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Planning in Underactuated Mechanical Systems
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Abstract—We introduce the notion of kinematic controllabil-

ity for second-order underactuated mechanical systems. For

systems satisfying this property, the problem of planning

fast collision-free trajectories between zero velocity states

can be decoupled into the computationally simpler problems

of path planning for a kinematic system followed by time-

optimal time scaling. While this approach is well known for

fully actuated systems, until now there has been no way to

apply it to underactuated dynamic systems. The results in

this paper form the basis for efficient collision-free trajectory

planning for a class of underactuated mechanical systems in-

cluding manipulators and vehicles in space and underwater

environments.

Keywords—trajectory planning, underactuated manipula-

tion, nonlinear controllability, affine connections

I. Introduction

The problem of finding the time-optimal trajectory for a
fully actuated robot manipulator along a specified path is
a classical one in robotics. This problem has been solved
by algorithms proposed by Bobrow et al. [1] and Shin and
McKay [2], and later enhancements due to Pfeiffer and Jo-
hanni [3], Slotine and Yang [4], and Shiller and Lu [5].
These algorithms find the minimum-time time scaling of
the path which respects the actuator constraints.

With the time-scaling algorithms in hand, the problem
of finding a fast collision-free trajectory for an n joint ma-
nipulator in its 2n-dimensional state space can be decou-
pled into the computationally simpler problems of planning
paths in the n-dimensional configuration space (considering
joint limits and obstacles) followed by time-optimal time
scaling according to the manipulator dynamics. Any com-
plex geometric configuration constraints are dealt with in
the first phase, irrespective of the robot dynamics. Shiller
and Dubowsky [6] use this decoupling to find globally near-
time-optimal trajectories for a manipulator by considering
the time-optimal time scaling of a large set of candidate
paths. The efficiency of the search is enhanced by prun-
ing candidate paths based on lower-bound estimates of the
travel time, and trajectories are further optimized by local
path optimization in addition to optimal time-scaling.

Unfortunately, the decoupled approach to trajectory
planning does not extend in general to underactuated dy-
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namic systems (second-order systems with fewer actuators
than degrees-of-freedom). If the system has n degrees-of-
freedom and m actuators (m < n), there are n−m state-
dependent equality constraints on the feasible accelerations
of the system, which are sometimes referred to as second-
order nonholonomic constraints. Examples of such systems
include robot manipulators with passive joints, spacecraft,
and underwater vehicles (ignoring drag). Since the ac-
celeration constraints cannot be expressed as constraints
on tangent vectors on the configuration space, meaningful
path planning on the configuration space is precluded. In
general, paths returned by a path planner will either be
(1) infeasible for the robot, due to constraints arising from
underactuation, or (2) feasible at only a certain speed.

In this paper we define a class of kinematically control-
lable underactuated systems for which it is possible to de-
couple trajectory planning between zero velocity states.
The path planner uses a set of decoupling velocity vector
fields defined on the configuration space to find paths which
can be time scaled without violating the underactuation
constraints. As a result, for this class of underactuated dy-
namic systems, we have the basis for efficient collision-free
trajectory planning. This basic approach was first intro-
duced in deriving a trajectory planner for a three degree-
of-freedom robot with a passive third joint (Lynch et al. [7],
[8]).

We envision pairing the decoupling ideas in this paper
with planners for driftless nonholonomic systems. Exam-
ples include path planners for car-like mobile robots [9],
[10]. An alternative to decoupled trajectory planning is
trajectory planning directly in the 2n-dimensional system
state space. This is often referred to as kinodynamic
planning. Complexity results and kinodynamic motion
planners for a variety of fully actuated systems can be
found in [11], [12], [13], [14], [15], [16]. To decrease the
computational cost of kinodynamic motion planning, ran-
domized approaches have been proposed by LaValle and
Kuffner [17], [18] and Hsu et al. [19]. These algorithms
compute search trees exploiting randomization and heuris-
tics to speed up the exploration, and they have been ap-
plied to models of underactuated systems.

Our approach to reducing the computational complexity
of trajectory planning for underactuated mechanical sys-
tems is based on using the structure of the system dynam-
ics to naturally decouple the problem into path planning
followed by time scaling.
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A. Brief overview of decoupled trajectory planning

Consider an underactuated second-order system of the
form

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[
τ
0

]
,

where q ∈ Q = Rn is the configuration, τ ∈ Rm is the
control, and there are n−m second-order constraints due
to underactuation. Although we will consider more general
models of underactuated mechanical systems, this is the
form most often seen for underactuated manipulators, and
it provides a connection to previous work on time-scaling
paths for robotic manipulators.

Consider a path of the system q(s) parameterized by
s ∈ [0, 1] and a time scaling s(t) which assigns a point on
the path for each t ∈ [0, T ]. s(t) is twice-differentiable and
ṡ(t) > 0 for all t ∈ (0, T ). (Such a time scaling is the
output of the minimum-time algorithms described above.)
Then the trajectory of the system can be written q(s(t)),
and each of the n−m constraints has the form

a(s)s̈+ b(s)ṡ2 + c(s) = 0, (1)

where a, b, and c are inertial, centrifugal and Coriolis, and
gravity terms, respectively, of the system in the constrained
directions when restricted to the path. The path q(s) is a
kinematic motion if the constraints are satisfied for any
time scaling, i.e., ṡ, s̈ arbitrary. A velocity vector field V is
a decoupling vector field if all paths q(s) satisfying

dq(s)

ds
= V (q(s))

are kinematic motions. The system is locally kinematically
controllable if there exist p decoupling vector fields such
that the kinematic system

q̇ =

p∑

c=1

Vc(q)wc (2)

(w1, . . . , wp) ∈ {(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . ,

(0, . . . , 0,±1)}

is locally controllable.
It is clear that a path q(s) is a kinematic motion (satisfies

the constraints (1)) if and only if a(s) = b(s) = c(s) = 0.
The requirement that c(s) = 0 implies that the potential
term is zero in the constrained directions. In this paper we
satisfy this condition trivially by only considering systems
with no potential terms.

Our focus is on efficient trajectory planning between zero
velocity states. If the system is locally kinematically con-
trollable, then there exists a feasible path between any two
zero velocity states in the same open connected component
of free configuration space, and we can apply any collision-
free path planner for the driftless kinematic system (2); see
for example [9], [10]. Because each segment of the resulting
path follows one of the decoupling vector fields, the speed
along the segment is limited only by actuator saturation
limits, not by the underactuation constraints. Switches be-
tween decoupling vector fields must occur at zero velocity,

so it is appropriate for the path planner to minimize the
number of switches. An interesting open problem is the de-
sign of motion planners to minimize the number of switches
for general driftless kinematic systems of the form (2).

B. Statement of contributions and organization

In this paper we formalize the notions of “decoupling vec-
tor field” and “kinematic controllability” in the coordinate-
free setting of connections (see for example the work on
configuration controllability by Lewis and Murray [20], and
on motion planning via oscillatory controls by Bullo et
al. [21]). We provide necessary and sufficient conditions for
a vector field to be decoupling, and sufficient conditions for
a system to be kinematically controllable.

Although finding decoupling vector fields is in general a
difficult problem, it is possible to find a variety of exam-
ple systems which are kinematically controllable. We first
study in detail a planar three link manipulator with three
revolute joints (the SCARA configuration or 3R) with a
single unactuated joint. For all three actuator configura-
tions we are able to find decoupling vector fields yielding
kinematic controllability. We then demonstrate kinematic
controllability for some vehicle models in space and under-
water environments. Finally, we illustrate the application
of kinematic controllability to decoupled trajectory plan-
ning with the example of a three-dimensional spacecraft.
Trajectory planning is reduced to path planning via simple
inverse kinematics, followed by time-scaling.

Section II gives a coordinate-free description of underac-
tuated second-order mechanical systems. Section III pro-
vides tests for decoupling vector fields and kinematic con-
trollability. Section IV gives a short catalog of kinemat-
ically controllable systems, presents a detailed study of
planar three link manipulators, and presents results and
examples for vehicles with symmetry. Section V gives an
example of trajectory planning for a kinematically control-
lable system, and Section VI outlines some directions for
future research.

II. Models of mechanical systems

We consider mechanical control systems with total en-
ergy equal to kinetic energy and control inputs bounded
in magnitude. Examples include robot manipulators and
vehicles.

Let q = (q1, . . . , qn) ∈ Q = Rn be the configuration of
the mechanical system, and M be the inertia tensor defin-
ing the kinetic energy and an inner product between vector
fields on Q. In the coordinate system (q1, . . . , qn), Mij de-
notes the (i, j) component of the square matrixM , andM ij

denotes the (i, j) component of the inverse matrix M−1.
Consider the control system:

q̈i + Γi
jk(q)q̇

j q̇k = Y i
1 (q)u1 + . . .+ Y i

m(q)um (3)

q(0) = q0, q̇(0) = 0,

where the summation convention is in place for the indices
j, k that run from 1 to n, and where:
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(i) the n3 scalar functions {q 7→ Γi
jk(q) : i, j, k = 1, . . . , n}

are called Christoffel symbols1 and are computed according
to

Γk
ij =

1

2
M `k

(
∂M`j

∂qi
+

∂M`i

∂qj
−

∂Mij

∂q`

)
, (4)

(ii) {Fa : a = 1, . . . ,m} are the m input co-vector fields,
and {Ya = M−1Fa : a = 1, . . . ,m} are the m input vector
fields, and
(iii) the control inputs (u1, . . . , um) take values in the set
U(q, q̇) ⊂ Rm, where U(q, 0) contains the origin of Rm in
its interior for all q ∈ Rn. An example of such a set is
U = {(u1, . . . , um)| |ui| ≤ 1}.

Systems endowed with fewer control actuators m than
degrees of freedom n are called underactuated. Assuming
the vector fields Y1, . . . , Ym span the first m directions, the
n−m second-order constraints in system (3) read

q̈i + Γi
jk(q)q̇

j q̇k = 0, i = m+ 1, . . . , n. (5)

A. Coordinate-free modeling

In a coordinate-free language, vector fields are written in
terms of the canonical base ( ∂

∂q1 , . . . ,
∂

∂qn
), and co-vector

fields in terms of (dq1, . . . , dqn). We will write both vectors
and co-vectors fields as column vectors; given a co-vector
field F and two vector fields X1, X2, two well defined op-
erations are:

〈F,X1〉 = FTX1

〈〈X1 , X2〉〉 = XT
1 MX2.

Given two vector fields X,Y , the covariant derivative of
Y with respect to X is the vector field ∇XY defined via

(∇XY )i =
∂Y i

∂qj
Xj + Γi

jkX
jY k. (6)

This operation enjoys the property that

∇h1X1
(h2X2) = h1h2(∇X1

X2) + h1(LX1
h2)X2, (7)

where X1, X2 are vector fields, h1, h2 are scalar functions,
and LX1

h2 is the Lie derivative of h2 along X1. The op-
erator ∇ is called the Levi-Civita connection for the me-
chanical system in equation (3); we refer to [22] for a more
complete treatment. Using these concepts, the equations
of motion can be rewritten as

∇q̇ q̇ =

m∑

a=1

Ya(q)ua(t). (8)

Equation (8) is a coordinate-free version of equation (3).
Next, consider the (m < n)-dimensional co-distribution

generated by the input co-vector fields span{F1, . . . , Fm}.
Its annihilator is an (n − m)-dimensional distribution,

1The functions {Γi
jk
(q) : i, j, k = 1, . . . , n} as defined in equation (4)

are called Christoffel symbols in [22], [23]; in other references the M `k

term is omitted [24].

which we shall call the control annihilator distribution, gen-
erated by vector fields {X1, . . . , Xn−m}, such that

〈Fa(q), Xb(q)〉 = 0

for all q ∈ Rn, 1 ≤ a ≤ m, and 1 ≤ b ≤ n−m. The vector
fields Xb are easy to compute since they do not depend on
the inertia tensor M . Given these vector fields, we compute

0 =

m∑

a=1

ua 〈Fa, Xb〉 = 〈M∇q̇ q̇, Xb〉 = 〈〈∇q̇ q̇ , Xb〉〉.

Therefore, a curve q(t) is a solution to the underactuated
system in equation (3) only if it satisfies the n − m con-
straints

〈〈∇q̇ q̇ , Xb〉〉 = 0. (9)

Equation (9) is a coordinate-free version of the second-
order constraint in equation (5).
Example II.1 (A planar body with torque and force)

Consider a planar body endowed with a control torque and
a body-fixed control force applied through the center of
mass. The configuration is (x, y, θ) ∈ R2 × S1, the kinetic
energy is 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇

2, and the Christoffel symbols

{Γk
ij , i, j, k = 1, 2, 3} all vanish. The input co-vectors are

F1 = dθ and F2 = (cos θ)dx + (sin θ)dy, and equation (8)
reads

ẍ = u2 cos θ, ÿ = u2 sin θ, θ̈ = u1.

The annihilator vector field is

X = (sin θ)
∂

∂x
− (cos θ)

∂

∂y

and equation (9) reads

ẍ sin θ − ÿ cos θ = 0.

B. Computational issues

Given an arbitrary robot manipulator, it is often cum-
bersome to compute its Christoffel symbols, the inverse of
its inertia matrix, and the covariant derivative of various
relevant vector fields. This is true even for low-dimensional
systems, such as the three degree-of-freedom manipulator
described later in the paper. Accordingly, these computa-
tions are conveniently implemented in a MathematicaTM

library. The library MechSys is presented in Appendix B.

III. Decoupling vector fields and kinematic

controllability

The solution to the equations of motion for a mechanical
system obeys the second-order differential equation (3) on
the n-dimensional configuration space Q = Rn. Alterna-
tively, the system can be written as a first-order differential
equation on the 2n-dimensional tangent bundle TQ = R2n.

For mechanical control systems, we introduce the notion
of first-order solutions described by vector fields on the
configuration space Q. We require the solution to start
and stop at rest.
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Let s : [0, T ] 7→ [0, 1] be a twice-differentiable function
such that s(0) = 0, s(T ) = 1, ṡ(0) = ṡ(T ) = 0, and ṡ(t) > 0
for all t ∈ (0, T ). We call a curve s with these properties a
time scaling.
Definition III.1 (Decoupling vector field) The vector field

V is a decoupling vector field for the mechanical system (3)
if, for any time scaling s and for any initial condition q0,
the curve q : [0, T ] 7→ Q solving

q̇(t) = ṡ(t)V (q(t)), q(0) = q0, (10)

satisfies the n−m constraints in equation (9).
We call such a curve t 7→ q(t) a kinematic motion.

Necessary and sufficient conditions for a decoupling vec-
tor field are as follows.
Lemma III.2: A vector field V is decoupling for the me-

chanical system (3) if and only if

〈〈V , Xb〉〉 = 0 (11)

〈〈∇V V , Xb〉〉 = 0 (12)

for all 1 ≤ b ≤ n−m.
Proof: Consider a curve q : [0, T ] 7→ Q solving equa-

tion (10). We compute the quantity ∇q̇ q̇ at q̇ = ṡV as

∇q̇ q̇ = s̈V + ṡ∇q̇V

= s̈V + ṡ2∇V V,

where we used the identity (7) and its extension to the
setting of vector fields defined along curves; see [22]. Next,
we recall that the curve q : [0, T ] 7→ Q is a kinematic motion
and V is a decoupling vector field if, for all time scalings s,
the constraints (9) are satisfied. These equalities can be
written as

0 = 〈〈
(
s̈V + ṡ2∇V V

)
, Xb〉〉

for all 1 ≤ b ≤ n−m. Since s is an arbitrary time scaling
and q0 is an arbitrary point, V and ∇V V must separately
have a vanishing inner product with Xb everywhere in Q.
The same argument also shows the other implication.

Roughly speaking, equation (12) encodes the require-
ment that motion along V at constant speed be feasible.
Equation (11) requires the system to be able to speed up
and slow down the motion along V . The terms 〈〈V , Xb〉〉
and 〈〈∇V V , Xb〉〉 play the equivalent role of the coefficients
a(s) and b(s) in equation (1), respectively.

Note that scalar multiples of decoupling vector fields are
again decoupling, but linear combinations may not be de-
coupling. There are mechanical control systems for which
no decoupling vector fields can be found; e.g., any mechan-
ical system with a single control vector field Y such that
∇Y Y 6∈ span{Y }. The maximum number of linearly inde-
pendent decoupling vector fields is m.

As described in the introduction, decoupling vector fields
reduce the complexity of motion planning problems by
turning a dynamic problem into a driftless kinematic one.
Accordingly, it is of interest to define the class of systems
for which this approach applies.

Definition III.3 (Kinematic controllability) The mechan-
ical system (3) is kinematically controllable if every point
in the configuration space Q is reachable via a sequence of
kinematic motions. The system (3) is locally kinematically
controllable if for any q ∈ Q and any neighborhood Uq of
q, the set of reachable configurations from q by kinematic
motions remaining in Uq contains q in its interior.

Obviously, the main difficulty is that there might not
be enough decoupling fields for controllability. A sufficient
test for local kinematic controllability is given below. We
assume the reader to be familiar with the notions of invo-
lutive closure and the Lie algebra rank condition for local
controllability; see [24].
Lemma III.4: The system (3) is locally kinematically

controllable if there exist p ≤ m vector fields V1, . . . , Vp

such that
(i) 0 = 〈〈Xb , Vc〉〉 = 〈〈Xb , ∇VcVc〉〉 for all 1 ≤ b ≤ n −m
and 1 ≤ c ≤ p, and
(ii) the involutive closure of {V1, . . . , Vp} has rank n at all
q ∈ Rn.

Proof: Property (i) ensures that the vector fields Vc

are decoupling. Property (ii) ensures the local controlla-
bility of the driftless kinematic system (2)

q̇ =

p∑

c=1

Vc(q)wc

(w1, . . . , wp) ∈ {(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . ,

(0, . . . , 0,±1)}

and therefore every point in the configuration space is
reachable. In the presence of obstacles, a collision-free path
exists between any two points in an open connected set of
the configuration space.

Finally, we compare our novel characterization of con-
trollability with the notions of small-time local controlla-
bility (STLC) and of small-time local configuration con-
trollability (STLCC); see [25], [20]. It is interesting to do
so since the three notions refer to the system and initial
conditions in equation (3). Local kinematic controllability
implies STLCC, while the opposite is not true. In other
words, local kinematic controllability is only one way in
which a mechanical system can be STLCC. Local kinematic
controllability is neither implied by, nor implies, STLC.
Example III.5 (A planar body with torque and force)

We continue to analyze the planar body in Example II.1.
As decoupling vector fields we propose pure rotation and
translation along the line of force:

V1 = Y1 = M−1F1 =
1

I

∂

∂θ

V2 = Y2 = M−1F2 =
1

m
(cos θ)

∂

∂x
+

1

m
(sin θ)

∂

∂y
.

By construction we have 〈〈V1 , X〉〉 = 〈〈V2 , X〉〉 = 0. Fur-
thermore, an application of equation (6) provides:

∇V1
V1 =

1

I2
∇ ∂

∂θ

∂

∂θ
= 0

∇V2
V2 =

1

m2
∇(cos θ ∂

∂x
+sin θ ∂

∂y )

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
= 0.
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In summary, V1, V2 are decoupling vector fields, and since
{V1, V2, [V1, V2]} is full rank, the system is locally kinemat-
ically controllable.

A. Computing decoupling vector fields

Motivated by the sufficient test for local kinematic con-
trollability in Lemma III.4, we investigate how to find de-
coupling vector fields V . It is sometimes possible to design
educated guesses on possible decoupling vector fields by
relying on intuition about the system’s behavior. One in-
stance is given by the steady translation and pure rotation
vector fields defined in Example III.5. As a first step in
the study of more complicated systems, one can start by
defining similar vector fields with a clear physical mean-
ing. A second set of useful concepts comes from the theory
of Lagrangian reduction and of conservation laws. These
ideas are relevant whenever the system’s kinetic energy is
invariant under a group action, typically a rigid body dis-
placement. In such cases, one should look for decoupling
fields which are themselves invariant under the group ac-
tion.

Although these ideas are helpful, a direct algorithm
would simplify the task. According to Lemma III.2, two
conditions need to be satisfied. To automatically satisfy
the first one while losing no generality, we write

V (q) =

m∑

a=1

ha(q)Ya(q),

where h1, . . . , hm are arbitrary scalar functions on Q. Ac-
cording to equation (7), we compute

∇V V =

m∑

a=1

m∑

b=1

(
hahb∇YaYb + ha

(
LYah

b
)
Yb

)
,

so that the vector field V is decoupling if

0 =

m∑

a=1

m∑

b=1

ha(q)hb(q) 〈〈Xc , ∇YaYb〉〉(q) (13)

for all q ∈ Q, and for all 1 ≤ c ≤ n −m. Equation (13) is
quadratic in the unknown functions h1, . . . , hm and config-
uration dependent. Although no general solution method-
ology appears to be available, solutions can be found on a
case by case basis. For example, in any three degrees-of-
freedom system with two control inputs, only one quadratic
equation needs to be solved as a function of two unknown
variables. This latter problem is tractable with the aid of
symbolic manipulation software.

IV. Examples and extensions

Numerous systems fit the requirements of Lemma III.4,
allowing the decoupling of trajectory planning. Examples
include:
(i) All systems subject to nonholonomic or conservation
law constraints for which kinematic equations of motion
can be written. These systems are described for exam-
ple in [26] as “driftless locomotion systems” and in [27]

���

��� ���

�	��
���

Fig. 1. Three-link 3R planar robot manipulator. This configura-
tion is known as SCARA. The angles (θ1, θ2, θ3) are measured
counterclockwise. (x, y) is the location of the third joint.

as “kinematic mechanical systems.” Examples include the
upright rolling penny and a 3R planar robot arm with a
passive first joint (actuator configuration (0, 1, 1)).
(ii) A 3R planar robot arm with a passive third joint (ac-
tuator configuration (1, 1, 0)), and with a passive second
joint (actuator configuration (1, 0, 1)). The (1, 1, 0) con-
figuration was the original motivating example in [7], [8].
We present all the 3R planar robot configurations in Sec-
tion IV-A.
(iii) Numerous vehicle models including the idealized pla-
nar hovercraft (planar body with two forces away from cen-
ter of mass) and a rigid body in SE(3) with three thrusters
away from the center of mass. The dynamics of these sys-
tems are independent of the configuration, allowing sim-
plified tests for decoupling vector fields. We present these
systems in Section IV-B.

A. Three link planar robot manipulator with a passive joint

We consider a three joint robot manipulator moving in
a horizontal plane (see Figure 1). Different coordinates
will be suited to different tasks: the set (θ1, θ2, θ3) con-
sists of the absolute angles (measured counterclockwise) of
the three links with respect to the horizontal axis, the set
(θ1, r2, r3) measures the relative angles at the second and
third joint, and (x, y, θ3) measures the absolute location of
the third joint and the absolute angle of the third link.

Three control actuator configurations are interesting de-
pending on which control torque is missing. We do not
consider settings in which two control torques are missing,
since the resulting system is necessarily not kinematically
controllable. For each of the interesting configurations, we
present two decoupling vector fields such that their invo-
lutive closure is full rank. We therefore prove that each of
the three configurations is kinematically controllable.

The computations that verify our statements are
straightforward, although tedious. We refer to Appendix B
for a careful implementation in MathematicaTM. For rea-
sons of brevity, we do not analyze the singularities of the
decoupling vector fields and of their involutive closure.
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Actuator configuration (0,1,1)

We rely on the coordinate system (θ1, r2, r3). Accord-
ingly, the input co-vector fields F1, F2, and the annihilator
vector field X are

F1 = dr2, F2 = dr3, X =
∂

∂θ1
.

It is a straightforward computation to see that the inertia
matrix M has the following structure:



M11(r2, r3) M12(r2, r3) M13(r2, r3)
M12(r2, r3) M22(r3) M23(r3)
M13(r2, r3) M23(r3) M33


 . (14)

In other words, the components of the inertia matrix are
independent of θ1 and depend on (r2, r3) in a specific man-
ner. We refer to Appendix A for the expressions for the
inertia’s entries.

The system is locally kinematically controllable and two
decoupling vector fields are

V1 = (M13M23 −M33M12)
∂

∂θ1
+ (M33M11 −M2

13)
∂

∂r2

+ (M12M13 −M11M23)
∂

∂r3
,

V2 = (M12M23 −M13M22)
∂

∂θ1
+ (M12M13 −M11M23)

∂

∂r2

+ (M11M22 −M2
12)

∂

∂r3
.

Note that V1 and V2 are scalar multiples of Y1 = M−1F1,
and Y2 = M−1F2.

Remark IV.1 (Designing the decoupling vector fields)
The key observation is that the system has a symme-
try [23] and a conserved quantity, that is, angular momen-
tum about the first joint. A non-trivial consequence of the
conservation law is that 〈〈∇ViVj , X〉〉 = 0 for i, j ∈ {1, 2}.
Accordingly, one can prove not only that the system is lo-
cally kinematically controllable, but also that it is indeed
kinematic, as defined in [27].

Actuator configuration (1,0,1)

Since this configuration resembles the (0, 1, 1) setting, we
rely on the same coordinate system and on the expression
for the inertia matrix M given in equation (14). The input
co-vector fields F1, F2, and the annihilator vector field X
are

F1 = dθ1, F2 = dr3, X =
∂

∂r2
.

The system is locally kinematically controllable and two
decoupling vector fields are

V1 = −M23
∂

∂r2
+M22

∂

∂r3

V2 = 2

(
M23

∂M12

∂r2
−M22

∂M13

∂r2

)
∂

∂θ1

+

(
2M12

∂M13

∂r2
−M23

∂M11

∂r2

)
∂

∂r2

+

(
M22

∂M11

∂r2
− 2M12

∂M12

∂r2

)
∂

∂r3
.

Remark IV.2 (Designing the decoupling vector fields)
At fixed angle θ1, the system has a symmetry about the
angle r2. The first vector field is designed as discussed in
the previous remark. The second vector field is identified
solving a quadratic equation of the form (13).

Actuator configuration (1,1,0)

We rely on the coordinate system (x, y, θ3). The kinetic
energy of the first two links can be written as

1

2

[
ẋ
ẏ

]T [
M11(x, y) M12(x, y)
M12(x, y) M22(x, y)

] [
ẋ
ẏ

]
. (15)

Let m3, I3 denote the mass and moment of inertia of the
third link; let l3 be the distance from the third joint to the
center of mass of the third link. The kinetic energy of the
third link is

1

2
(I3 +m3l

2
3)θ̇

2
3 +

1

2
m3(ẋ

2 + ẏ2)

+m3l3θ̇3(ẏ cos θ3 − ẋ sin θ3).

The input co-vector fields F1, F2, and the annihilator vec-
tor field X can be written as

F1 = dx, F2 = dy, X =
∂

∂θ3
.

The system is locally kinematically controllable, and two
decoupling vector fields are

V1 = cos θ3
∂

∂x
+ sin θ3

∂

∂y

V2 = sin θ3
∂

∂x
− cos θ3

∂

∂y
+

1

λ

∂

∂θ3
,

where λ = (I3 +m3l
2
3)/m3l3. These motions are trans-

lation along the third link and rotation of the third link
about its center of percussion, respectively.

Remark IV.3 (Designing the decoupling vector fields)
A discussion on the design of these vector fields is presented
in [7], [8]. The key observation is that the system has
analog properties of that of a planar body endowed with
two control forces acting on a point distant from the center
of mass.
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B. Vehicles with symmetry

If the inertia matrix of the mechanical system is indepen-
dent of the system’s configuration, the various quantities
and operations involved in the definition of decoupling vec-
tor fields simplify considerably. This happens for example
in a class of vehicle models whose kinetic energy is invari-
ant under displacement (translations and rotations). While
the coordinate-free formalism in Section II applies to this
setting, there is enough additional structure to this class of
systems to warrant a special treatment.

An (left) invariant system on a Lie group is a mechanical
control system as defined in Section II where
(i) the configuration space is a Lie group G, and the linear
space of body-fixed velocities is the Lie algebra g of G; we
let g ∈ G denote the configuration of the system, and ξ ∈ g

denote the body-fixed velocity. Furthermore, we let [ξ, η]
denote the Lie bracket operation on g, and, given ξ ∈ g we
define its adjoint operator adξ : g→ g as adξ η = [ξ, η],
(ii) the kinetic energy of the system is invariant under dis-
placements, and can be written in the form 1

2ξ
T Iξ, where

the inertia matrix I is a positive-definite tensor over g, and
(iii) {Fa ∈ g

∗ : a = 1, . . . ,m} are body-fixed forces, that
is, input co-vectors, and {Ya = I−1Fa ∈ g : a = 1, . . . ,m}
are input vectors.
The Lie group G is usually the matrix group of rigid dis-
placements SE(3), one of its subgroups, or multiple copies
of one of its subgroups. For example, a satellite’s attitude
belongs to the group of special orthogonal matrices SO(3).
Over these matrix Lie groups, the operation of Lie bracket
can be performed without differentiation, and is equivalent
to the matrix commutator. We refer to [24] for more details
on the group SE(3) and its algebra se(3).

The equations of motion (3) written in terms of the body-
fixed velocity ξ reduce to

ξ̇ = I−1 adTξ Iξ +
m∑

a=1

Yaua(t). (16)

These equations are referred to as the Euler-Poincaré
equations; see [23], [24], [21]. Consider the (m <
n)-dimensional subspace generated by the input co-
vectors span{F1, . . . , Fm}. Its annihilator is an
(n − m)-dimensional subspace generated by vectors
{X1, . . . , Xn−m}, such that

Fa
TXc = 0

for all 1 ≤ a ≤ m, 1 ≤ c ≤ n−m. A curve g : [0, T ] 7→ G is
a solution to the underactuated system in equation (16) if
and only if it satisfies the n−m constraints

0 = Xc
T

m∑

a=1

uaFa = Xc
T
(
Iξ̇ − adTξ Iξ

)
.

Next, we revisit the treatment in Lemma III.2 on decou-
pling vectors and kinematic controllability. A vector V ∈ g

is decoupling if and only if it satisfies

V T IXc = 0 (17)
(
I−1 adTV IV

)T

IXc = V T I [V,Xc] = 0, (18)

u1

zb

yb

xb
u3

u2

d

F

Fb

Fig. 2. A rigid body with three thrusters.

for all c = 1, . . . , n−m. Note that equations (17), (18) do
not depend on g and require no symbolic differentiation.

Finally, we revisit the discussion in Section III-A on com-
puting decoupling vectors fields. Any decoupling vector
field is written as a linear combination of the input vectors

V =

m∑

a=1

haYa,

where h1, . . . , hm are scalar constants. Define the (n−m)
matrices Bc ∈ Rm×m according to

Bc
a,b = Y T

a I adYb Xc.

Mimicking the treatment leading to equation (13), we let
h = [h1, . . . , hm]T ∈ Rm and simplify the condition in equa-
tion (17) to

hTBch = 0 (19)

for all c = 1, . . . , n−m. If h is a solution to these (n−m)
quadratic constraints, then so is αh for all α ∈ R, and
in particular α = 0. To disregard this trivial solution, we
can impose the additional quadratic constraint hTh = 1. In
summary, decoupling vector fields are computed by solving
(n−m+1) quadratic equations in h. Any solution to these
equations defines a decoupling vector field V =

∑
a haYa.

B.1 A three-dimensional underwater vehicle

We consider the case of a neutrally buoyant underwater
vehicle moving in ideal fluid. Recall that the motion of a
rigid body in incompressible, irrotational and inviscid fluid
is Hamiltonian with an inertia tensor which includes added
masses and inertias; see [28], [21]. The case of a vehicle
moving in space (no gravity and no aerodynamic forces) is
obtained by setting the added masses to zero.

A frame Fb is attached to the center of mass of the body
and aligned with the principal axes of inertia (see Figure 2).
The configuration of the body is the matrix g ∈ SE(3)
representing the displacement of Fb relative to an inertial
frame F . We write

g =

[
R p
0 1

]
,

or simply g = (R, p) for shorthand, where R ∈ SO(3) is a
3×3 rotation matrix and p ∈ R3 is the position of the origin
of Fb in F . The velocity of the rigid body is an element
ξ of se(3) = R6, the Lie algebra associated to SE(3). We
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write ξ = (ω, v), where ω ∈ R3 is the angular velocity and
v ∈ R3 is the linear velocity of the body written in Fb. The
kinematic equations are

Ṙ = Rω̂, ṗ = Rv,

where the map ·̂ gives the 3 × 3 skew-symmetric matrix
representation of a vector in R3, that is, in coordinates

̂

a1

a2

a3


 =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

To write the equations of motion as in equation (16), we
need to introduce the ad operator and the inertia matrix.
As shown in [24], one computes

adξ = ad(ω,v) =

[
ω̂ 0
v̂ ω̂

]
.

The kinetic energy of the vehicle is written

1

2
ξT Iξ =

1

2
ωT Jω +

1

2
vTMv,

where the inertia matrix I is block-diagonal with compo-
nents J and M, and where M = diag{mxb ,myb ,mzb} and
J = diag{Jxb , Jyb , Jzb} include any added masses. The dy-
namic equations (with no external forces) are

Jω̇ = Jω × ω + Mv × v

Mv̇ = Mv × ω.

Next we present the external forces. The case of a ve-
hicle subject to a force through the center of mass and
three independent torques is a direct generalization of the
planar body with a pure force and torque; see Section III.
Instead, assume the body is endowed with three body-fixed
control forces applied at a point a distance d from the cen-
ter of mass (see Figure 2). In other words, the three con-
trol forces u1, u2, u3 act along lines parallel to the xb, yb, zb
axes, respectively, at a point (−d, 0, 0), d > 0 in Fb. The
corresponding input vectors are

Y1 =
1

mxb




0
0
0
1
0
0


 , Y2 = −

d

Jzb




0
0
1
0
0
0


+

1

myb




0
0
0
0
1
0


 ,

Y3 =
d

Jyb




0
1
0
0
0
0


+

1

mzb




0
0
0
0
0
1


 ,

and the constraint subspace is generated by

X1 =




1
0
0
0
0
0


 , X2 =




0
0
1
0
0
0


+ d




0
0
0
0
1
0


 , X3 =




0
1
0
0
0
0


− d




0
0
0
0
0
1


 .

Decoupling motions for this system are found by solving
the quadratic equations (19). A direct computation shows
that

Y T
a I adYa Xc = 0

for all a = 1, 2, 3, and c = 1, 2, 3, so that the vectors
Y1, Y2, Y3 are easily shown to be decoupling. The Lie
bracket analysis is also relatively straightforward: Y1 cor-
responds to a translation along the body axis xb, Y3 corre-
sponds to a translation along zb and a rotation about yb,
and a similar statement holds for Y2. A simple calculation
shows that [Y1, Y3] is a translation along yb and [Y1, Y2] is a
translation along zb. The Lie bracket [Y2, Y3] is the sum of
three terms, one of which is rotation about xb. The six vec-
tors {Y1, Y2, Y3, [Y1, Y3], [Y1, Y2], [Y2, Y3]} are therefore lin-
early independent, and the vehicle is locally kinematically
controllable.

V. Trajectory Planning

Trajectory planning between zero velocity states can be
decoupled into path planning on the configuration space
using the decoupling velocities V1, . . . , Vp, followed by time
scaling of the path according to actuator limits. This de-
coupling halves the dimension of the search space, reducing
the computational complexity of the motion planner. How-
ever, the decoupling also precludes the possibility of finding
globally time-optimal trajectories, since the path planner
has no notion of actuator limits. Instead, we search for sub-
time-optimal motion plans by asking the path planner to
minimize the number of switches between decoupling vec-
tor fields. This minimizes the number of times the system
velocity must be brought to zero, resulting in fast motions
in practice.

A decoupled trajectory planner for the 3R robot arm
with a passive third joint was presented in [7], [8]. This
planner takes into account obstacles, workspace limits, and
joint limits. Future work will address collision-free path
planning minimizing the number of switches for more gen-
eral kinematically controllable systems.

A. Trajectory planning via inverse kinematics

Here we briefly consider the problem of trajectory plan-
ning without obstacles for a locally kinematically control-
lable three-dimensional body from an initial g0 to a final
displacement gf belonging to SE(3). Since SE(3) is six-
dimensional, any arbitrary motion requires generically six
motion segments and five switches between decoupling mo-
tions. Each segment follows the flow of a left-invariant de-
coupling vector field Vi, i ∈ {1, . . . , p}. Using the matrix
exponential notation e : se(3)→ SE(3), the path planning
problem is to solve the inverse kinematics problem

gf = g0e
r1Vi1 er2Vi2 er3Vi3 er4Vi4 er5Vi5 er6Vi6

for r1, . . . , r6 ∈ R, and i1, . . . i6 ∈ {1, . . . , p}. We refer
to [24, Chapter 3] for a treatment on inverse kinematics.

As an example, consider a spacecraft with three
thrusters, as in Figure 2. The mass matrix of the space-
craft is M = diag{m,m,m} and its inertia matrix is
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J = diag{Jxb , Jyb , Jzb}. By the analysis of Section IV-
B.1, this spacecraft is locally kinematically controllable.
By analogy to the 3R manipulator with a passive third
joint in Section IV-A, decoupling motions for this vehicle
are translation along the body xb-axis (V1), rotation about
the center of percussion in the xb − yb plane (V2), and ro-
tation about the center of percussion in the xb − zb plane
(V3). If the thrusters are located at (−d, 0, 0) in Fb and
Jyb = Jzb , then the centers of percussion in the xb− yb and
xb − zb planes are coincident at CP = (Jyb/(md), 0, 0). For
simplicity, we make this assumption.

The configuration of the spacecraft is represented by the
body-fixed frame Fp, which is aligned with Fb and located
at CP. The axes of Fp are written {xp, yp, zp}. Define F0 to
be coincident with Fp when the spacecraft is at its initial
configuration. Without loss of generality, let F0 be coinci-
dent with F , and call this configuration g0 = (I, 0), where
I is the 3 × 3 identity matrix. gf is defined by the frame
Fg, coincident with Fp at the goal configuration. The ori-
gin of Fg is located at (xg, yg, zg) in F , and the axes of
Fg are expressed in F as {xg, yg, zg}. The reconfiguration
of the spacecraft can be accomplished by the following six-
step sequence of decoupling motions, based on ZYZ Euler
angles:

1: Rotate tan−1(yg, xg) about zp. (This is the two-
argument arctangent.)

2: Rotate tan−1(zg/
√

x2
g + y2

g) about yp. The xp-axis is

now pointed toward the origin of Fg.

3: Translate
√

x2
g + y2

g + z2
g along xp.

4: Rotate about zp until yp is perpendicular to yg.
5: Rotate about yp until zp = zg.
6: Rotate about zp until yp = yg.

Figure 3 shows an example path generated by this se-
quence. The spacecraft is a uniform density ellipsoid of
length 2m in the xb direction and diameter 1m in the yb−zb
plane. The mass of the spacecraft is 100kg, Jyb = Jzb =
25kg-m2, and the two thrusters in the yb − zb plane are
located at (−0.125m, 0, 0), yielding CP = (2m, 0, 0) in Fb.
The goal configuration of the spacecraft is

gf =

[
Rf pf
0 1

]
=




0 0 1 3m
1 0 0 3m
0 1 0 3m
0 0 0 1


 .

Figure 4 shows the time-optimal thrust values if each
thruster saturates at 100N. One thruster is always satu-
rated. During translation, only thruster u1 is activated,
and the time-optimal thrust is bang-bang. During rota-
tion, u1 is proportional to the square of the angular ve-
locity, to keep the rotation axis fixed. The bounds on u1

define a maximum angular velocity. In this example, this
maximum angular velocity is attained during the final two
rotations, implying that u1 is saturated and the thruster
providing torque must be shut off until it is time to slow the
motion. In this example, the entire motion is completed in
19.16 seconds.

xg

zg

yg

x0

z0
y0

0

1

2

3

4

5

6

Fig. 3. A six-step sequence to reconfigure the spacecraft with three
thrusters. The initial and final configuration of the center of
percussion frame is shown. The location of the thrusters is chosen
to put the center of percussion outside the body to make the
rotational motions easier to see.

u1
u2
u3

Time (s)

T
hr

us
t (

N
)

�-100

�-50

0

50

100

0 5 10 15 20

0 1 2 3 4 5 6

Fig. 4. The time-optimal thruster actuations for the spacecraft path
in Figure 3. The corresponding stages of the motion are shown
above the plot.

VI. Conclusion

The notions of decoupling vector fields and kinematic
controllability allow us to use the structure of underactu-
ated mechanical systems to reduce the computational com-
plexity of collision-free trajectory planning. While a kine-
matic path planners already exist for some kinematically
controllable systems (see, e.g., [7], [8]), future work will
be toward constructing a path planner for general locally
kinematically controllable systems. Trajectories found by
the decoupled approach can be further locally optimized
to smooth out transitions between decoupling vector fields
(eliminating stops) while still satisfying the underactuation
constraints, resulting in faster motions. For robust execu-
tion of the planned trajectories, we plan to study feedback
stabilization of kinematic motions.
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Appendix

I. Inertia matrices for planar three-link

manipulator

For completeness, we report the explicit expression of the
inertia matrix as in equation (14). The expression for the
inertia in the (x, y, θ3) coordinate system is too onerous to
report here.

M11(r2, r3) = I1 + I2 + I3 + l21m1/4 + l21(m2 +m3) + l22m3

+ (l23m3 + l22m2)/4 + l1l2(m2 + 2m3) cos(r2)

+ l2l3m3 cos(r3) + l1l3m3 cos(r2 + r3)

M12(r2, r3) = I2 + I3 + l22(m2/4 +m3) + l23m3/4

+ l1l2(m2 + 2m3) cos(r2)/2 + l2l3m3 cos(r3)

+ l1l3m3 cos(r2 + r3)/2

M13(r2, r3) = I3 + l23m3/4 + l2l3m3 cos(r3)/2

+ l1l3m3 cos(r2 + r3)/2

M22(r3) = I2 + I3 + l22(m2/4 +m3) + l23m3/4

+ l2l3m3 cos(r3)

M23(r3) = I3 + l23m3/4 + l2l3m3 cos(r3)/2

M33 = I3 + l23m3/4.

II. Symbolic computations

It is important to emphasize the difficulty of the symbolic
computations defined in the theoretical developments on
modeling and kinematic controllability. While the mathe-
matical definitions are straightforward, only a careful im-
plementation leads to a speedy execution on a modern
workstation. In the MathematicaTM code below, we em-
ploy two main arrangements to maximize efficiency: we
select appropriate coordinate systems for each setting, and
we emphasize functional dependencies instead of substitut-
ing the exact values of M .

We start by presenting the code to compute the Levi-
Civita connection of a mechanical system (i.e., its Christof-
fel symbols as in equation (4)), and the covariant derivative
of vector fields (equation (6)).

BeginPackage["MechSys‘"]

LeviCivita::usage = "LeviCivita[M,x] computes
the Christoffel symbols of the Levi-Civita
connection for the mechanical system with inertia
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matrix M with respect to the coordinates x.";
CovariantDer::usage = "CovariantDer[X,Y,Nabla,x]

computes the covariant derivative of Y along X
with respect to a connection Nabla in coordinates x.";

Begin["Private‘"]
LeviCivita[M_, x_] :=

Module[{Minv=Inverse[M],i,j,k,h,N=Length[x]},
Table[ Sum[ Minv[[h,k]] ( D[M[[h,j]], x[[i]]] +
D[M[[i,h]], x[[j]]] - D[M[[i,j]], x[[h]]] ) / 2,
{h,N}], {k,N}, {j,N}, {i,N} ]];

CovariantDer[X_, Y_, Nabla_, x_] :=
Module[{i,j,k,N=Length[x]},
Table[ Sum[ D[Y[[i]],x[[j]]] X[[j]] +
Sum[ Nabla[[i,j,k]] X[[j]] Y[[k]],
{k,N}], {j,N}], {i,N} ]];

End[] EndPackage[]

Next, we present the code to study the three actuator
configurations in the three link planar robot manipulator.
We treat the (0, 1, 1) and (1, 0, 1) systems jointly as they
rely on the same coordinate system. The inertia matrix is
as in equation (14).

(** Mathematica code for SCARA 011 & 101 **
** Configuration, inertia, and connection **)

Needs["MechSys‘"];
q = {th1,r2,r3};
M = {{M11[r2,r3], M12[r2,r3], M13[r2,r3]},

{M12[r2,r3], M22[r3], M23[r3] },
{M13[r2,r3], M23[r3], M33 }};

nabla = LeviCivita[M, q];

(** SCARA 011 : decoupling vector fields and **
** their covariant derivatives **)

V1 = {M[[1,3]]M[[2,3]] - M[[3,3]]M[[1,2]],
M[[3,3]]M[[1,1]] - M[[1,3]]^2,
M[[1,2]]M[[1,3]] - M[[1,1]]M[[2,3]]};

V2 = {M[[1,2]]M[[2,3]] - M[[1,3]]M[[2,2]],
M[[1,2]]M[[1,3]] - M[[1,1]]M[[2,3]],
M[[1,1]]M[[2,2]] - M[[1,2]]^2};

V11 = CovariantDer[V1, V1, nabla, q];
V22 = CovariantDer[V2, V2, nabla, q];

(** Control annihilator, and vanishing quantities **)
X = {1,0,0}; Simplify[{V1.M.X, V11.M.X, V2.M.X, V22.M.X}]

(** SCARA 101 : decoupling vector fields and **
** their covariant derivatives **)

V1 = {0, -M[[2,3]], M[[2,2]]};
V2 = {2M[[2,3]] D[M[[1,2]],r2] - 2M[[2,2]] D[M[[1,3]],r2],

2M[[1,2]] D[M[[1,3]],r2] - M[[2,3]] D[M[[1,1]],r2],
M[[2,2]] D[M[[1,1]],r2] - 2M[[1,2]] D[M[[1,2]],r2]};

V11 = CovariantDer[V1, V1, nabla, q];
V22 = CovariantDer[V2, V2, nabla, q];

(** Control annihilator, and vanishing quantities **)
X = {0,1,0}; Simplify[{V1.M.X, V11.M.X, V2.M.X, V22.M.X}]

Finally, we present the (1, 1, 0) case. The inertia matrix
is as in equation (15). To streamline the computations,
we redefine the terms {M11,M12,M22} to account for the
term 1

2m3(ẋ
2 + ẏ2), and we scale them by a factor m3l3.

(** Mathematica code for SCARA 110. **
** Configuration, inertia, and connection **)

Needs["MechSys‘"];
q = {x,y,th3};
M = {{M11[x,y], M12[x,y], -Sin[th3]},

{M12[x,y], M22[x,y], Cos[th3] },
{-Sin[th3], Cos[th3], lambda }};

nabla = Simplify[ LeviCivita[M, q]];

(** decoupling vector fields and **

** their covariant derivatives **)
V1 = {Cos[th3], Sin[th3], 0};
V2 = {Sin[th3], -Cos[th3], 1/lambda };
V11 = CovariantDer[V1, V1, nabla, q];
V22 = CovariantDer[V2, V2, nabla, q];

(** Control annihilator, and vanishing quantities **)
X = {0,0,1}; Simplify[{V1.M.X, V11.M.X, V2.M.X, V22.M.X}]


