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Abstract

This note presents series expansions and nonlinear con-
trollability results for Lagrangian systems subject to
dissipative forces. The treatment relies on the assump-
tion of dissipative forces of linear isotropic nature. The
approach is based on the affine connection formalism
for Lagrangian control systems, and on the homogene-
ity property of all relevant vector fields.

1 Introduction

This note presents novel controllability and pertur-
bation analysis results for control systems with La-
grangian structure. The work belongs to a growing
body of research devoted to the geometric control of
mechanical systems. We aim to develop coordinate-
free analysis and design tools applicable in a unified
manner to robotic manipulators, vehicle models, and
systems with nonholonomic constraints. Contributions
include results on modeling [3, 12], nonlinear control-
lability [13, 8, 9], series expansions [5], motion plan-
ning [6, 16], averaging [2], and passivity-based stabi-
lization [15, 18, 14]. Notions from differential and Rie-
mannian geometry provide the framework underlying
these contributions: the formalism of affine connections
plays a key role in modeling, analysis and control design
for a large class of systems with Lagrangian structure.

The motivation for this work is a standing limitation
in the known results on controllability and series ex-
pansions. The analysis in [13, 8, 9, 5] applies only to
systems subject to no external dissipation, i.e., the sys-
tem’s dynamics is fully determined by the Lagrangian
function. With the aim of developing more accurate
mathematical models for controlled mechanical sys-
tems, this note addresses the setting of dissipative or
damping forces. It is worth adding that dissipation is a
classic topic in Geometric Mechanics (see for example
the work on dissipation induced instabilities [4], the ex-
tensive literature on dissipation-based control [15, 18],
and recent efforts including [14]).

The contribution of this paper are controllability tests
and series expansions that account for a linear isotropic
model of dissipation. Remarkably, the same conditions
guaranteeing a variety of local accessibility and control-
lability properties for systems without damping remain
valid for the class of systems under consideration. This
applies to small-time local controllability, local config-
uration controllability, and kinematic controllability.
Furthermore, we develop a series expansion describ-
ing the evolution of the controlled trajectories starting
from rest, thus generalizing the work in [5]. The techni-
cal approach exploits the homogeneity property of the
affine connection model for mechanical control systems.

2 Affine connections and mechanics

In this section we review the notion of affine connection;
see [10] for a comprehensive treatment. We introduce a
class of Lagrangian systems with dissipative forces and
explore their homogeneity properties. All quantities
are assumed analytic.

2.1 Affine connections

An affine connection on a manifold Q is a map that
assigns to a pair of vector fields X,Y another vector
field ∇XY such that

∇fX+Y Z = f∇XZ + ∇Y Z

∇X(fY + Z) = (LXf)Y + f∇XY + ∇XZ
(1)

for any function f and any vector field Z. Usually
∇XY is called the covariant derivative of Y with re-
spect to X. Vector fields can also be covariantly differ-
entiated along curves, and this concept will be instru-
mental in writing the Euler-Lagrange equations. Con-
sider a curve γ : [0, 1] → Q and a vector field along γ,
i.e., a map v : [0, 1] → TQ such that τQ(v(t)) = γ(t) for
all t ∈ [0, 1] (where τQ : TQ → Q denotes the tangent
bundle projection). Take now a vector field V that sat-
isfies V (γ(t)) = v(t). The covariant derivative of the
vector field v along γ is defined by

Dv(t)

dt
= ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣

∣

q=γ(t)
.



In particular, we may take v(t) = γ̇(t) and set up the
equation

∇γ̇(t)γ̇(t) = 0 . (2)

This equation is called the geodesic equation, and its
solutions are termed the geodesics of ∇. The vector
field Z on TQ describing this equation is called the
geodesic spray.

In a system of local coordinates (q1, . . . , qn), an affine
connection is uniquely determined by its Christoffel

symbols Γi
ij(q), ∇ ∂

∂qi

(

∂
∂qj

)

= Γk
ij

∂
∂qk , and accordingly,

the covariant derivative of a vector field is written us-
ing (1) as

∇XY =
(∂Y i

∂qj
Xj + Γi

jkXjY k
) ∂

∂qi
.

Taking natural coordinates (qi, vi) on TQ, the local
expression of the geodesic spray reads

Z(vq) = vi ∂

∂qi
− Γi

jk(q)vjvk ∂

∂vi
.

2.2 Control systems described by affine connec-

tions

An affine connection control system consists of the fol-
lowing objects: an n-dimensional configuration man-
ifold Q, with q ∈ Q being the configuration of the
system and vq ∈ TqQ being the system’s velocity; an
affine connection ∇ on Q, with Christoffel symbols
{Γi

jk : Q → R | i, j, k ∈ {1, . . . , n}}; and a family of
input vector fields Y = {Y1, . . . , Ym} on Q. The corre-
sponding equations of motion are written as

∇q̇(t)q̇(t) = ua(t)Ya(q(t)), (3)

or, equivalently, in coordinates as

q̈i + Γi
jk(q)q̇j q̇k = ua(t)Y i

a (q), (4)

where the indexes i, j, k ∈ {1, . . . , n}. These equations
are a generalization of the Euler-Lagrange equations.
If ∇ is the Levi-Civita affine connection [10] associated
with a kinetic energy metric, then the equations (3)
are the forced Euler-Lagrange equations for the asso-
ciated kinetic energy Lagrangian. If ∇ is the so called
nonholonomic affine connection [12], the equations (3)
represent the forced equations of motion for a nonholo-
nomic system with a kinetic energy Lagrangian, and
constraints linear in the velocities.

The systems described by equations (3) are subject to
no damping force. However, in a number of situations,
friction and dissipation play a relevant role. Consider,
for instance, a blimp experiencing the resistance of the
air or an underwater vehicle moving in the sea. We in-
troduce a linear isotropic term of dissipation into equa-
tions (3), i.e., we consider

∇q̇(t)q̇(t) = kdq̇(t) + ua(t)Ya(q(t)), (5)

where kd ∈ R. In local coordinates,

q̈i + Γi
jk(q)q̇j q̇k = kdq̇

i + ua(t)Y i
a (q). (6)

This second-order system can be written as a first-order
differential equation on the tangent bundle TQ. Using
{ ∂

∂qi ,
∂

∂vi } as a basis for vector fields on the tangent

bundle of TQ, we define vector fields L and Y lift
a , a ∈

{1, . . . ,m}, on TQ by

L(vq) = vi ∂

∂vi
, Y lift

a (vq) = Y i
a (q)

∂

∂vi
,

so that the control system becomes

v̇(t) = Z(v(t)) + kdL(v(t)) + ua(t)Y lift
a (v(t)), (7)

where t 7→ v(t) is now a curve in TQ describing the
evolution of a first-order control affine system. We re-
fer to [7] for coordinate-free definitions of the lifting
operation Ya → Y lift

a and of the dilation or Liouville
vector field L on TQ.

2.3 Homogeneity and Lie algebraic structure

One fundamental feature of the control systems in
equations (3) and (5) is the polynomial dependence of
the vector fields Z, L and Y lift on the velocity variables
vi. As shown in [7], this structure leads to remarkable
simplifications in the iterated Lie brackets between the
vector fields {Z, Y lift

1 , . . . , Y lift
m }. This fact is the en-

abling property for the controllability analyses in [13]
and the series expansion in [5]. As we shall see below,
these simplifications also take place between the vector
fields {Z + kdL, Y lift

1 , . . . , Y lift
m }.

We start by introducing the notion of geometric homo-
geneity as described in [11]: given two vector fields X

and XE , the vector field X is homogeneous with degree
m ∈ Z with respect to XE if [XE ,X] = mX.

Lemma 2.1 Let ∇ be an affine connection on Q with
geodesic spray Z, and let Y be a vector field on Q.
Then [L,Z] = (+1)Z and [L, Y lift] = (−1)Y lift.

In the following, a vector field X on TQ is simply ho-
mogeneous of degree m ∈ Z if it is homogeneous of
degree m with respect to L. Let Pj be the set of vector
fields on TQ of homogeneous degree j, so that Z ∈ P1

and Y lift ∈ P−1. One can see that [L,X] = 0, for all
X ∈ P0, and that [Pi,Pj ] ⊂ Pi+j .

3 Nonlinear controllability

In this section we investigate the controllability proper-
ties of systems with isotropic dissipation. We analyse
local accessibility, controllability, and kinematic con-
trollability.



3.1 Local accessibility and controllability

Here we study conditions for accessibility and controlla-
bility of mechanical systems with dissipation. The no-
tion of configuration controllability concerns the reach-
able set restricted to the configuration space Q and
is weaker than full-state controllability; we refer the
reader to [13] for the exact definitions.

We start by introducing some notation. Let Lie(Y)
and Sym(Y) denote the involutive and the symmet-
ric closure, respectively, of the set of vector fields

Y = {Y1, . . . , Ym}. Let also Y
lift

denote the set of

lifted vector fields {Y
lift

1 , . . . , Y
lift

m }. The next proposi-
tion show that the involutive closure of the system (3)
at zero velocity is the same as the one of (5).

Proposition 3.1 Consider the distributions

D(1) = span {Z,Y
lift

} , DL
(1) = span {Z + kdL,Y

lift

} .

Define recursively

D(k) = D(k−1) + [D(k−1),D(k−1)] ,

DL
(k) = DL

(k−1) + [DL
(k−1),D

L
(k−1)] , k ≥ 2 .

Then, D(k)(0q) = DL
(k)(0q), for all k. Consequently,

the accessibility distributions D(∞)(0q) = Lie(Z,Y
lift

)q

and DL
(∞)(0q) = Lie(Z + kdL,Y

lift

)q coincide.

Proof: Obviously D(1)(0q) = DL
(1)(0q). Moreover, we

have [D(1),D(1)] ⊂ DL
(2) and [DL

(1),D
L
(1)] ⊂ D(2), since

[Z + kdL, Y
lift

] = [Z, Y
lift

] − kdY
lift

.

Let us assume that

D(k)(0q) = DL
(k)(0q) , (8)

[D(k),D(k)] ⊂ DL
(k+1) , (9)

[DL
(k),D

L
(k)] ⊂ D(k+1) . (10)

hold for k and let us show that (8-10) are valid for k+1.
We have

Dk+1 = D(k) + [D(k),D(k)] ⊂ D(k) + DL
(k+1) =⇒

Dk+1(0q) ⊂ D(k)(0q)+DL
(k+1)(0q) = DL

(k)(0q)+DL
(k+1)(0q)

= DL
(k+1)(0q) .

Similarly, we can prove DL
k+1(0q) ⊂ D(k+1)(0q), and

thus D(k+1)(0q) = DL
(k+1)(0q). On the other hand,

[DL
(k+1),D

L
(k+1)] = [DL

(k)+[DL
(k),D

L
(k)],D

L
(k)+[DL

(k),D
L
(k)]]

⊂ [DL
(k) + D(k+1),D

L
(k) + D(k+1)]

⊂ D(k+1) + [DL
(k),D(k+1)] + D(k+2)

= [DL
(k),D(k+1)] + D(k+2).

Thus, it remains to be checked that [DL
(k),D(k+1)] ⊂

D(k+2). Observe that

[DL
(k),D(k+1)] = [DL

(k−1) + [DL
(k−1),D

L
(k−1)],D(k+1)]

⊂ [DL
(k−1),D(k+1)] + D(k+2),

where we have used the induction hypothesis on
(10), i.e. [DL

(k−1),D
L
(k−1)] ⊂ D(k). By a recur-

sive argument, we find that what we must show is

[DL
(1),D(k+1)] ⊂ D(k+2). Clearly, [Y

lift

i ,D(k+1)] ⊂

D(k+2), i ∈ {1, . . . ,m}. In addition,

[Z+kdL,D(k+1)] = [Z,D(k+1)]+[kdL,D(k+1)] ⊂ D(k+2) ,

since [L,X] ∈ D(k+1), for all X ∈ D(k+1), by homo-
geneity. Finally, it can be similarly shown using (9)
that [D(k+1),D(k+1)] ⊂ DL

(k+2). Thus, (8-10) are satis-
fied for all k.

Corollary 3.2 Consider a mechanical control system
of the form (5). Then

(i) the system is locally accessible (LA) at q starting
with zero velocity if Sym(Y)q = TqQ,

(ii) the system is locally configuration accessible
(LCA) at q ∈ Q if Lie(Sym(Y))q = TqQ.

Proof: The manifold Q can be identified with the
set of zero vectors Z(TQ) of TQ by the diffeomorphism
q 7→ 0q. Hence, the tangent space to Z(TQ) at 0q is
isomorphic to TqQ. On the other hand, the natural
projection τQ(vq) = q defines the set V as the kernel of
TτQ : TTQ → TQ. One has that V0q

is isomorphic to
TqQ. Both parts give us the natural decomposition

T0q
TQ = T0q

(Z(TQ)) ⊕ V0q
' TqQ ⊕ TqQ .

The result follows from the former proposition and
Proposition 5.9 in [13] which asserts that D(∞)(0q) ∩

V0q
= Sym(Y)

lift

q and D(∞)(0q) ∩ T0q
(Z(TQ)) =

Lie(Sym(Y))q.

Next, we examine the small-time local controllability
properties of the system in equation (5). We shall use
the following conventions. The degree of an iterated
Lie bracket is equal to the number of its factors. The
degree of B in {X0,X1, . . . ,Xm} is given by δ(B) =
δ0(B)+δ1(B)+ · · ·+δm(B), where δi(B) is the number
of times the factor Xi appears. A Lie bracket B in
{X0,X1, . . . ,Xm} is bad if δ0(B) is odd and δi(B) is
even, i ∈ {1, . . . ,m}, where δa(B) denotes the number
of times that Xa occurs in B. Otherwise, B is good.

The results in [13, 17] include sufficient conditions for
small-time local controllability (STLC) and small-time



local configuration controllability (STLCC). Let the
system be LA at q ∈ Q starting with zero velocity
(resp. LCA at q ∈ Q). The system in equation (5) is
STLC at q starting with zero velocity (resp. STLCC)
if:

(Sussmann’s criterium on {Z + kdL,Y
lift

}):

Every bad bracket B in {Z + kdL,Y
lift

} is a
R-linear combination of good brackets evaluated
at 0q of lower degree than B.

We shall show that if the conditions for STLC and
STLCC are satisfied for the set {Z,Y

lift

}, then they

are also verified for the set {Z + kdL,Y
lift

}. We illus-
trate this fact by considering two low order settings.
First, every bracket B of order 1 or 2, i.e., δ(B) ≤ 2, is

good. In addition, [Z + kdL, Y
lift

] = [Z, Y
lift

]− kdY
lift

,

and therefore, every good bracket in {Z + kdL,Y
lift

} of
degree 2 is the sum of the corresponding good bracket

in {Z,Y
lift

} plus some good brackets of lower degree in

{Z + kdL,Y
lift

}.

Proposition 3.3 Assume Sussmann’s criterium on

{Z,Y
lift

}. Then

(i) every bad bracket B in {Z + kdL,Y
lift

} of degree
k, evaluated at 0q, is a R-linear combination of
good brackets of lower degree,

(ii) every good bracket C in {Z + kdL,Y
lift

} of degree
k, evaluated at 0q, is a R-linear combination of

the corresponding good bracket in {Z,Y
lift

} and of

some brackets in {Z + kdL,Y
lift

} of lower degree,

(iii) every good bracket in {Z,Y
lift

} of degree k, eval-
uated at 0q, is a R-linear combination of good

brackets in {Z + kdL,Y
lift

} of degree ≤ k.

For reasons of brevity, we do not report the proof here.

If P is a symmetric product of vector fields in Y, we
let γa(P ) denote the number of occurrences of Ya in
P . The degree of P will be γ1(P ) + · · · + γm(P ). We
shall say that P is bad if γa(P ) is even for each a ∈
{1, . . . ,m}. We say that P is good if it is not bad.

Corollary 3.4 Consider a mechanical control system
as in (5). Then, we have

(i) the system is STLC at q ∈ Q starting with zero
velocity if Sym(Y)q = TqQ and every bad sym-
metric product B in Sym(Y)q is a linear combina-
tion of good symmetric products of lower degree,
and

(ii) the system is STLCC at q ∈ Q if Lie(Sym(Y))q =
TqQ and every bad symmetric product B in
Sym(Y)q is a linear combination of good symmet-
ric products of lower degree.

Proof: It follows from the 1 − 1 correspondence

between bad (resp. good) Lie brackets in {Z,Y
lift

} and
bad (resp. good) symmetric products in Y; see [13].

3.2 Kinematic controllability

Kinematic controllability [8] has direct relevance to the
trajectory planning problem for mechanical systems of
the form (3). This section presents a generalized notion
of kinematic controllability for affine connection sys-
tems with isotropic dissipation. Consider the mechan-
ical system (5), and let I is the distribution generated
by the input vector fields {Y1, . . . , Ym}. A controlled
solution to (5) is a curve t 7→ q(t) ∈ Q satisfying

∇q̇ q̇ − kdq̇ ∈ Iq(t) . (11)

Let s : [0, T ] → [0, 1] be a twice-differentiable function
such that s(0) = 0, s(T ) = 1, ṡ(0) = ṡ(T ) = 0, and
ṡ(t) > 0 for all t ∈ (0, T ). We call such a curve s a time
scaling. A vector field V is a decoupling vector field for
the system (5) if, for any time scaling s and for any
initial condition q0, the curve t 7→ q(t) on Q solving

q̇(t) = ṡ(t)V (q(t)), q(0) = q0, (12)

satisfies the conditions in (11). The integral curves of V

on the time interval [0, 1] are called kinematic motions.

Lemma 3.5 The vector field V is decoupling for the
mechanical system (5) if and only if V ∈ I and
〈V : V 〉 ∈ I.

Proof: Given a curve γ : [0, T ] → Q satisfying
equation (12), we compute

∇γ̇ γ̇ = s̈V + ṡ∇γ̇V = s̈V + ṡ2∇V V,

where we used the identities (1) for vector fields along
curves; see [10]. Next, the curve γ is a kinematic mo-
tion if, for all time scalings s, the constraints (11) are
satisfied. Thus

∇γ̇ γ̇ − kdγ̇ = (s̈ − kdṡ)V +
ṡ2

2
〈V : V 〉 ∈ I .

Since s and γ(0) are arbitrary, V and 〈V : V 〉 must sep-
arately belong to the input distribution I. The other
implication is trivial.

We say that the system (5) is locally kinematically con-
trollable if for any q ∈ Q and any neighborhood Uq of q,
the set of reachable configurations from q by kinematic
motions remaining in Uq contains q in its interior.



Lemma 3.6 The system (5) is locally kinematically
controllable if there exist p ∈ {1, . . . ,m} vector fields
{V1, . . . , Vp} ⊂ I such that

(i) 〈Vc : Vc〉 ∈ I, for all c ∈ {1, . . . , p}, and

(ii) Lie(V1, . . . , Vp) has rank n at all q ∈ Q.

4 Series expansion for the forced evolution

The result in this section extends the treatment in [5].
Consider the system (5) with initial condition q̇(0) = 0.

Proposition 4.1 Given any integrable input vector
field (q, t) 7→ Y (q, t), let k ≥ 2, and define

V1(q, t) =

∫ t

0

ekd(t−τ)Y (q, τ)dτ ,

Vk(q, t) = −
1

2

k−1
∑

j=1

∫ t

0

ekd(t−τ) 〈Vj(q, τ) : Vk−j(q, τ)〉 dτ.

There exists a T > 0 such that the series (q, t) 7→
∑+∞

k=1 Vk(q, t) converges absolutely and uniformly for
t ∈ [0, T ] and for q in an appropriate neighborhood of
q0. Over the same interval, the solution γ : [0, T ] → Q

to the system (5) with γ̇(0) = 0 satisfies

γ̇ =
+∞
∑

k=1

V (γ, t) . (13)

Proof: Step I. A time-varying vector field (q, t) 7→
X(q, t) gives rise to the initial value problem on Q

q̇(t) = X(q, t), q(0) = q0.

We denote its solution at time T via q(T ) = ΦX
0,T (q0),

and we refer to it as the flow of X. Next, consider

q̇(t) = X(q, t) + Y (q, t), q(0) = q0,

where X and Y are analytic (in q) time-varying vector
fields. If we regard X as a perturbation to the vector
field Y , we can describe the flow of X +Y in terms of a
nominal and perturbed flow. The following relationship
is referred to as the variation of constants formula [1]
and describes the perturbed flow:

ΦX+Y
0,t = ΦY

0,t ◦ Φ
(ΦY

0,t)
∗X

0,t , (14)

where, given any vector field X and any diffeomorphism
φ, the φ∗X is the pull-back of X along φ. In particular,
the pull-back along the flow of a vector field admits the
following series expansion representation [1]

(ΦY
0,t)

∗X(q, t) = X(q, t) +

+∞
∑

k=1

∫ t

0

. . .

∫ sk−1

0
(

adY (q,sk) . . . adY (q,s1) X(q, t)
)

dsk . . . ds1. (15)

Step II. In equation (7), let the Liouville vector
field play the role of the perturbation to the vec-
tor field Z + Y lift. Then the application of (14)

yields ΦZ+kdL+Y lift

= ΦkdL ◦ Φ∆, where we compute
ΦkdL(q0, v0) = (q0, e

kdtv0), and where the homogeneity
leads to

∆ =
+∞
∑

k=0

tk

k!
adk

kdL(Z + Y lift) =
+∞
∑

k=0

(kdt)
k

k!
adk

L(Z + Y lift)

=
+∞
∑

k=0

(kdt)
k

k!
(Z + (−1)kY lift)

=
+∞
∑

k=0

(

(kdt)
k

k!
Z +

(−kdt)
k

k!
Y lift

)

= ekdtZ + e−kdtY lift.

Let Z ′ = ekdtZ, and accordingly 〈X1 : X2〉
′

=
ekdt 〈X1 : X2〉. The initial value problem associated
with ∆ is therefore

ẏ = Z ′(y) + e−kdtY (y, t)lift, (16)

where we let y = (r, ṙ).

Step III. Let k ∈ N and consider the equation

ẏk =
(

Z ′ + [X lift
k , Z ′] + Y lift

k

)

(yk, t) . (17)

We recover (16) by setting k = 1, X1 = 0, Y1 =
e−kdtY (q, t), and accordingly y(t) = y1(t). We can
now see the vector field Z ′ + [X lift

k , Z ′] as the pertur-
bation to Y lift

k . Using (14) and (15), we set yk(t) =

Φ
Y lift

k

0,t (yk+1(t)). Some manipulations based on the ho-
mogeneity properties of the vector fields lead to

ẏk+1(t) =

(

(

Φ
Y lift

k

0,t

)∗
(

Z ′ + [X lift
k , Z ′]

)

)

(yk+1(t))

= Z ′ + [X lift
k + Y

lift

k , Z ′] − e−kdt
〈

Y k : Xk

〉lift

−
ekdt

2

〈

Y k : Y k

〉lift
.

Therefore, the differential equation for yk+1(t) is of the
same form as (17), where

Xk+1 = Xk + Y k , Yk+1 = −ekdt

〈

Y k : Xk +
1

2
Y k

〉

.

We easily compute Xk =
∑k−1

m=1 Y m and set

Yk+1 = −ekdt

〈

Y k :

k−1
∑

m=1

Y m +
1

2
Y k

〉

.

One can iterate this procedure as in the case of no
dissipation [5] to obtain the formal expansion

ṙ =
+∞
∑

k=1

V ′(r, t) , V ′
1(r, t) =

∫ t

0

e−kdτY (r, τ)dτ ,

V ′
k(r, t) = −

1

2

k−1
∑

j=1

∫ t

0

ekdτ
〈

V ′
j (r, τ) : V ′

k−j(r, τ)
〉

dτ.



To obtain the flow of Z + kdL + Y lift, we compose the
flow of ∆ with that of kdL to compute

q̇ = ekdtṙ =

+∞
∑

k=1

V (q, t) , V1(q, t) =

∫ t

0

ekd(t−τ)Y (q, τ)dτ ,

Vk(q, t) = −
1

2

k−1
∑

j=1

∫ t

0

ekd(τ−2τ+t) 〈Vj(q, τ) : Vk−j(q, τ)〉 dτ.

Step IV. Select a coordinate chart around q0. In
this way, we can locally identify Q with R

n. Define
Bσ(q0) = {z ∈ C

n : ‖z − q0‖ < σ}. Resorting to
the analysis in [5], it can be proven that there exists

a L > 0 such that ‖Vk‖σ′ ≤ L1−k ‖Y ‖σ

(

tekdt
)2k−1

,
where σ′ < σ, ‖·‖σ denotes

‖Y ‖σ = max
s∈[0,t]

max
i∈{1,...,n}

max
z∈Bσ(q0)

|Y i(q, s)| ,

and Y i is the ith component of Y with respect to the
coordinate basis. Hence, for ‖Y ‖σ T 2e2kdT < L, the
previous expansion converges absolutely and uniformly
in t ∈ [0, T ] and q ∈ Bσ′(q0).

5 Conclusions

This paper extends previous results on nonlinear con-
trollability and series expansions for mechanical sys-
tems for the setting of isotropic dissipation.
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