
1

Constructive Controllability Algorithms for Motion

Planning and Optimization

W. Todd Cerven

Aeronautical and Astronautical

Engineering

University of Illinois at

Urbana-Champaign

104 S Wright St, Urbana, IL 61801,

USA

Tel: (217) 244-8516

Email: w-cerven@uiuc.edu

Francesco Bullo

Coordinated Science Laboratory

University of Illinois at

Urbana-Champaign

1308 W Main St, Urbana, IL 61801,

USA

Tel: (217) 333-0656, Fax: (217)

244-1653

Email: bullo@uiuc.edu

Abstract

This paper presents novel algorithms for planning feasible and minimum energy paths. The algorithms rely on series

expansions to characterize planning problems for polynomial control systems. The resulting inversion problem is solved

through an iterative contraction or a power series inversion. While the design methodology is general, our focus is on a

class of polynomial control systems for which we provide explicit convergence guarantees. We demonstrate performance

and numerical characteristics using one dimensional and six dimensional systems.

I. Introduction

Problem Description

In recent years, the study of autonomous vehicles and versatile robots has become a highly active

research area as technological advances have enabled these devices to cross over from science fiction

to reality. This development has the capability to impact a variety of areas such as factory automa-

tion, search and rescue operations, oceanographic and aerospace missions, and medical robotics, with

advances in computing and manufacturing allowing increasing levels of autonomy and dexterity in

diverse environments. Such progress requires control systems able to independently plan motions both

rapidly and reliably. How to generate the control profiles required to pass from one state to another

An early short version of this work appeared in [1].

2

is the realm of motion planning and optimal control. Analytic and numerical techniques have been

developed to address this challenge.

Lie brackets based planners are another set of algorithms for open loop control design; see [2],

[3]. The typical planner relies on oscillations in order to move, in a way similar to how one parks a

car or how an animal changes its shape to locomote. These methods have been applied to chained

form systems [4], driftless systems [5], [6], locomotion systems [7], [8], and addressed by the authors’

earlier work [9], [10]. The classic limitation of Lie bracket methods is their local nature, as only small

amplitude motions can be planned satisfactorily.

Differential flatness is an intrinsic property of nonlinear control systems introduced in [11], [12]. For

systems enjoying this property motion planning is a straightforward task; e.g., see [13]. However, there

are a few limitations in the differential flatness approach to motion planning. First of all, there is no

algorithmic procedure to obtain the flat outputs of a system, nor is there any criterion to establish

whether flat outputs exist. Second, differential flatness is a non-generic property. In other words,

generic variations or perturbations to a flat model of a system render the system “non-flat.” This is

particularly relevant to the context of vehicle models, where the famous flat PVTOLmodel is not known

to be flat as soon as aerodynamic forces are modeled more accurately (added mass due to movement

through fluid [14] or drag terms [13]). Finally, little is known with regards to “approximately flat”

systems; see [15]. There is no established notion of approximate flatness, nor is it clear that motion

planning would be a straightforward problem for systems enjoying such a property.

In numerical optimal control, [16], trajectories are obtained through a numerical optimization.

Because the problem is infinite dimensional, various forms of transcription (i.e., discretization or

parametrization) are used to cast the variational problem into a nonlinear program. Collocation [17]

uses base functions to parameterize both the states and the controls, while differential inclusion [18]

avoids using the discretized controls by explicitly solving for the controls in terms of the states and their

derivatives. Although useful and powerful, the high dimension, complexity, and lack of convergence

guarantees limit the speed and reliability of these algorithms.

Although non-optimal, other techniques based on heuristics randomization have been developed

that promise fast execution in complex environments. These algorithms focus more on obstacle avoid-

ance than on the nonlinear dynamics of the system. Popular among these are solutions based upon

roadmaps [19] and incremental searches [20]. In roadmap methods, path planning is accomplished in

two steps: a collection of sample configurations is selected, and then trajectories connecting all sample

points are computed. The second step, however, is a local controllability problem in itself.

In this paper, we avoid the limitations currently inherent to flatness, the limitations of Lie bracket-

3

based planners, and the computational issues of numerical optimization to investigate a method based

on power series to quickly generate the required control profiles.

Power series are not new to nonlinear control. They have been used widely, notably in the nonlinear

regulator problem. Al’brekht [21] used power series to solve the Hamilton-Jacobi-Bellman (HJB)

partial differential equations to obtain an optimal stabilizing control. For the same problem, Halme

and coworkers [22], [23], [24], [25] developed a polynomial power series and a local inverse to generalized

power series. Krener and coworkers [26], [27] use Al’brekht’s method to solve for the nonlinear regulator

corresponding to the Francis-Byrnes-Isidori equations. Using level set methods and power series about

extremal trajectories they also propose a method to extend Al’brekht’s solutions to the HJB equations

well beyond the neighborhood of the origin.

Of course, power series methods are invariably local, but that does not make them any less relevant

or useful. As mentioned beforehand, randomized methods require local motion planners. Autonomous

and semi-autonomous vehicles also need such a method, as large scale maneuvers are relatively easily

user defined, but small ones are impractical, if not impossible, for a user to direct. Other applications

include station keeping for under-actuated aerospace and underwater vehicles [28], [29] and movement

based on internal actuation, swimming, and other biologically motivated designs [30], [28], [31].

Statement of contribution

This paper builds on the aforementioned areas of research to develop local complete constructive

trajectory generation and optimization algorithms for a class of low order polynomial systems which

is representative of a large array of dynamical systems. These algorithms are complete in that they

guarantee a solution and are “constructive” in the sense that they rely directly on the controllability

properties of the system.

This paper presents two algorithms to generate a feasible path using base functions and a minimum

energy path parameterized by the initial values of the costates of the system. For a linearly controllable

system, we can show that there exists a neighborhood about the origin in which the algorithms are

guaranteed to find a solution. To find these parameterized controls, we develop iterative as well as

series inversion methods, both of which have convergence guarantees. We provide proofs to this along

with computation of explicit neighborhoods that, even if conservative, provide a lower bound on region

of validity, or the region over which these algorithms are guaranteed to converge. Additionally, we

investigate the behavior of the algorithms for a one dimensional system and for a planar vertical

takeoff and landing vehicle (PVTOL) with damping. This includes an illustration of the level of

conservativeness of the lower bounds on the neighborhoods of convergence for the example systems.

4

This paper is organized as follows. In Section II, we introduce the polynomial systems of interest

and define the norms and series expansions upon which these algorithms are based. We discuss the

accessibility and the nilpotency of the polynomial system as well as the formulation required to apply

the series expansion about a trajectory. Next, in Section III, we present trajectory generation and

optimization problems and we cast both of them into the form of a function inversion problem. In

Section IV, we proceed to show how a unique solution to the inversion problem exists locally, and define

two numerical approaches to compute it. A lower bound to the radius of convergence is provided for

both methods. Lastly, in Section V, we apply these algorithms to a simple one dimensional example

and the PVTOL with damping. Appendices I, II, and III contain various proofs.

II. A class of polynomial control systems

Throughout the paper we shall concern ourselves with n-dimensional second order polynomial sys-

tems of the form

ẋ = Ax+ f [2](x, x) +Bu

x(0) = x0,
(1)

where f [2] : Rn × Rn → Rn is a symmetric tensor,1 A is an n× n matrix, and B is an n ×m matrix.

While the approach advocated in this work can be extended to address more general systems, we focus

on this class of polynomial systems for simplicity of exposition. This class is representative of a large

array of dynamical systems, as any smooth system linear in controls not fitting this form naturally

can be approximated as such by a Taylor expansion. Classical dynamical systems such as the Lorentz,

Lotka-Volterra, and Euler equations are characterized by second order polynomial vector fields. In

addition, Kang and Krener [32] showed that any nonlinear system of the form ξ̇ = f(ξ) + g(ξ)µ can

be represented as such (plus higher order terms) by a change of coordinates and state feedback. Note

that this class of polynomial systems is not contained in the class of systems in chained form, driftless

systems, and feedback linearizable systems.

This set of nonlinearities appears in many common mechanical systems as, for example, trigonometric

functions can usually be rewritten in polynomial form. Let us consider, for instance, control systems

arising from rigid body dynamics. We let the state x comprise the absolute position q ∈ R3, the body-

fixed translational and angular velocities v, ω ∈ R3, and the orientation matrix (R + I3) ∈ SO(3).

For various vehicles including aircraft, spacecraft, and watercraft, the equations of motion can be

1Any vector field with components homogeneous polynomials of degree 2 can be written in terms of a symmetric tensor f [2].

5

represented as:

ẋ =




q̇

Ṙ

v̇

ω̇



=




Rv

Rω̂

−ω̂v +Gv(R, q) +Dv(v) +Bvu

−I−1ω̂Iω +Gω(R, q) +Dω(v, ω) +Bωu



, (2)

where I is the inertia matrix and Bv and Bω are constant matrices. The functions Gv and Gω are

force and torque due to gravity, Dv and Dω are the damping terms. These equations fit the form of

(1) either naturally or by truncating the Taylor expansions for the functions Gv, Gω, Dv and Dω.

A. Operator and function norms

In defining mapping and norms we follow the notation in [33, Chapter 6].

Let N be the set of strictly positive integers. Over the linear space Rn we will use the norms

‖x‖2 =
√
x′x, and ‖x‖∞ = maxi∈{1,...,n} |xi|. Consider the normed linear space Ln

∞ of piecewise

continuous, uniformly bounded functions over the interval I

x : I ⊂ R+ → Rn

t 7→ x(t),

with norm

‖x‖L∞ = sup
t∈I
‖x(t)‖∞ = sup

t∈I
max

i∈{1,...,n}
|xi(t)| < +∞.

Assume the matrix A is Hurwitz or that the interval I is finite, and let HA be the mapping

HA : Ln
∞ → Ln

∞

x(t) 7→
∫ t

0

eA(t−τ)x(τ)dτ.

The Ln
∞ induced norm for HA is

‖HA‖L∞ = ‖eAt‖L1 = max
i=1,...,n

n∑

j=1

∫

I

|(eAt)ij|dt.

Next, we consider 2-tensor f [2] : Ln
∞ × Ln

∞ → Ln
∞ defined via

(x(t), y(t)) 7→ f [2](x(t), y(t)),

and define its induced norm ‖f [2]‖L∞ via

‖f [2]‖L∞ = ‖f [2]‖∞ = max
‖y1‖∞=1
‖y2‖∞=1

‖f [2](y1, y2)‖∞.

6

B. Evolution as series expansion

We present a series expansion for the solution of the initial value problem in equation (1). The

result is an extension of the results in [34] and is proven in Appendix I. Before proceeding, it is useful

to introduce a few preliminary concepts. The Catalan numbers are an infinite sequence of integers

discovered by Euler as the solution to the question “How many ways can a convex polygon be divided

into triangles via non-intersecting diagonals?”. The result is a sequence of numbers corresponding to

polygons with increasing numbers of vertices, starting with a triangle. We define the Catalan numbers

{ck ∈ R, k ∈ N} as in [35, Section 2.3]; our definition differs from Euler’s more standard sequence by a

scaling factor. Define C : [0, 1]→ [0, 1] as C(η) = 1−√1− η, and let RemainderK(C)(η) be its Taylor

remainder of order K. If we develop C in power series

C(η) =
+∞∑

k=1

ckη
k,

then the following equivalent conditions hold

ck =
1

k 22k−1

(
2k − 2

k − 1

)
, and c1 =

1

2
, ck =

1

2

k−1∑

i=1

cick−i. (3)

We are now able to characterize the flow of the differential equation (1).

Lemma II.1: The solution of the system in equation (1) is written as a series x(t) =
∑+∞

k=1 xk(t)

where

x1(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

xk(t) =
k−1∑

a=1

∫ t

0

eA(t−τ)f [2](xa(τ), xk−a(τ))dτ, ∀k > 1.

(4)

Let d1 = 2
(
‖eAtx0‖L∞ + ‖eAt‖L1‖Bu‖L∞

)
and d2 = 2‖eAt‖L1‖f [2]‖L∞ . Provided d1d2 ≤ 1, a solution

exists over the interval I and the series converges absolutely and uniformly in t ∈ I, and the following

upper bounds hold:

‖xk‖L∞ ≤ ck d
k
1d

k−1
2 ,

‖x−
K∑

k=1

xk‖L∞ ≤
1

d2

RemainderK(C)(d1d2).

C. Accessibility and nilpotency

Consider the polynomial control system in equation (1) described by the tensors A, B, and f [2]. Let

the subspace B ⊂ Rn be the image of the matrix B. Given two linear subspaces V and W of Rn, let

f [2](V,W) = {f [2](v, w) ∈ Rn| v ∈ V,w ∈ W} ⊂ Rn.

7

Let LinReachA(B) be the subspace generated by

B,AB, . . . , AnB,

and define the accessibility subspaces {Rk ⊂ Rn, k ∈ N} as follows

R1 = LinReachA(B) = span{B,AB, . . . , AnB}

R2 = LinReachA(f
[2](R1,R1))

...

Rk = LinReachA(∪k−1
a=1{f [2](Ra,Rk−a)}).

The subspaces {Rk ⊂ Rn, k ∈ N} play a key role in studying controllability and nilpotency of

system (1). In particular, we state the following facts:

(i) the kth order component xk(t) is in Rk for all t ∈ I and for all inputs u : I → Rm,

(ii) the system is linearly controllable if and only if R1 is full rank,

(iii) the accessibility subspaceRk is generated by all the Lie brackets evaluated at the origin — between

an arbitrary number of the vector field Ax+ f [2](x, x) and k vector fields of the form Bi,

(iv) the system is locally accessible if
∑+∞

k=1Rk = Rn, and

(v) the system is nilpotent if there exists an integer k such that Ri = 0 for all i ≥ k.

D. Series expansion about a trajectory

As described in Lemma II.1 the series expansion in equation (4) converges under the assumption

of small initial condition x(0). There is a second setting in which a similar expansion can be easily

written. Assume that a reference trajectory satisfying ẋ = Ax + f [2](x, x) + Buref(t), x(0) = x0 is

known analytically as x(t) = Φf
t (x0, uref(t)). Define a relative variation variable e

e = x− Φf
t (x0, uref(t)),

and compute the differential equation regulating its evolution

ė = ẋ− Φ̇f
t (x0, uref(t))

=
(
Ax+ f [2](x, x) +Bu

)
−
(
AΦf

t (x0, uref(t)) + f [2](Φf
t (x0, uref(t)),Φ

f
t (x0, uref(t))) +Buref(t)

)

= Ae+ f [2](x+ Φf
t (x0, uref(t)), x− Φf

t (x0, uref(t))) +B(u− uref(t))

= Ae+ f [2](2Φf
t (x0, uref(t)) + e, e) +B(u− uref(t))

=
(
A+ 2f [2](Φf

t (x0, uref(t)))
)
e+ f [2](e, e) +B(u− uref(t)),

8

where we define the matrix f [2](x) according to
(
f [2](x)

)
y = f [2](x, y) for all x, y ∈ Rn.

In the new variable e, the system is again in second order polynomial form and the initial condition is

e(0) = 0. The time-varying nature of the matrix A+2f [2](Φf
t (x0, uref(t))) is the only difference between

this system and the system in equation (1). One can show that the series expansion in equation (4)

can be written for a time-varying system by replacing the kernel eAt in the convolution integrals with

the more general state transition matrix for time-varying linear systems. Furthermore, under certain

technical conditions, the equations are once again time-invariant as in (1). One such example is given

by the setting of rigid body vehicles (2) evolving along helical trajectories, see [36].

III. Formulation of motion planning and minimum energy planning problems

This section describes two interesting planning problems. We transform these problems into inverse

function problems exploiting the series expansion described above.

Consider the control system in equation (1), let the initial condition be the origin x(0) = 0, and let

xd ∈ Rn be the desired target location. We shall require that d1d2 ≤ 1, i.e., we restrict our investigation

to the convergence radius of the series in equation (4).

A. Base functions for the control inputs

It is often useful to introduce a collection of bounded piecewise continuous base functions {ψi(t) :

[0, T] 7→ Rm, i ∈ {1, . . . , np}} to parametrize the input functions u. This is the case for example when

magnitude and rate constraints or binary actuators are present. We write

u(t) =

np∑

i=1

ψi(t)pi = ψ(t)p.

A wide variety of base functions are possible including splines, Hermite polynomials, sinusoidal func-

tions, piecewise constant functions, and wavelets. Define the tensors {Φk : Rk×np → Rn, k ∈ N}
as:

Φi
1(t) =

∫ t

0

eA(t−τ)Bψi(τ)dτ

Φi1i2
2 (t) =

∫ t

0

eA(t−τ)f [2]
(
Φi1

1 (τ),Φ
i2
1 (τ)

)
dτ,

Φi1i2i3
3 (t) =

∫ t

0

eA(t−τ)
(
f [2](Φi1

1 (τ),Φ
i2i3
2 (τ)) + f [2](Φi1i2

2 (τ),Φi3
1 (τ))

)
dτ

...

Φi1...ik
k (t) =

k−1∑

a=1

∫ t

0

eA(t−τ)f [2](Φi1...ia
a (τ),Φ

i1...ik−1

k−a (τ))dτ.

(5)

9

Assuming x(0) = 0, the kth term of the series in equation (4) can now be rewritten as

xk(t) = Φk(t)(p, . . . , p︸ ︷︷ ︸
k times

).

In what follows, we will only need Φk(t) evaluated at final time T , therefore we introduce the abbre-

viation Φk = Φk(T).

B. Motion planning with base functions

Consider the following design problem: find a control input u : [0, T] 7→ Rm such that

ẋ = Ax+ f [2](x, x) +Bu

x(0) = 0, x(T) = xtarget.

Using the series expansion characterization in Section II-B, the problem becomes finding a control

input u : [0, T] 7→ Rm that solves

xtarget =
+∞∑

k=1

xk(T).

This equation is a constraint on the input functions u since all the terms xk depend on it. This

constraint can be discretized into a finite dimensional equation via a collection of bounded piecewise

continuous base functions {ψi(t) : [0, T] 7→ Rm, i ∈ {1, . . . , np}}. Using the notation in Section III-A,

the design problem is to find a vector p ∈ Rnp such that

xtarget = Φ1p+
+∞∑

k=2

Φk(p, . . . , p). (6)

C. Minimum energy planning (without base functions)

Consider the following design problem: find a control input u : [0, T] 7→ Rm that solves

min

∫ T

0

‖u(t)‖2
2dt

subject to ẋ = Ax+ f [2](x, x) +Bu

x(0) = 0, x(T) = xtarget.

(7)

Thus, the Hamiltonian associated with the optimal control problem in equation (7) is:

H(x, λ, u) =
1

2
‖u‖2

2 + λ′
(
Ax+ f [2](x, x) +Bu

)
.

As known from optimal control theory, we let u extremize H, that is, we let u(t) = −B ′λ(t), where B ′

denotes the transpose of B and we write necessary conditions

10

ẋ = Ax+ f [2](x, x)−BB′λ

λ̇ = −A′λ− 2f [2](x)′λ

x(0) = 0, x(T) = xtarget.

(8)

The design problem is to find the initial value λ(0) = λ0 compatible with problem (8) that uniquely

determines the optimal control law.

The two point boundary value problem has the same polynomial structure of the initial value problem

in equation (1). We let x = (x, λ) ∈ R2n, and

A =


A −BB′

0 −A′


 , f

[2]
(x, x) =


 f [2](x, x)

−2f [2](x)′λ


 ,

so that the first order term in the solution to (8) is

x1(t) =


x1(t)

λ1(t)


 = eAt


 0

λ0


 = Φ1(t)


 0

λ0


 ,

where Φ1 now maps R2n → R2n. The higher order terms {Φk : Rk×2n → R2n, k > 1} can be recur-

sively defined following equation (5) in Section III-A. Using the series expansion characterization in

Section II-B, we have

x(T)
λ(T)


 = Φ1


 0

λ0


+

+∞∑

k=2

Φk




 0

λ0


 , . . . ,


 0

λ0




 ,

where we drop the T argument as usual. This expression can be rewritten as

xtarget = Φ1,xλλ0 +
+∞∑

k=2

Φk,xλ (λ0, . . . , λ0) , (9)

where we project the image and restrict the domain of the tensor {Φk, k ∈ N} as

Φk




 0

λ0


 , . . . ,


 0

λ0




 =




Φk,xλ (λ0, . . . , λ0)

Φk,λλ (λ0, . . . , λ0)




 .

In summary, the design problem is to find a vector λ0 ∈ Rn solution to equation (9). Once an

appropriate value of λ0 is found, the optimal control law can be computed as a series expansion.

IV. Solving the planning problems via inversion

In this section, we treat both motion planning and minimum energy planning as a function inversion

problem for an appropriate function f characterized via a power series. We study conditions that

11

guarantee that the function f and its Jacobian are invertible. Finally, we describe two approaches to

inverting f and to bound the neighborhood over which the function is invertible.

Equations (6) and (9) are equivalent to the solution of an equation of the form

xtarget = f(y) = f1y +
+∞∑

k=2

fk(y, . . . , y), (10)

where y = p ∈ Rnp for motion planning and y = λ0 ∈ Rn for minimum energy planning. Additionally,

xtarget ∈ Rn, and the tensors fk live in linear spaces of appropriate dimensions. Next, we transcribe the

bounds known from Lemma II.1 into the new setting. Let the sequence {ck, k ∈ N} and the function

C be defined as in Section II-B.

Lemma IV.1: Define

D1 =





2‖eAt‖L1‖Bψ(t)‖L∞
2‖eAt‖L∞

and D2 =





2‖eAt‖L1‖f [2]‖L∞
2‖eAt‖L1‖f

[2]‖L∞
.

Provided D1D2‖y‖∞ ≤ 1, the series converges absolutely, and the following upper bounds hold:

‖fk(y, . . . , y)‖∞ ≤ ckD
k
1D

k−1
2 ‖y‖k∞,

‖f(y)−
K∑

k=1

fk(y, . . . , y)‖∞ ≤
1

D2

RemainderK(C) (D1D2‖y‖∞) .

Proof: We relate the coefficients {d1, d2} for each settings to {D1, D2} via

d1 = 2
(
‖eAtx0‖L∞ + ‖eAt‖L1‖Bu‖L∞

)
=





2‖eAt‖L1‖Bψ(t)c‖L∞

2

∥∥∥∥∥∥
eAt


 0

λ0



∥∥∥∥∥∥
L∞

≤ D1‖y‖∞

d2 = D2.

From Lemma II.1 we transcribe the first of the two bounds

‖fk(y, . . . , y)‖∞ ≤




‖Φk(c, . . . , c)‖∞
‖Φk(λ0, . . . , λ0)‖∞

=




‖xk‖∞
‖xk‖∞

≤ ck d
k
1d

k−1
2 ≤ ckD

k
1D

k−1
2 ‖y‖k∞.

The second bound can be proven using the definition of remainder:

‖f(y)−
K∑

k=1

fk(y, . . . , y)‖∞ ≤
1

d2

RemainderK(C)(d1d2)

≤ 1

d2

+∞∑

k=K+1

ck(d1d2)
k ≤ 1

D2

+∞∑

k=K+1

ck (D1D2‖y‖∞)k

≤ 1

D2

RemainderK(C) (D1D2‖y‖∞) .

12

Theorem IV.2 (A generalized inverse function theorem) Assume the power series in equation (10)

converges absolutely over Va = {y ∈ Rnp | D1D2‖y‖∞ ≤ 1}, and let f : Rnp → Rn, np ≥ n be

the function defined by the series. Furthermore, assume that the tensor f1 is full rank. Then there

exists a neighborhood Vb ⊆ Va such that, for all xtarget ∈ f(Vb), there exists a smooth right inverse

f−1 : f(Vb)→ Vb. Furthermore, if np = n, f−1 is unique.

Proof: It can be seen that f1 = ∂f

∂y
(0) is the Jacobian of f evaluated at y = 0. Since f1 is full

rank, we can compute its pseudo-inverse f p
1 . Let χ ∈ Rn and let y = f p

1χ. Then equation (10) becomes

xtarget = χ+
+∞∑

k=2

fk(f
p
1χ, . . . , f

p
1χ) = h(χ).

The Jacobian of the function h : Rn → Rn evaluated at the origin is

∂h

∂χ
(0) = In.

Therefore, the function h has a unique inverse in a neighborhood of the origin because of Theorem

2.5.2 in [37]. This implies that f−1 exists in a neighborhood of the origin. Furthermore, when np = n,

the inverse function f−1 is unique since the pseudo-inverse f p
1 equals f−1

1 .

A. Existence of solution for linearly controllable systems

Motivated by the previous theorem, we investigate necessary and sufficient conditions in order for

the tensor f1 to be full rank. It turns out that in both settings the property of linear controllability

plays a central role.

Lemma IV.3: There exist smooth base functions {ψi(t) : i ∈ {1, . . . , np}} such that the tensor Φ1 is

invertible if and only if the system in equation (1) is linearly controllable.

Proof: If the tensor Φ1 is full rank, then the linear systems obtained by setting f [2] to zero is

controllable, and therefore the system in equation (1) is linearly controllable. Vice-versa, let np = n

and define the functions

ψi(t) = B′eA
′(T−t)W−1

T ei (11)

WT =

∫ T

0

eA(T−s)BB′eA
′(T−s)ds =W ′

T > 0,

where {e1, . . . , en} is the standard base for Rn andWT is the controllability Grammian. As this system

is linearly controllable by assumption, WT is full rank. Given these input base functions, it is easy to

see that Φ1 = In.

13

The base functions in equation (11) are selected according to the classic minimum energy design for

point to point planning of linear control systems; see [38, page 557].

Lemma IV.4: The tensor Φ1,xλ is invertible if and only if the system in equation (1) is linearly

controllable.

Proof: The tensor Φ1,xλ can be found by solving the differential equation

Φ̇1 =


Φ̇1,xx Φ̇1,xλ

Φ̇1,λx Φ̇1,λλ


 =


A −BB′

0 −A′




Φ1,xx Φ1,xλ

Φ1,λx Φ1,λλ


 , Φi(0) = In,

which simplifies to

Φ̇1,xλ = AΦ1,xλ −BB′e−A′t, Φ1,xλ(0) = 0n.

The solution to the last equation is the convolution integral

Φ1,xλ = −eAT

(∫ T

0

e−AsBB′e−A′sds

)
.

Since Φ1,xλ is the negative of the product of an invertible matrix eAT and the controllability Grammian

of the system (A,B), Φ1,xλ is full rank and invertible if and only if the system (A,B) is controllable.

B. Existence of solution for linearly uncontrollable systems

Now let us consider systems that are not linearly controllable.

Theorem IV.5: Given the n-dimensional time invariant dynamical equation (1), if its linear control-

lability matrix has rank nc < n, then there exists a transformation x̃ = Px, where P is a constant

nonsingular matrix, which transforms (1) into

˙̃x =


 Ãc Ã12

Ãnc 0


 x̃+ f̃ [2](x̃, x̃) +


B̃c

0


 u (12)

with the controllable nc-dimensional subsystem

˙̃xc = Ãcx̃c + B̃cu. (13)

This transformation is called the system’s canonical decomposition; see [38]. The matrix P can

be defined such that P−1 is composed of first nc independent columns of the controllability matrix

[B AB . . . An−1B] augmented by arbitrary vectors that make the matrix nonsingular. The linear

controllability Grammian W̃t for the canonical decomposition (12) reduces to

W̃tc 0

0 0n−nc


 , (14)

14

where W̃tc =
∫ t

0
eÃc(t−s)B̃cB̃

′
ce

Ã′c(t−s)ds is the controllability Grammian for the system (13). Using the

canonical decomposition, the inversion problem (10) can be recast as

 x̃ctarget

x̃nctarget


 = f̃(ỹ) =


 f̃c1
f̃nc1


 ỹ +

+∞∑

k=2


 f̃ck
f̃nck


 (ỹ, . . . , ỹ), (15)

where x̃ctarget
∈ Rnc and x̃nctarget

∈ Rn−nc . Let us then ignore motion on the linearly uncontrollable

space and reduce our planning problem to that on the linearly controllable space Rnc

x̃ctarget
= f̃c(ỹc) = f̃c1 ỹc +

+∞∑

k=2

f̃ck(ỹc, . . . , ỹc), (16)

where ỹ = [ỹ′c ỹ′nc]
′ ∈ Rnp and ỹc ∈ Rnc .

This problem is now in a form where the inverse function theorem can be applied, so we again

investigate necessary and sufficient conditions in order for the tensor f̃c1 to be full rank.

Lemma IV.6: There exist smooth base functions {ψi(t) : i ∈ {1, . . . , np}} such that the tensor

f̃c1 = Φ̃c1 is invertible if and only if the system in equation (1) is linearly controllable on the space

Rnc .

Proof: This proof follows that of Lemma IV.3, where np = n and the base functions are defined

as

ψi(t) = B̃′eÃ
′(T−t)


W̃

−1
Tc

0

0 0n−nc


 ei,

where {e1, . . . , en} is the standard base for Rn. It is then straightforward to find that

f̃1 =


Inc 0

0 0n−nc


 .

and f̃c1 = Inc is invertible.

Lemma IV.7: The tensor f̃c1 = Φ̃c1,xλ is full rank and is invertible if and only if the system in

equation (1) is linearly controllable on the space Rnc .

Proof: This proof follows that of Lemma IV.4. The linear term f̃1 is then defined as

f̃1 = Φ̃1,xλ = −eÃT

(∫ T

0

e−ÃsB̃B̃′e−Ã′sds

)
=


 W̃Tc 0

0 0n−nc




It can then be seen that ỹ = λ̃ ∈ Rn and f̃c1 = W̃Tc has inverse (W̃−1
Tc

) if and only if the system (12)

is linearly controllable.

Remark IV.8: The treatment of linearly uncontrollable systems is particularly important when con-

sidering nonminimum or redundant coordinate representations. Here, a nonminimum coordinate repre-

sentation is a coordinate parametrization of a configuration space for which the number of coordinates

15

exceeds the dimension of the space. Such representations are often important to avoid singularities

and write certain dynamical system in quadratic form (1). For example, unit quaternions or rotation

matrices are very common to model planar and 3D orientations. Furthermore, they are naturally

associated to quadratic vector fields; see the discussion on the model in equation (2) and the PVTOL

with damping example below.

C. Computational approaches

This section presents two methodologies to solve the inverse function problem under the linear

controllability assumption. First, we note that equation (10) can be solved numerically by a root-

finding method such as the classic Newton’s method. This type of routine is well-documented in books

such as [39] and its implementation is relatively straightforward. Along these lines, we present here

a provably convergent iterative method based upon the contraction mapping. We provide an explicit

lower bound on the region of convergence of the algorithm. Second, we provide an explicit inverse

function written in power series expansion. The closed form expressions here are taken from [23], [24],

[25]. Again, we provide an explicit lower bound on the region of convergence of the algorithm.

Iterative contraction algorithm

Define the pseudo-inverse f p
1 and let y = f p

1χ, where χ is the new free variable living in Rn. We

rewrite equation (10) into the equivalent expression:

xtarget = χ+
+∞∑

k=2

fk(f
p
1χ, . . . , f

p
1χ). (17)

Define the map M : Rn → Rn

M(χ) = xtarget −
+∞∑

k=2

fk(f
p
1χ, . . . , f

p
1χ),

and set up the iteration

χ1 = xtarget

χn+1 = xtarget −
+∞∑

k=2

fk(f
p
1χn, . . . , f

p
1χn) =M(χn).

We shall prove convergence of this iteration starting from any initial condition inside the set

S = {χ : ‖χ− xtarget‖∞ ≤ ‖xtarget‖∞}.

16

Theorem IV.9: If

‖xtarget‖∞ < Λ1 =
1

2‖f p
1 ‖∞D1D2

min

{
1

D1‖f p
1 ‖∞

, 1− (D1‖f p
1 ‖∞)2

(1 +D1‖f p
1 ‖∞)2

}
,

there exists a unique χ∗ belonging to the set S and satisfying χ∗ =M(χ∗). Furthermore, the unique

solution can be computed by iterating the map M starting from any initial condition in S.

The proof to this theorem can be found in Appendix II. By this theorem, the set Vb in Theorem IV.2

contains a ball of radius Λ1 about the origin.

Power series inversion algorithm

Next, we present an explicit inverse to the function. We borrow the result from [24], [25]. Consider

the power series in equation (10)

xtarget = f(y) = f1y +
+∞∑

k=2

fk(y, . . . , y).

Let m = n, and assume that f1 is invertible. Define the function g : Rn 7→ Rn via the power series

g(x) = g1x+
+∞∑

k=2

gk(x, . . . , x), (18)

where we let

g1 = f−1
1 , gk(x, . . . , x) = −g1

k∑

m=2

∑

i1+···+il=k
i1,··· ,il<k

fl

(
gi1(x, · · · , x), · · · , gil(x, · · · , x)

)
.

Theorem IV.10: The function g is the inverse of f , and it converges provided

‖xtarget‖∞ ≤ Λ2 =
1

4(D1‖f p
1 ‖∞ + 1)‖f p

1 ‖∞D1D2

< Λ1.

The proof to this theorem can be found in Appendix III. By this theorem, Vb in Theorem IV.2

contains a ball of radius Λ2 about the origin.

V. Simulation

Two models were used to illustrate the algorithms. First, a one dimensional nonlinear system

ẋ = −x2 + u was used to study the convergence properties of these algorithms. Second, a planar

vertical takeoff and landing aircraft model was chosen to test the minimum-energy planning algorithm

performance on a more complicated system.

17

�

�
�

���

���
	���� �
�����
� �

�
�����
� �

Fig. 1. Diagram of the PVTOL model.

A. PVTOL with Damping Example

We consider the model of a simple planar vertical takeoff and landing aircraft model based upon

that of [40], [41], but with added viscous damping forces; see Figure 1. In other words, we consider the

classic PVTOL model subject to a linear drag force. We parameterize its configuration and velocity

space via the state variables (s, c, x, z, ω, vx, vz). We let x and z be the inertial coordinates of the

aircraft and s and c represent its roll angle θ such that s = sin θ and c = cos θ − 1. The angular

velocity is ω and the linear velocities in the body-fixed x (respectively z) axis are vx (respectively

vz). Explicitly separating the linear from the homogeneous polynomial component, the equations are

written as 


ṡ

ċ

ẋ

ż

ω̇

v̇x

v̇z




=




ω

0

vx

vz
−k1

J
ω

−k2

M
vx − gs

−k3

M
vz − gc




+




cω

−sω
cvx − svz

svx + cvz

0

vzω

−vxω




+




0 0

0 0

0 0

0 0

0 h
J
ku

0 1
M
ku

1
M
ku 0





u1

u2


 .

As stated in Section II, the quadratic term can be represented via a symmetric tensor f [2]. In

components, let us write the ith component of f [2](x, x) as (f [2])jki xjxk. All components of f [2]

vanish except for (f [2])jki = (f [2])kji = 1/2 at indices (1, 2, 5), (3, 2, 6), (4, 1, 6), (4, 2, 7), (6, 5, 7) and

(f [2])jki = (f [2])kji = −1/2 at indices (2, 1, 5), (3, 1, 7), (7, 5, 6). The control u1 corresponds to the body

vertical force minus gravity, while u2 corresponds to coupled forces on the wingtips with a net hori-

zontal component. The other forces depend upon the constants ki, which parameterize some damping

force, and g, the gravity constant. The constant h is the distance from the center of mass to the

18

wingtip, while M and J are mass and moment of inertia, respectively. The constant ku is a control

gain.

Remark V.1: Although motion planning for the classic PVTOL example has been done effectively

using flatness [41], the PVTOL with damping model appears not to be flat. A system with state x and

control u is differentially flat if there exists an output function ϑ(x, u, u̇, ü, . . .) such that the states

and controls can be expressed solely as a function of the output and its derivatives. The PVTOL

equations with damping can be rewritten as follows:


u1

u2


 =

M

ku


− sin θ cos θ

cos θ sin θ






ẍ
z̈


+




k2

M
cos2 θ + k3

M
sin2 θ (k2

M
− k3

M
) sin θ cos θ

(k2

M
− k3

M
) sin θ cos θ k2

M
sin2 θ + k3

M
cos2 θ




ẋ
ż


+


0
g




 (19)

u2 =
J

kuh

(
θ̈ +

k1

J
θ̇

)
.

Equating the first and third equations, we obtain

J

h

(
θ̈ +

k1

J
θ̇

)
−M

(
ẍ cos θ + z̈ sin θ +

k2

M
(ẋ cos θ + ż sin θ) + g sin θ

)
= 0. (20)

For the classical PVTOL (when the damping coefficients are zero), the flat output is

ϑ =


x
z


+

J

hM


− sin θ

cos θ


 .

This is also known as the Huygens center of oscillation. Inserting the flat output into (20), the angle

θ is found [42], [41] to be related to the flat output via ϑ̈1 cos θ+ (ϑ̈2 + g) sin θ = 0. Once θ is derived,

the states and controls can then be calculated by using the output relation and equations of motion,

respectively. However, when the damping coefficients are nonzero,

(ϑ̈1 +
k2

M
ϑ̇1) cos θ + (ϑ̈2 +

k2

M
ϑ̇2 + g) sin θ =

J

hM

(
k1

J
+
k2

M

)
θ̇.

Thus, θ can no longer be written in terms of ϑ and its derivatives, so that the classical PVTOL flat

output is no longer a flat output of the system with damping. It is unclear whether flat output still

exist.

B. Implementation

The two algorithms were divided into two implementation steps: preprocessing and control deriva-

tion. Preprocessing includes the system definition and the calculation of the corresponding tensors in

the series expansion. The resulting expansion can be saved to memory for use by the control deriva-

tion. The control derivation includes solution of the inverse problem using the contraction method

19

and the calculation of the controls with respect to that solution. The contraction method was chosen

because it both has a larger lower bound on its radius of convergence as well as a more straightfor-

ward implementation. The simulation was carried out by numerical solution of the ordinary differential

equations. Each of these tasks was implemented in Maple 5.4, primarily due to the nontrivial nature of

the calculation of the required tensors. As this involves computation of a series of tensors of increasing

dimension, each defined by lower order tensors, it necessitates a data type with expandable structure.

This is not straightforward in programming languages such as C, nor in numerical software such as

Matlab. Another disadvantage of Matlab is that its tensor manipulation routines are not as compre-

hensive as its matrix routines, thus requiring nested loops to carry out tensor calculations. While

Maple is less computationally efficient than either of the aforementioned methods (documentation [43]

suggests floating point computations in Maple can be 50 to 500 times slower than in equivalent Fortran

programs), its tensor package accommodates tensor products as well as calculation of the tensors using

the recursive functions, avoiding data structure issues.2 Another computational challenge was posed

by the PVTOL system itself. Its controllability Grammian is ill-conditioned (using the parameters

described below, its condition number [44, page 56] is in the order of 1e + 5), thus requiring careful

treatment and high accuracy. Fortunately, these issues take place in the preprocessing stage and can

be tackled offline. These tensor calculations dominate the preprocessing and require, at most, O(nk+3
tot)

multiplications and integration of O(n2k+4
tot) terms, where ntot and k are the total dimension3 of the

system and the order of the series expansion, respectively (assuming n ≥ k > 1). The integration

then proves to be the primary factor in run time. The control derivation is far less computationally

intensive, as it involves primarily floating point computations. Yet, because the number of recursions

needed to find a solution for a given accuracy is variable, the number of online calculations is less

predictable. This, too, was implemented in Maple, although any programming language would work

as well. For the PVTOL example, using a second order series approximation, on an 800 Mhz Win-

dows ME PC using 128 megabytes of RAM, the algorithm took 98.5 seconds in preprocessing and 2.8

seconds (7 iterations) in solving for the control. Third order series calculations took 13, 173 seconds in

preprocessing and 20.9 seconds (23 iterations) in solving for the control online, corresponding to the

computational estimate above. All of the necessary series data stored for the control derivation stage

amounted to 27 and 168 kilobytes for the second and third order expansions, respectively.

2An implementation in Mathematica was found to encounter similar features as in Maple.
3For the base function algorithm, ntot = n, while ntot = 2n for the minimum energy algorithm

20

C. Results

C.1 Convergence Study

Fig. 2. Final position error for motion planning algorithm (left), minimum energy planning algorithm (right).

The one dimensional system was used to show the solution convergence properties of both algorithms.

For the motion planning algorithm, the inverse problem simplifies to the following root finding problem

and control definition:

xtarget = p− 1

3
p2 +

2

15
p3 − 16

315
p4 +

58

2835
p5 − 1262

155925
p6 + . . . , u = p.

The lower bound of the neighborhood of convergence of the algorithm, as defined in Theorem IV.9, is

‖xtarget‖∞ < .0625. As the control is a constant, the solution to the differential equation, for a positive

coefficient p, can be written as x =
√
p tanh(

√
p t). Truncating the series at orders one through six,

the corresponding coefficients and controls were found. Figure 2 shows the comparative error among

the levels of truncation for a range of xtarget . This shows a general decrease in error as the order of the

truncation increases. The xtarget at which the even truncated series cease to have a solution corresponds

to the maximums of the truncated polynomials. It can therefore be seen that the actual convergence

radius of the algorithm is orders of magnitude greater than the minimum described in Theorem IV.9.

For the minimum energy planning algorithm, the inverse problem simplifies to the following root

finding problem and control definition:

xtarget = −λ0 + 0λ0
2 − 1

10
λ0

3 + 0λ0
4 − 1

180
λ0

5 + 0λ0
6 + . . .

u = −λ0 + t2λ0
2 − 1

2
t4λ0

3 +
1

10
t6λ0

4 − 1

20
t8λ0

5 +
7

450
t10λ0

6 +

21

The lower bound of the neighborhood of convergence of the algorithm, as defined in Theorem IV.9,

is ‖xtarget‖∞ < .0023. The control input is computed via a series expansion on the initial value of the

costate λ0. Figure 2 shows the comparative error among the levels of truncation for a range of xtarget .

This shows a general decrease in error as the order of the truncation increases, although this is not

true uniformly. This is not unexpected, as the error reflects the accuracy of the solution of x only,

ignoring λ. For example, the second order expansion solves the differential equation and constraints

on x exactly, but does not solve as accurately for λ. Thus, a feasible trajectory is generated that is

suboptimal. Despite this apparent non-uniformity, the algorithm behaves very well at xtarget , orders of

magnitude beyond the conservative minimum provided by Theorem IV.9.

Fig. 3. Cost comparison between motion planning with base functions and minimum energy planning algorithms for

series truncated at order 6.

Figure 3 provides a cost comparison between the two techniques for series truncated at order 6.

Understandably, as the target distance increases, the control is active longer and the cost differential

is more apparent, with a difference of 18% of the optimal cost at xtarget = 1.

Figure 4 compares the state histories of the linear case as well as the motion and minimum energy

planning algorithms of order six. As in the previous figures, the optimal algorithm consistently reaches

xtarget with greater accuracy. Both methods significantly outperform their linear counterpart.

22

Fig. 4. Trajectory comparison of the motion planning with base functions and minimum energy planning algorithms

for series truncated at order 6 with their linear counterpart.

C.2 PVTOL

The minimum energy planning algorithm, having showed good performance for the one dimensional

case, was applied to that of the PVTOL. For this case, the aforementioned model was chosen with the

constants k1 = J = k2 = k3 = m = ku = 50, h = 1, and g = 10. As defined in Theorem IV.9, the

lower bound of the neighborhood of convergence of the algorithm is ‖xtarget‖∞ < 1.6e − 13. As with

the one dimensional case, this was over-conservative, as solutions could be found over 1e + 10 times

greater than the bound. One such example is shown in Figure 5, where a positive x displacement of

0.005 was requested with an x component of velocity of −0.0005. Using the series truncated at second

order shows a clear improvement over the linear solution, as the error in the final second order state

is negligible in comparison to the 3 percent error in the final position of the linear case.

VI. Conclusions

We have presented a variety of constructive controllability and minimum energy control algorithms.

The results are local in nature but constructive: existence, uniqueness and optimality are guaranteed

for a class of polynomial systems. Lower bounds on the region of validity of these algorithms are

presented, and evaluated with respect to algorithm performance in specific examples. As for future

research, we plan to investigate how to extend the region of validity of the algorithms by combining

23

Fig. 5. Resulting motions from minimum energy planning algorithm for PVTOL series truncated at orders 1 (top)

and 2 (bottom), starting at rest at the origin with desired final condition of a small negative velocity at the circled

location.

them with randomized planning methods [19], [20] and level set methods [27].

References

[1] F. Bullo and W. T. Cerven, “On trajectory optimization for polynomial systems via series expansions,” in IEEE Conf. on

Decision and Control, (Sydney, Australia), pp. 772–777, Dec. 2000.

[2] R. W. Brockett, “Control theory and singular Riemannian geometry,” in New Directions in Applied Mathematics (P. Hilton

and G. Young, eds.), (New York, NY), pp. 11–27, Springer Verlag, 1982.

[3] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Geometric Control Theory (R. W. Brockett, R. S.

Millman, and H. J. Sussmann, eds.), (Boston, MA), pp. 181–191, Birkhäuser, 1983.

[4] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic

Control, vol. 5, no. 38, pp. 700–726, 1993.

[5] H. J. Sussmann, “New differential geometric methods in nonholonomic path finding,” in Systems, Models, and Feedback:

Theory and Applications (A. Isidori and T. J. Tarn, eds.), pp. 365–384, Boston, MA: Birkhäuser, 1992.

[6] N. E. Leonard and P. S. Krishnaprasad, “Motion control of drift-free, left-invariant systems on Lie groups,” IEEE Transactions

on Automatic Control, vol. 40, no. 9, pp. 1539–1554, 1995.

[7] J. P. Ostrowski, “Steering for a class of dynamic nonholonomic systems,” IEEE Transactions on Automatic Control, vol. 45,

no. 8, pp. 1492–1497, 2000.

[8] H. Zhang and J. P. Ostrowski, “Control algorithms using affine connections on principal fiber bundles,” in IFAC Workshop

on Lagrangian and Hamiltonian Methods for Nonlinear Control, (Princeton, NJ), pp. 129–34, Mar. 2000.

[9] F. Bullo, N. E. Leonard, and A. D. Lewis, “Controllability and motion algorithms for underactuated Lagrangian systems on

Lie groups,” IEEE Transactions on Automatic Control, vol. 45, no. 8, pp. 1437–1454, 2000.

[10] W. T. Cerven and V. L. Coverstone-Carroll, “Optimal reorientation of multibody spacecraft through joint motion using

averaging theory,” AIAA Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 788–795, 2001.

[11] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems: Introductory theory and

examples,” International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[12] P. Martin and P. Rouchon, “Any (controllable) driftless system with 3 inputs and 5 states is flat,” Systems & Control Letters,

vol. 25, no. 3, pp. 167–173, 1995.

[13] M. J. van Nieuwstadt and R. M. Murray, “Rapid hover to forward flight transitions for a thrust vectored aircraft,” AIAA

Journal of Guidance, Control, and Dynamics, vol. 21, no. 1, pp. 93–100, 1998.

24

[14] M. Rathinam and R. M. Murray, “Configuration flatness of Lagrangian systems underactuated by one control,” in IEEE

Conf. on Decision and Control, (Kobe, Japan), pp. 378–389, Dec. 1996.

[15] A. Banaszuk and J. Hauser, “Approximate feedback linearization: A homotopy operator approach,” SIAM Journal on Control

and Optimization, vol. 34, no. 5, pp. 1533–1554, 1996.

[16] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control. Bristol, PA: Taylor & Francis,

1981.

[17] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear programming and collocation,” AIAA

Journal of Guidance, Control, and Dynamics, vol. 10, no. 4, pp. 338–342, 1987.

[18] H. Seywald, “Trajectory optimization based on differential inclusion,” AIAA Journal of Guidance, Control, and Dynamics,

vol. 17, no. 3, pp. 480–487, 1994.

[19] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional

space,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[20] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International Journal of Robotics Research, vol. 20,

no. 5, pp. 378–400, 2001.

[21] E. G. Al’brekht, “On the optimal stabilization of nonlinear systems,” PMM - Journal of Applied Mathematics and Mechanics,

vol. 25, pp. 1254–1266, 1961.

[22] A. Halme, “Polynomial operators for nonlinear systems analysis,” Acta Polytechnica Scandinavica, vol. Ma24, pp. 7–63, 1972.

[23] A. Halme and J. Orava, “Generalized polynomial operators for nonlinear systems analysis,” IEEE Transactions on Automatic

Control, vol. 17, no. 2, pp. 226–8, 1972.

[24] J. Orava and A. Halme, “Inversion of generalized power series representations,” Journal of Mathematical Analysis and

Applications, vol. 45, pp. 136–141, 1974.

[25] R. P. Hamalainen and A. Halme, “A solution of nonlinear TPBVP’s occurring in optimal control,” Automatica, vol. 12, no. 5,

pp. 403–15, 1976.

[26] A. J. Krener, “The construction of optimal linear and nonlinear regulators,” in Systems, Models and Feedback: Theory and

Applications (A. Isidori and T. J. Tarn, eds.), pp. 301–322, Boston, MA: Birkhäuser, 1992.

[27] C. L. Navasca and A. J. Krener, “Solution of Hamilton-Jacobi-Bellman equations,” in IEEE Conf. on Decision and Control,

(Sydney, Australia), pp. 570–574, Dec. 2000.

[28] H. Singh, D. Yoerger, and A. Bradley, “Issues in AUV design and deployment for oceanographic research,” in IEEE Int.

Conf. on Robotics and Automation, (Albuquerque, NM), pp. 1857–1862, Apr. 1997.

[29] C. Rui, I. V. Kolmanovsky, and N. H. McClamroch, “Nonlinear attitude and shape control of spacecraft with articulated

appendages and reaction wheels,” IEEE Transactions on Automatic Control, vol. 45, no. 8, pp. 1455–69, 2000.

[30] K. A. Mclsaac and J. P. Ostrowski, “A geometric approach to anguilliform locomotion: modelling of an underwater eel

robot,” in IEEE Int. Conf. on Robotics and Automation, (Detroit, MI), pp. 2843–8, May 1999.

[31] K. A. Morgansen, V. Duidam, R. Mason, J. W. Burdick, and R. M. Murray, “Nonlinear control methods for planar carangiform

robot fish locomotion,” in IEEE Int. Conf. on Robotics and Automation, (Seoul, Korea), pp. 427–434, Apr. 2001.

[32] W. Kang and A. J. Krener, “Extended quadratic controller form and dynamic state feedback linearization of nonlinear

systems,” SIAM Journal on Control and Optimization, vol. 30, no. 6, pp. 1319–1337, 1992.

[33] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall, second ed., 1995.

[34] F. Bullo, “Series expansions for analytic systems linear in controls,” Automatica, vol. 38, no. 9, pp. 1425–1432, 2002.

[35] H. S. Wilf, Generatingfunctionology. New York, NY: Academic Press, second ed., 1994.

[36] I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, “Trajectory tracking for autonomous vehicles: an integrated approach

to guidance and control,” AIAA Journal of Guidance, Control, and Dynamics, vol. 21, no. 1, pp. 29–38, 1998.

[37] R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of AMS. New York, NY:

Springer Verlag, second ed., 1988.

[38] C.-T. Chen, Linear System Theory and Design. New York, NY: Holt, Rinehart, and Winston, 1984.

25

[39] W. Press, W. Vetterling, S. Teukolsky, and B. Flannery, Numerical Recipes in C. New York, NY: Cambridge University

Press, 1992.

[40] J. E. Hauser, S. S. Sastry, and G. Meyer, “Nonlinear control design for slightly nonminimum phase systems: application to

V/STOL aircraft,” Automatica, vol. 28, no. 4, pp. 665–679, 1992.

[41] P. Martin, S. Devasia, and B. Paden, “A different look at output tracking: Control of a VTOL aircraft,” Automatica, vol. 32,

no. 1, pp. 101–107, 1996.

[42] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechanical control systems: A catalog of prototype

systems,” in ASME International Mechanical Engineering Congress and Exposition, (San Francisco, CA), Nov. 1995.

[43] B. Char et al., Maple V Library Reference Manual. Springer Verlag, 1991.

[44] M. T. Heath, Scientific Computing: an Introductory Survey. New York: McGraw-Hill, 2 ed., 2002.

Appendices

I. Solution of polynomial system as series expansion

We prove here Lemma II.1. Proof: The proof is a direct extension of the treatment in [34]. We

present here only the convergence proof as the derivation of the formal expansion is straightforward.

We start with the bounds

‖x1‖L∞ ≤ ‖eAtx0‖L∞ + ‖eAt‖L1‖Bu‖L∞ = (1/2)d1

‖xk‖L∞ ≤ ‖eAt‖L1‖f [2]‖L∞
k−1∑

i=1

‖xi‖L∞‖xk−i‖L∞ = (1/2)d2

k−1∑

i=1

‖xi‖L∞‖xk−i‖L∞ .

Provided d1d2 ≤ 1, and assuming ‖xk‖L∞ ≤ ckd
k
1d

k−1
2 ,

‖xk+1‖L∞ ≤ (1/2)d2

k∑

i=1

‖xi‖L∞‖xk+1−i‖L∞ ≤ (1/2)d2

k∑

i=1

cick+1−id
k+1
1 dk−1

2 = ck+1d
k+1
1 dk2

‖x−
K∑

k=1

xk‖L∞ ≤
+∞∑

k=K+1

‖xk‖L∞ ≤
+∞∑

k=K+1

ckd
k
1d

k−1
2 =

1

d2

+∞∑

k=K+1

ckd
k
1d

k
2

≤ 1

d2

RemainderK(C)(d1d2).

Thus, Lemma II.1 is true by induction.

II. Convergence of iterative algorithm

We start with some preliminary results. Let Symm(·) be the symmetrization operator [22] defined

as

Symm(F)(y1, y2, . . . , yk) =
1

k!

∑

α1,...,αk∈{0,1}
(−1)(k−

∑k
i=1 αi)F

(
k∑

i=1

αiyi, . . . ,

k∑

i=1

αiyi

)
. (21)

Lemma II.1: Let F be a tensor, i.e., a multi-linear map, from k copies of Rn to Rn. For all y1, y2 ∈ Rn

we have

F (y2, . . . , y2)− F (y1, . . . , y1) =
k−1∑

j=0

Symm(F)(y2 − y1, y2, . . . , y2︸ ︷︷ ︸
k−1−j times

, y1, . . . , y1︸ ︷︷ ︸
j times

). (22)

26

Proof: Consider the following chain of equalities

k−1∑

j=0

Symm(F)(y2 − y1, y2, . . . , y2︸ ︷︷ ︸
k−1−j times

, y1, . . . , y1︸ ︷︷ ︸
j times

) =

k−1∑

j=0


Symm(F)(y2, . . . , y2︸ ︷︷ ︸

k−j times

, y1, . . . , y1︸ ︷︷ ︸
j times

)− Symm(F)(y2, . . . , y2︸ ︷︷ ︸
k−1−j times

, y1, . . . , y1︸ ︷︷ ︸
j+1 times

)




=
k−1∑

j=0

Symm(F)(y2, . . . , y2︸ ︷︷ ︸
k−j times

, y1, . . . , y1︸ ︷︷ ︸
j times

)−
k∑

i=1

Symm(F)(y2, . . . , y2︸ ︷︷ ︸
k−i times

, y1, . . . , y1︸ ︷︷ ︸
i times

)

= Symm(F)(y2, . . . , y2︸ ︷︷ ︸
k−j times

, y1, . . . , y1︸ ︷︷ ︸
j times

)
∣∣∣
j=0
− Symm(F)(y2, . . . , y2︸ ︷︷ ︸

k−i times

, y1, . . . , y1︸ ︷︷ ︸
i times

)
∣∣∣
i=k

= Symm(F)(y2, . . . , y2︸ ︷︷ ︸
k times

)− Symm(F)(y1, . . . , y1︸ ︷︷ ︸
k times

) = F (y2, . . . , y2︸ ︷︷ ︸
k times

)− F (y1, . . . , y1︸ ︷︷ ︸
k times

).

Lemma II.2: For η ∈ [0, 1], the remainder of the Catalan function C(η) = 1− √1− η satisfies

Remainder1

(
1−

√
1− η

)
= (1−

√
1− η)− η

2
≤ η2

2
.

Proof: Let η ∈ [0, 1]. The following chain of inequalities holds

−3

4
+

1

2
η +

1

4
η2 < 0 ⇒ −3

4
η2 +

1

2
η3 +

1

4
η4 + (1− η) ≤ (1− η)

⇒
(
1− 1

2
η − 1

2
η2

)2

≤ (1− η) ⇒
(
1− 1

2
η − 1

2
η2

)
≤
√

1− η ⇒ 1−
√

1− η − 1

2
η ≤ 1

2
η2.

We are finally ready to prove Theorem IV.9, that we restate for convenience.

Theorem II.3: Let z = 2‖f p
1 ‖∞D1D2‖xtarget‖∞. If

z < min

{
1

D1‖f p
1 ‖∞

, 1− (D1‖f p
1 ‖∞)2

(1 +D1‖f p
1 ‖∞)2

}
,

there exists a unique χ∗ belonging to the set S and satisfying χ∗ =M(χ∗). Furthermore, the unique

solution can be computed by iterating the map M starting from any initial condition in S.

Proof: We prove the theorem in three steps. We show first that the series converges for any

input in S, then that S is invariant under the map M, and finally that M is a contraction over S.

First, note that y = f p
1χ implies ‖y‖∞ ≤ ‖f p

1 ‖∞‖χ‖∞, and χ ∈ S implies ‖χ‖∞ ≤ 2‖xtarget‖∞. Hence

we compose the bounds to obtain D1D2‖y‖∞ ≤ D1D2‖f p
1 ‖∞‖χ‖∞ ≤ D1D2‖f p

1 ‖∞2‖xtarget‖∞ = z <

1 − (D1‖fp1 ‖∞)2

(1+D1‖fp1 ‖∞)2
≤ 1, which guarantees series convergence according to Lemma IV.1 and establishes

that the contraction bounds are more conservative than the series bounds.

27

Second, we show that if χ ∈ S, then M(χ) also belongs to S, i.e., ‖M(χ)− xtarget‖∞ < ‖xtarget‖∞.

We compute

‖M(χ)− xtarget‖∞ = ‖
+∞∑

k=2

fk(f
p
1χ, . . . , f

p
1χ)‖∞ = ‖f(f p

1χ)− f1(f
p
1χ)‖∞

=
1

D2

Remainder1(C)(D1D2‖f p
1χ‖∞).

From the bound in Lemma II.2

=
1

D2

Remainder1(C)(D1D2‖f p
1χ‖∞) ≤ (D1D2‖f p

1χ‖∞)2

2D2

≤ (2D1D2‖f p
1 ‖∞‖xtarget‖∞)2

2D2

=
z2

2D2

.

From the second bound on z we have

‖M(χ)− xtarget‖∞ ≤
z2

2D2

= z(D1‖f p
1 ‖∞‖xtarget‖∞) ≤ ‖xtarget‖∞.

Finally, we show that ‖M(χ2) − M(χ1)‖∞ ≤ ρ‖χ2 − χ1‖∞, where 0 ≤ ρ < 1. Applying the

equality (22) from Lemma II.1:

‖M(χ2)−M(χ1)‖∞ = ‖
+∞∑

k=2

k−1∑

j=0

Symm(fk)(f
p
1 (χ2 − χ1), f

p
1χ2, . . . , f

p
1χ2︸ ︷︷ ︸

k−1−j times

, f p
1χ1, . . . , f

p
1χ1︸ ︷︷ ︸

j times

)‖∞

≤
+∞∑

k=2

k−1∑

j=0

(
‖ Symm(fk)‖∞‖f p

1 ‖k∞‖χ2‖k−1−j
∞ ‖χ1‖j∞‖χ2 − χ1‖∞

)

≤ ‖χ2 − χ1‖∞
+∞∑

k=2

k−1∑

j=0

(
‖ Symm(fk)‖∞‖f p

1 ‖k∞2k−1‖xtarget‖k−1
∞
)

≤ ‖χ2 − χ1‖∞
+∞∑

k=2

(
k2k−1‖ Symm(fk)‖∞‖f p

1 ‖k∞‖xtarget‖k−1
∞
)
. (23)

We now upper bound ‖ Symm(fk)‖∞ for k > 1

‖ Symm(fk)‖∞ ≤ (k!)−12k‖fk‖∞ ≤ 21−k2k‖fk‖∞ = 2‖fk‖∞.

Plugging the bound on fk from Lemma IV.1 into equation (23), we obtain

‖M(χ2)−M(χ1)‖∞ ≤ ‖χ2 − χ1‖∞
+∞∑

k=2

(
k2kckD

k
1D

k−1
2 ‖f p

1 ‖k∞‖xtarget‖k−1
∞
)

≤ ‖χ2 − χ1‖∞ 2D1‖f p
1 ‖k∞

+∞∑

k=2

(
kckz

k−1
)
.

28

The power series
(∑+∞

k=1 kakz
k−1
)
is the derivative of the generating function C (note the initial index),

and can be shown to be convergent for z < 1. Using these facts, we can write

‖M(χ2)−M(χ1)‖∞ ≤ ‖χ2 − χ1‖∞D1‖f p
1 ‖k∞

(
1√
1− z

− 1

)
= ρ‖χ2 − χ1‖∞,

where we set ρ = D1‖f p
1 ‖k∞

(
1√
1−z

− 1
)
. A few algebraic equalities based on last bound on z prove

the bound ρ < 1. In summary, the map M is well-defined and is a contraction over the set S. The

statement in the theorem follows from an application of the contraction mapping theorem.

III. Convergence of power series inversion

We start with some useful facts about a series.

Lemma III.1: Let β ∈ R+, consider the series of positive numbers

a1 = 1, ak = β
k∑

m=2

∑

i1+···+im=k
i1,··· ,im<k

ai1 · · · aim , (24)

and define its generating function h(η) =
∑+∞

k=1 akη
k. The following results hold:

(i) h(η) = (1 + η −
√

1− 2(1 + 2β)η + η2)/(2β + 2),

(ii) the function h is defined real, or in other words, the series
∑+∞

k=1 akη
k converges absolutely, provided

0 ≤ η ≤ (4(β + 1))−1, and

(iii) the series c1 = δ, ck = β
∑k

m=2

∑
i1+···+im=k
i1,··· ,im<k

αm−1ci1 · · · cim , can be bounded as ck ≤ δkαk−1ak.

We refer to [34] for the proof of most results in the lemma. Next, we prove Theorem IV.10. Proof:

We start by showing Λ2 ≤ Λ1. First, we have

Λ2 =
1

4(D1‖f p
1 ‖∞ + 1)‖f p

1 ‖∞D1D2

<
1

2‖f p
1 ‖∞D1D2

(
1

(D1‖f p
1 ‖∞ + 1)

)
≤ 1

2‖f p
1 ‖∞D1D2

(
1

D1‖f p
1 ‖∞

)

and furthermore

Λ2 <
1

2‖f p
1 ‖∞D1D2

(
1

(D1‖f p
1 ‖∞ + 1)

)
<

1

2‖f p
1 ‖∞D1D2

(
1

(D1‖f p
1 ‖∞ + 1)

)(
1 +

D1‖f p
1 ‖∞

(D1‖f p
1 ‖∞ + 1)

)

<
1

2‖f p
1 ‖∞D1D2

(
1 + 2D1‖f p

1 ‖∞
(1 +D1‖f p

1 ‖∞)2

)
<

1

2‖f p
1 ‖∞D1D2

(
1− (D1‖f p

1 ‖∞)2

(1 +D1‖f p
1 ‖∞)2

)
.

As seen in the proof of Theorem IV.9, when ‖xtarget‖∞ < Λ1, f is analytic (i.e., its series converges).

Knowing this, we prove that the series defining the inverse function g in equation (18) converges

uniformly in a neighborhood of xtarget. From the Theorem IV.10, one can see that

‖g1‖∞ = ‖f−1
1 ‖∞ , ‖gk‖∞ ≤ ‖g1‖∞

k∑

m=2

∑

i1+···+im=k
i1,··· ,im<k

‖fm‖∞‖gi1‖∞ · · · ‖gim‖∞.

29

Plugging in the bound on ‖fm‖∞ from Lemma IV.1, we have

‖gk‖∞ ≤ ‖g1‖∞
k∑

m=2

∑

i1+···+im=k
i1,··· ,im<k

(
cmD

m
1 D

m−1
2

)
‖gi1‖∞ · · · ‖gim‖∞

≤
(
D1‖f−1

1 ‖∞
) k∑

m=2

∑

i1+···+im=k
i1,··· ,im<k

(D1D2)
m−1 ‖gi1‖∞ · · · ‖gim‖∞ ,

where we used the bound ck ≤ 1, for all k > 1. Let β = D1‖f−1
1 ‖∞, define the series {ak ∈ R, k ∈ N}

as in equation (24), and following induction from the last statement above:

‖gk‖∞ ≤ ‖f−1
1 ‖k∞(D1D2)

k−1ak.

In summary, we have

‖g(xtarget)‖∞ ≤ ‖
+∞∑

k=1

gk(xtarget, . . . , xtarget)‖∞

≤ 1

D1D2

+∞∑

k=1

ak
(
‖f−1

1 ‖∞D1D2‖xtarget‖∞
)k
,

and, by Lemma III.1, convergence is ensured provided 4(D1‖f−1
1 ‖∞ + 1)‖f−1

1 ‖∞D1D2‖xtarget‖∞ ≤ 1.

Next, we prove that g is the inverse of f . The following proof is borrowed from [23] and we report

it here for completeness. Evaluating the following expression,

f−1
1 (f (g(x)))− g(x) = f−1

1 (f − f1) (g(x)) = f−1
1

+∞∑

k=2

fk

(
+∞∑

i1=1

gi1 , · · ·
+∞∑

ik=1

gik

)

= f−1
1

+∞∑

k=2

+∞∑

i1,···ik=1

fk (gi1 , · · · gik) =
+∞∑

k=2

f−1
1

∑

i1+···+im=k
i1,··· ,im<k

fm (gi1 , · · · gim)

=
+∞∑

k=2

gk = f−1
1 (x)− g(x).

Therefore, f−1
1 (f (g(x))) = f−1

1 (x), and (f (g(x))) = x.

