straint distribution
�

everywhere where cosφ �� 0.
The involutive closure of

�
is full rank because

�
X1, X3 � � � � sinφ � Vx � � cosφ � ∂

∂θ�
X1,

�
X1, X3 ��� � � � � sinφ � Vy ,

and because the determinant of the matrix with

columns
�
X1, X2, X3,

�
X1, X3 � , �

X1,
�
X1, X3 ��� � equals � 2.

According to the treatment in [12], the system is lo-

cally configuration controllable.

6.2 Controllability analysis for the roller racer

With the notation in Section 5, the roller racer has a sin-

gle input vector field X2. The only possible symmetric

product is

� X2 : X2 � � 2
� 
 1

22
� ψ � X1 � 2

� 
 2
22
� ψ � X2 .

Provided
� 
 1

22
� ψ � �� 0, that is, � 2 I1 cosψ ���� 1 I2, the dis-

tribution generated by span
�
X2, � X2 : X2 � � equals the

constraint distribution
�

. Furthermore, the involutive

closure of
�

is full rank because

�
X1, X2 � � � 2� 2 � � 1 cosψ

Vy � � 1 � � 2 cosψ� � 2 � � 1 cosψ � 2 ∂
∂θ

�
X1,

�
X1, X2 ��� � � � 2 sinψ� � 2 � � 1 cosψ � 2 Vx � � 1 � � 2 cosψ� � 2 � � 1 cosψ � 2 Vy ,

and because the determinant of the matrix with

columns
�
X1, X2,

�
X1, X2 � , �

X1,
�
X1, X2 ��� � equals

� 2
1 � � 2

2 � 2 � 1 � 2 cosψ� � 2 � � 1 cosψ � 4 .

Therefore the system is locally configuration accessible
everywhere � 2 I1 cosψ �� � 1 I2. It is not locally control-

lable or configuration controllable as proven in [11].
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