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Abstract— This work studies a class of hybrid mechani-

cal systems that locomote by switching between constraints

defining different dynamic regimes. We develop a geomet-

ric framework for modeling smooth phenomena such as in-

ertial forces, holonomic, and nonholonomic constraints, as

well as discrete features such as transitions between smooth

dynamic regimes through plastic and elastic impacts. We

focus on devices that are able to switch between constraints

at an arbitrary point in the configuration space. This class

of hybrid mechanical control systems can be described in

terms of affine connections and jump transition maps that

are linear in the velocity. We investigate two notions of

local controllability, the equilibrium and kinematic control-

lability, and provide sufficient conditions for each of them.

The tests rely on the assumption of zero velocity switches.

We illustrate the modeling framework and the controllabil-

ity tests on a planar sliding, clamped, and rolling device. In

particular, we show how the analysis can be used for motion

planning.

Keywords—mechanical control systems, nonlinear control-
lability, hybrid systems

I. Introduction

A. Problem description and motivation

This work studies a class of mechanical systems that lo-
comote by switching between constraints. Each constraint
results in different dynamic equations. Such system there-
fore form a subclass of hybrid systems. Important rep-
resentatives in this subclass are locomotion and grasping
devices where changes in the dynamics stem from switches
in the constraints describing the interaction between the
device and the environment. While a locomotion device
should be able to move between two arbitrary configura-
tions, it is desirable to minimize the number of actuators
that are necessary to move the device in order to simplify
the mechanical design, reduce the cost, and increase the re-
liability. Nonholonomic constraints can often make up for
the missing actuation, as was for example demonstrated
in [1]. Typically, the price for the reduction in actuation is
the increased complexity of the control algorithms.

In this work we explore a different class of locomotion
devices, where the reduction in the number of actuated
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degrees of freedom is obtained by enabling the device to
switch among several different constrained regimes. A mo-
tivation for studying such devices comes from legged lo-
comotion. However, while in the case of legged locomo-
tion a switch between constraints can only occur when a
leg hits the ground, we consider the case where the device
can switch between the constrained regimes at an arbitrary
point in the configuration space. We describe one such de-
vice, a planar mechanism that can locomote by clamping
one of its links to the ground. A device that could be stud-
ied in this context is the roller-walker described in [2], [3].

Hybrid systems that locomote by switching between con-
straints cannot be analyzed using methods derived for
smooth mechanical systems. On the other hand, techniques
developed for general hybrid systems are not able to ac-
count for the special geometric structure of the mechanical
systems. In this paper we propose a new modeling frame-
work that achieves both: it models the hybrid nature of
the mechanical system and takes into account its special
structure. The modeling framework allows us to study lo-
cal controllability of hybrid locomotion devices. It is worth
remarking that controllability analysis of a mechanism is
useful at several levels. First, it is a necessary step in the
analysis and design of mechanisms as it directly depends
on allocation and availability of actuators. Second, it pro-
vides guidance for design of motion planning algorithms,
And finally, it suggests which control strategies are most
appropriate. For example, controllability analysis has lead
to effective motion planning schemes for various classes of
mechanical control systems, e.g., see the works on driftless
systems on Lie groups [4], [5], on mechanical systems on
Lie groups [6], [7], and on kinematically controllable sys-
tems [8], [9].

B. Previous work

Recent advances in control of smooth Lagrangian sys-
tems have led to a theoretical framework that encom-
passes numerous results on modeling and controllability.
Coordinate-free models for nonholonomic constraints are
discussed in Bloch and Crouch [10] and Lewis [11]. The
modeling framework in both these works is that of affine
connections; see the textbooks by Do Carmo [12] and Mars-
den and Ratiu [13] for background information and for
alternative modeling paradigms. Impact models are dis-
cussed in Brogliato [14]. Controllability results for smooth
mechanical systems are presented in Lewis and Murray [6];
these results exploit the work on small-time local control-
lability by Sussmann [15]. Kinematically controllable sys-
tems are characterized by Bullo and Lynch [9].
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One inherent difficulty in studying local controllability
properties for hybrid systems is that Lie bracket compu-
tations are not well defined between vector fields belong-
ing to different regimes. To overcome this obstacle, Good-
wine and Burdick [16], [17] study the setting of kinematic
mechanical systems defined over stratified manifolds. A
careful construction allows them to compute Lie brackets
between vector fields defined on different strata. The hy-
brid mechanical control systems studied in this work differ
from those considered in [16], [17] in two respects: 1) the
dynamic equations are second order, i.e., our systems are
dynamic (and have drift) instead of being kinematic, and
2) in our case, different constrained regimes are defined
over the same configuration space. This second assump-
tion leads to a well defined computation of Lie brackets.

Several alternatives were proposed for modeling of hybrid
systems. Alur et al. [18] and Nicollin et al. [19] define the
notion of hybrid automaton, building their work on the au-
tomata theory. In Brockett [20], a model is proposed that
augments a state-space model of a dynamical system with
a map that describes the evolution of the discrete state.
Further models and various applications are documented
for example in a sequence of proceedings starting with [21]
through [22]. The focus of most existing studies is on for-
mulating a general model for a hybrid system.

Controllability of hybrid mechanical systems has also at-
tracted considerable attention. Some of the contributions
in this category are [23], [24], [25]. However, as in the case
of modeling, the focus has mostly been on general hybrid
systems and global results. Given that a satisfactory theory
for global controllability is not available even in the smooth
case, the scope of these studies is limited and the results
are difficult to apply in practice. Our aim is instead to fo-
cus on local controllability properties, provide computable
tests, and investigate the relationship with controllability
notions for smooth systems.

C. Statement of contribution

The contribution of this paper is twofold. On one side we
provide a modeling framework that encompasses geometric
models for holonomic and nonholonomic constraints, plas-
tic and elastic impact mechanics, and systems with chang-
ing dynamics. In particular, we present an intrinsic def-
inition of hybrid mechanical control systems in terms of
affine connections and linear jump transition maps. Fur-
thermore, we present a novel instructive example consisting
of a planar mechanism switching between sliding, clamped
and rolling regimes.

Secondly, we present a local nonlinear controllability
analysis for a subclass of hybrid mechanical systems which
are allowed to switch between dynamic regimes at an ar-
bitrary point in the configuration space. We review the
notions of equilibrium and kinematic controllability and
provide coordinate-free sufficient tests that extend the re-
sults for the smooth case to this subclass of hybrid mechan-
ical systems. These algebraic tests are easily verified and
therefore immediately applicable. We illustrate the tests
on the planar mechanism and determine equilibrium and

kinematic controllability of various configurations of the
mechanism. We subsequently use the analysis in designing
motion primitives and a complete local motion planning
algorithm for the device.

The paper is organized as follows. Section II presents a
unified treatment of mechanical systems with constraints
and impacts and a notion of hybrid mechanical control sys-
tem. Section III introduces a sliding, clamped, and rolling
machine as an example of hybrid mechanical control sys-
tem. Section IV characterizes the equilibrium and kine-
matic controllability properties of a class of hybrid me-
chanical control systems and shows its implications for the
planar device. We present our conclusions in Section V.

II. Smooth and hybrid mechanical systems

We start by reviewing some modeling concepts for
smooth mechanical systems. We assume the reader to be
familiar with some geometric concepts employed in nonlin-
ear control theory [26] and in geometric mechanics [13]. In
this work we consider dynamical systems that are not sub-
ject to any potential forces such as gravity other than possi-
bly the control inputs. This assumption is natural since we
are primarily interested in locomotion devices where it is
desirable that with no inputs the system can be in equilib-
rium at any point in the configuration space. We start with
systems with total energy equal to kinetic energy, and later
generalize this model to include constraints and impacts.

A. Mechanical control systems

Let Q be the configuration manifold of a system with
coordinates q = (q1, . . . , qn). At every q ∈ Q, the kinetic
energy of the system defines a Riemannian metric M . We
neglect any potential forces so that the total energy equals

the kinetic energy. If q̇ =
[
q̇1, . . . , q̇n

]T
denotes the velocity

variables, the total energy E for the system is thus

E(q, q̇) = 1

2
Mij q̇

iq̇j .

Note that the summation convention is assumed through-
out the paper. The Christoffel symbols Γi

jk of the metricM
are

Γi
jk =

1

2
M li

(
∂Mlj

∂qk
+
∂Mlk

∂qj
− ∂Mkj

∂ql

)
, (1)

where M li are the components of M−1. Let F 1, . . . , Fm

be the input forces. The input vector fields are then
Yk = M−1 F k and Y = span{Y1, . . . , Ym} is the input dis-
tribution. Then the forced Euler-Lagrange equations for
the system are

q̈i + Γi
jk(q)q̇

j q̇k =
(
Yk(q)u

k(t)
)i
. (2)

Throughout the paper we will assume that the functions uk

are piecewise smooth so that the existence and uniqueness
of solutions to (2) are guaranteed.

The last equation suggests that we can formally de-
fine a mechanical control system as a quadruple Σ =
{Q,M,F , U} where
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(i) Q is an n-dimensional configuration manifold with local
coordinates q = {q1, . . . , qn},
(ii) M : TQ × TQ → R is a metric on Q (the kinetic
energy), that uniquely determines an inertia matrix M ,
(iii) F = span{F 1, . . . , Fm} is an m-dimensional codistri-
bution defining the input forces, and
(iv) U ⊂ Rm is the co-domain for the functions uk.

B. Coordinate-free description

To formulate the equations of motion in a coordinate-free
setting, it is useful to introduce some geometric concepts;
see Do Carmo [12]. Given two vector fields X,Y , the co-
variant derivative of Y with respect to X is a new vector
field ∇XY with coordinates

(∇XY )i =
∂Y i

∂qj
Xj + Γi

jkX
jY k. (3)

The operator ∇ is called an affine connection and it is de-
termined by the functions Γi

jk. When the functions Γi
jk are

computed according to equation (1), the affine connection
is called Levi-Civita. Using these concepts, the equations
of motion (2) can be written in a coordinate-free fashion as

∇q̇ q̇ = Yku
k. (4)

C. Holonomic and nonholonomic constraints

We are interested in a class of locomotion devices that
interact with the surrounding environment via holonomic
or nonholonomic constraints. For both types of constraints,
the Lagrange-d’Alembert principle provides a unified way
for deriving the constrained equations of motion.
Holonomic Constraints Clamping a sliding body to a sur-
face is an example of a holonomic constraint. Formally,
a holonomic constraint is described by an equation of the
form ϕ(q) = 0. We assume that the map ϕ : Q → Rn−p

is smooth and that 0 is a regular value of ϕ, so that
R = ϕ−1(0) is a smooth submanifold of Q. The constraint
on q(t) induces a constraint on q̇(t) via

0 =
d

dt
ϕi(q(t)) = dϕi · q̇, i = 1, . . . , n− p. (5)

This implies that at each point q ∈ Q, the feasible veloc-
ities D(q) ⊂ TqQ correspond to the annihilator of the set
of covector fields {dϕ1(q), . . . ,dϕn−p(q)}. If the covector
fields are represented in coordinates as (column) vectors
α1, . . . , αn−p, the set of feasible velocities D corresponds

to the null-space of the matrix
[
α1 · · ·αn−p

]T
. The char-

acterizing feature of the systems we consider is that the
constraint can become active at any configuration so that
the constraint distribution is defined at least over an open
subset of Q.
Nonholonomic Constraints Rolling without sliding is an
example of a nonholonomic constraint. We describe a non-
holonomic constraint by a p-dimensional constraint distri-
bution D. At each point q ∈ Q, D(q) describes the set of
feasible velocities. In other words, D(q) is the set of direc-
tions in which the device can move instantaneously. Quite

often, the constraint distribution D(q) for nonholonomic
constraints is also described by a set of equations (5).

The advantage of using constraint distributions is that
both holonomic and nonholonomic constraints can be rep-
resented in the same way. In both cases, we can write
q̇ ∈ D(q) for an appropriate distribution D(q).

A mechanical control system together with a constrained
distribution is said to be a constrained mechanical con-
trol system and can be represented by a tuple Σ =
{Q,M,F ,D, U}. A system subject to no constraint can
be thought of as a constrained system by setting D = TQ.

D. Constrained equations of motion

Let P : TQ → D denote the orthogonal projection onto
the distribution of feasible velocities D. Let D⊥ denote the
orthogonal complement to D with respect to the metric M
and let P⊥ = Id−P , where Id is the identity operator. The
Lagrange-d’Alembert constrained variational principle [13]
leads to the equations of motion

∇q̇ q̇ = λ(t) + Yku
k, (6)

P⊥(q̇) = 0, (7)

where λ(t) ∈ D⊥ is the Lagrange multiplier enforcing the
constraint. Following the treatment in [11], equation (6)
can be written as:

∇̃q̇ q̇ = P (Yk)u
k, (8)

where ∇̃ is the affine connection given by

∇̃XY = ∇XY +
(
∇XP

⊥
)
(Y ), ∀X,Y. (9)

The term ∇XP
⊥ stands for the covariant derivative of the

(1, 1) tensor P⊥:

(
∇XP

⊥
)
(Y ) = ∇X

(
P⊥(Y )

)
− P⊥(∇XY ).

In this paper, the connection ∇̃ will be only applied to the
vector fields that belong to D. A short computation shows
that for Y ∈ D:

∇̃XY = P (∇XY ). (10)

The last expression allows us to evaluate ∇̃XY directly
and thus avoid significant amount of computation needed
to explicitly compute ∇̃ from equation (9); see [27].

In summary, it is indeed possible to write the equations
of motion for all constrained mechanical control systems,
be it holonomic or nonholonomic, in the form (4). In every
case the systems evolve over the same manifold Q but they
are described with different affine connections and in each
case the set of input vector fields must be projected to the
appropriate constrained distribution

Y = span{P (Yk) | Yk = M−1F k, k = 1, . . . ,m}.
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E. Plastic and elastic impacts

Next, we provide a geometric interpretation of the classi-
cal treatment of impacts; see Brogliato [14]. Loosely speak-
ing, an impact causes a switch in the equations of motions
and a jump in the system’s velocity. Let (Q,M,F) be a
mechanical control system, let D− and D+ be two con-
straint distributions, and let (∇−,Y−) and (∇+,Y+) be
the corresponding affine connections and input distribu-
tions. We say that the mechanical system undergoes an
impact at time t if the following events occur
(i) the dynamic equations switch from (∇−,Y−) to
(∇+,Y+),
(ii) the state (q, q̇) undergoes a discontinuous change in
velocity described by a linear map Jq : TqQ → TqQ. For-
mally, the linear map is a tensor field J : TQ → TQ,
such that for all q ∈ Q, Jq : TqQ → TqQ. Denoting
q(t−) and q(t+) as the limiting processes lims→t− q(s) and
lims→t+ q(s), we write:

q(t+) = q(t−)

q̇(t+) = Jq · q̇(t−).

This definition generalizes the classic notions of plastic
and elastic impacts. For example, if a particle hits a sur-
face at the configuration q0 with nonzero velocity, then the
linear operator Jq0 annihilates the normal component of
the velocity in the plastic impact case and reverses it in
the elastic impact case (a coefficient of restitution e is used
to account for energy dissipation). Formally, we define:
Plastic impact: The two constraint distributions D− and
D+ are distinct (for example D− = TQ and D+ = TR is
the tangent space of a submanifold R ⊂ Q). The operator
Jq = PD+ is the orthogonal projection from TqQ onto D+.
Elastic impact: The equations of motion do not change, as
the connections and the input distributions do not change.
There exists a distribution D such that

Jq = PD + (−e)P⊥D ,

where PD is the orthogonal projection from TqQ
onto D+(q) and 0 < e ≤ 1 is the coefficient of restitution.

Finally, we note that the above definition of impact ap-
plies to both holonomic and nonholonomic impacts, that
is, to impacts that possibly involve either holonomic or
nonholonomic or both types of constraints. This is an im-
portant advantage of the geometric framework we present.

F. Hybrid mechanical control systems

Finally, we introduce a special class of hybrid systems by
merging the notion of “control systems on manifolds with
an affine connection,” see [6], [11], and that of “controlled
general hybrid dynamical system,” see [28].

The fundamental discrete phenomena we model are con-
trolled switches between distinct sets of constraints, result-
ing in impacts. The underlying structure is a mechanical
control system (Q,M,F) together with a given set of con-
straint distributions Di, where i belongs to an index set I.
Each constraint Di gives rise to a different regime in which
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Fig. 1. A planar mechanism with two links. The mechanism is in
one of the following three regimes: sliding, clamped (the position
and orientation of the first link is clamped to the ground), and
rolling (a wheel parallel to the first link and located at the center
of mass of the link is placed on the ground).

the mechanism can operate. A regime will be also called
a discrete state and is formally modeled by a constrained
mechanical control system Σi = [Q,M,F ,Di, U ], with as-
sociated affine connection ∇i and input distribution Yi.
For simplicity we assume that the system can switch from
a discrete state to any other discrete state, but additional
switching structure could be added. Formally, we define
the hybrid mechanical control system as

HMCS = [I,Q,ΣQ,∆] (11)

where:
(i) I is the index set of constraints,
(ii) Q is the n-dimensional configuration manifold,
(iii) ΣQ = {Σi = [Q,M,F ,Di, U ]}i∈I is the collection of
constrained mechanical control systems on Q,
(iv) ∆ = {δi|i ∈ I} is the set of jump transition maps,
where δiq : TqQ→ Di(q), and δi(q, q̇) = (q, (Jq)i · q̇).
The evolution of a hybrid mechanical control system can
be described as follows. The system starts in a state
(i, (q0, q̇0)) ∈ I × TQ and it evolves according to the dy-
namics given by ∇i and the chosen set of controls. At any
point, we can choose to switch to any other discrete state.
In general, the switch results in an impact and a change in
the velocity. If we require that we can only perform a finite
number of impacts in a finite time interval, we can guar-
antee the existence and uniqueness of the solution of the
equations of motion. Since impacts are under our control,
this is not a very restrictive assumption.

III. A planar mechanisms subject to switching

constraints

We present a simple example that illustrates the concepts
in the previous section and motivates the following sections.
We consider a planar mechanism moving in a horizontal
plane (no gravity) consisting of two homogeneous links of
equal length 2`, of unit density, width and depth; see Fig-
ure 1. The configuration manifold of the two body system
is Q = R2 ×T2, with a configuration q = (xCM, yCM, θ1, θ2).
The variables (xCM, yCM) are the coordinates of the center of
mass, θ1 denotes the angle of the first link with respect to
the horizontal axis and θ2 is the relative angle between the
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first and second link. Both angles are measured counter-
clockwise.

The inertia matrix M of the linkage is

1

3




12` 0 0 0
0 12` 0 0
0 0 2`3(5 + 3 cos θ2) `3(5 + 3 cos θ2)
0 0 `3(5 + 3 cos θ2) 5`3


 .

The control input is a torque applied to the internal joint,
that is, the input codistribution is F = span{dθ2}.

A. Three constrained mechanical controlled systems

We assume that at any location and at any time, the
system can operate in and switch between any of the three
following regimes:
Sliding regime (i = 0) This regime corresponds to the
mechanism that slides without friction on the horizontal
plane; we denote this regime with the index 0. The con-
straint distribution is D0(q) = TqQ.
Clamped regime (i = 1) The system’s first link is clamped
to the ground at some point and orientation (x10, y10, θ10).
The coordinates of the center of mass of the first link are
given by the kinematic relationships

x1 = xCM −
`

2
(cos(θ1) + cos(θ1 + θ2))

y1 = yCM −
`

2
(sin(θ1) + sin(θ1 + θ2)).

(12)

The constraint map is therefore ϕ(xCM, yCM, θ1, θ2) =
(x1, y1, θ1). This holonomic constraint induces a one di-
mensional constraint distribution D1(q). Feasible velocities
will be aligned with

` sin(θ1 + θ2)
∂

∂xCM

− ` cos(θ1 + θ2)
∂

∂yCM

− 2
∂

∂θ2
.

Rolling regime (i = 2) The system has two wheels in con-
tact with the ground; the wheels are located at the center
of mass of the first and second link. The wheels prevent
the links from sliding sideways:

ẋ1 sin θ1 − ẏ1 cos θ1 = 0

ẋ2 sin(θ1 + θ2)− ẏ2 cos(θ1 + θ2) = 0

where x1, y1 are given by (12), and x2, y2 satisfy similar
relationships. In the coordinates q = (xCM, yCM, θ1, θ2), the
constraints read

[
2 sin θ1 −2 cos θ1 `(1 + cos θ2) ` cos θ2

]
· q̇ = 0

[
−2 sin(θ1 + θ2) 2 cos(θ1 + θ2) `(1 + cos θ2) `

]
· q̇ = 0.

It can be verified that the distribution of admissible veloc-
ities D2(q) is generated by the two vector fields

`(1 + c2)(c1 + c12)
∂

∂xCM

+ `(1 + c2)(s1 + s12)
∂

∂yCM

+ 2s2
∂

∂θ1

`(c1 + c2c12)
∂

∂xCM

+ `(s1 + c2s12)
∂

∂yCM

+ 2s2
∂

∂θ2
,

where we introduce the shorthands

ci = cos θi, si = sin θi, cij = cos(θi + θj), etc.

This concludes the definition of three distinct con-
strained mechanical control systems Σi = [Q,M,F ,Di],
for i ∈ {0, 1, 2}. The transitions from any regime to any
other regime are assumed to be ideal plastic impacts.

B. The dynamics of the hybrid mechanical control system

In this section we describe the dynamics in the three
regimes, i.e., we compute (i) the affine connection ∇0 in
the unconstrained regime, (ii) the transition maps δ1 and
δ2 corresponding to the projection maps PD1

and PD2
onto

the constraint distributions D1 and D2, respectively, and
(iii) the input vector field in the three regimes1. These
quantities completely determine the equations of motion
in all three regimes since the constrained connections ∇1

and ∇2 can be evaluated through equation (10).

The affine connection and the input distribution (∇0,Y0)
are computed via a direct application of equations (1). The
only non-vanishing Christoffel symbols for the un-clamped
regime are

Γ333(q) = Γ334(q) = Γ343(q) =
30 sin θ2

−41 + 9 cos(2θ2)
,

Γ344(q) =
3 sin θ2

−5 + 3 cos θ2
Γ433(q) =

6 sin θ2
5− 3 cos θ2

,

Γ444(q) = Γ434(q) = Γ443(q) =
3 sin θ2

5− 3 cos θ2
.

Using Gram-Schmidt decomposition, the orthogonal pro-
jection PD1

onto D1 is

1

16`




6`s2
12

−6`c12s12 −5`2s12 − 3`2c2s12 −5`2s12
−6`c12s12 6`c2

12
5`2c12 + 3`2c2c12 5`2c12

0 0 0 0
−12s12 12c12 10`+ 6`c2 10`


 ,

and the orthogonal projection PD2
onto D2 is

1

16`d1d2




6`d1(8(9c2 − c222)c112) 6`d1(c222 − 9c2)s112
6`d1(c222 − 9c2)s112 6`d1((9c2 − c222)c112 − 8)
48d1s2(2s1s2 − c1c2) −48d1s2(s12 + c1s2)
24d2s2(c12 − c1) 24d2s2(s12 − s1)

4`2d2
1
(5 + 3c2)(c1 + c12)s2 `2d1(3(c1c22 + s1s22) + c122 − 36c1)s2

4`2d2
1
(5 + 3c2)s2(s1 + s12) `2d1s2(3 sin(θ1 − 2θ2) + s112 − 36s1)

16`d2
1
(5 + 3c2) sin(θ2/2)2 6`d1(9c2 − c222)

0 2`d2(3c22 − 7− 4c2)


 ,

where we let d1 = c2 − 2 and d2 = c22 − 7.

Finally, we compute the input distributions in the three
constrained regimes. The input distribution Y0 is gener-
ated by the vector field

Y 0
1 = M−1dθ2 =

3

`3(3 cos θ2 − 5)

(
∂

∂θ1
− 2

∂

∂θ2

)
.

1All the computations were performed in Mathematica. The code
can be obtained at http://motion.csl.uiuc.edu/~bullo/math.
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The input distribution Y1 is generated by the vector field

Y 1
1 = PD1

Y 0
1 =

1

16`3

(
−3` sin(θ1 + θ2)

∂

∂xCM

+3` cos(θ1 + θ2)
∂

∂yCM

+ 6
∂

∂θ2

)
.

The input distribution Y2 is generated by

Y 2
1 = PD2

Y 0
1 =

3

8`3(c2 − 2)

(
`s2(c12 − c1)

∂

∂xCM

+ `s2(s12 − s1)
∂

∂yCM

+ 2(1 + c2)
∂

∂θ1
− 4(1 + c2)

∂

∂θ2

)
.

IV. Equilibrium and kinematic controllability

In this section we investigate the controllability prop-
erties of hybrid mechanical control systems defined as in
Section II-F, that is, systems that can switch between the
constrained regimes at an arbitrary point in the configura-
tion space. We provide sufficient controllability conditions
that rely on the assumption of impact at zero velocity. (In
the terminology of [28], we assume the system undergoes
controlled switches rather than controlled jumps).

For mechanical devices, it is important to distinguish be-
tween the system’s evolution on the full configuration man-
ifold TQ (in coordinates, the space (q, q̇)) and its evolution
when just observed on Q. For example, when studying
locomotion systems subject to velocity constraints we are
primarily interested in how the configuration changed, not
with what velocity the system moved. This is the motiva-
tion behind the notions of configuration, equilibrium, and
kinematic controllability [6], [9] which we now review.

A. Preliminary definitions

We review some basic definitions and notations. Given
a pair of smooth vector fields X,Y on Q, we shall per-
form two operations on them, Lie bracket and symmetric
product:

[X,Y ] = ∇XY −∇YX, 〈X : Y 〉 = ∇XY +∇YX.

Corresponding to these operations between pairs of vector
fields, we introduce two operations on a family of vector
fields X = {X1, . . . , Xm}. We let Lie(X ) be the closure of
X under the Lie bracket operation (the involutive closure),
and we let Sym(X ) be the closure of X under the symmetric
product operation. Within the set Sym(X ), we define the
order of a symmetric product to be the number of vector
fields Xj present in it. We say that a symmetric product
is bad if it contains an even number of each Xi. Otherwise
the product is said to be good. It is worth noting that these
definitions can be stated more accurately via the notion of
free Lie algebra; see [15], [6].

B. Equilibrium and kinematic controllability for smooth
mechanical control systems

We can now present equilibrium controllability defini-
tions and tests from [6] and kinematic controllability def-

initions and tests from [9]; see also [8], [29], [30] for ex-
tensions and related works. In what follows, we con-
sider a smooth constrained mechanical control system Σ =
[Q,M,F ,D, U ] with the associated connection and input
distribution (∇,Y). The equations of motion are

∇q̇ q̇ = Yku
k(t), (13)

where {Y1, . . . , Ym} is a base for Y. Let q0 be a point in Q
and let W be a neighborhood of q0.

B.1 Equilibrium controllability

The set of configurations reachable from q0 ∈ W ⊂ Q
starting at zero initial velocity is defined as

RW
Q (q0,≤ T ) = ∪t≤T {x ∈ Q | ∃ a solution to (13) s.t.

q̇(0) = 0, q(t) ∈W for t ∈ [0, T ], and q(T ) = x}.

The system (13) is small-time locally configuration control-
lable at q0 if there exists a time T such that the reachable
set RW

Q (q0,≤ T ) contains a non-empty open subset of Q
containing q0. The system (13) is equilibrium controllable
on W ⊂ Q, if, for qinitial, qfinal ∈ W , there exist an input
{uk(t), t ∈ [0, T ]} and a solution {q(t), t ∈ [0, T ]} such that
q(0) = qinitial, q(T ) = qfinal, q(t) ∈W for all t ∈ [0, T ], and
q̇(0) = 0, q̇(T ) = 0.

The following results from [6] characterize RW
Q (q0,≤ T )

and provide sufficient tests for both controllability notions.
Lemma IV.1: The reachable set RW

Q (q0,≤ T ) forms an
open subset of the integral manifold through q0 of the dis-
tribution Lie(Sym(Y)).
Lemma IV.2: If the distribution Lie(Sym(Y)) is full rank

at q0, and if every bad symmetric product at q0 is a linear
combination of lower order good symmetric products, then
the system (13) is small-time locally configuration control-
lable at q0.
Lemma IV.3: If both assumptions in Lemma IV.2 are

verified at every q ∈W , then the system (13) is equilibrium
controllable on W .
Roughly speaking, the symmetric closure of the input vec-
tor fields describes what velocities are reachable, while the
involutive closure describes what configurations are reach-
able.

B.2 Kinematic controllability

A vector field V on Q is a decoupling vector field if its
integral curves may be followed, with an arbitrary reparam-
eterization, by controlled trajectories for the system (13).
The system (13) is kinematically controllable on W ⊂ Q
if any two configurations in W can be connected via a
sequence of integral curves of decoupling vector fields.
Roughly speaking, a kinematically controllable system has
the following property: it is possible to design feasible mo-
tion plans using concatenations of integral curves of the
decoupling vector fields. The resulting concatenated curve,
when reparameterized so that each segment begins and
ends with zero velocity, is guaranteed to be a controlled
trajectory for the mechanical system.
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The following results from [9] characterize decoupling
vector fields and kinematically controllable systems.
Lemma IV.4: The vector field V is a decoupling vector

field if and only if both V and ∇V V lie in the input distri-
bution Y.
Lemma IV.5: The system (13) is kinematically con-

trollable on W if it possesses decoupling vector fields
{V1, . . . , Vk} whose involutive closure has maximal rank at
all q ∈W .
Remark IV.6: One can see that a kinematically control-

lable system is also equilibrium controllable. Furthermore,
it turns out that various examples of equilibrium control-
lable systems are also kinematically controllable, e.g., the
systems discussed in [9], [30]. The following system is an
example of an equilibrium controllable mechanical system
which is not kinematically controllable:

ẍ1 = u1, ẍ2 = u2, ẍ3 = ẋ1ẋ2.

¤

C. Equilibrium and kinematic controllability for hybrid me-
chanical control systems

We now analyse the controllability properties for the hy-
brid mechanical control system HMCS = [I,Q,ΣQ,∆] de-
fined in Section II-F. Recall that (∇i,Yi) are the connec-
tion and the input distribution for the ith regime. We let
Yi = span

{
Y i
1 , . . . , Y

i
m

}
be the input distribution, 〈· : ·〉i

be the symmetric product, and Symi(·) be the symmetric
closure for the ith regime.

We start by noting that the definition of equilibrium con-
trollability for a smooth system relies only on the prop-
erties of the solutions to the equations of motion. Since
these solutions are well-defined for hybrid mechanical con-
trol systems, the definition of equilibrium controllability is
also applicable to the hybrid setting. Next, we define de-
coupling vector fields for a hybrid system. A vector field V
onQ is decoupling for the hybrid mechanical control system
[I,Q,ΣQ,∆] if it is decoupling for some smooth regime i,
that is, if for some i its integral curves may be followed,
with an arbitrary reparametrization, by controlled trajec-
tories for the system (∇i,Yi). As in the smooth case, the
hybrid mechanical control system is kinematically control-
lable on W ⊂ Q if any two configurations in W can be
connected via a sequence of integral curves of decoupling
vector fields. As in the smooth case, a kinematically con-
trollable system is also equilibrium controllable.

We can now state the main results in this section.
Theorem IV.7: The hybrid mechanical control sys-

tem (11) is equilibrium controllable on an open set W if
(i) in each discrete state i, every bad symmetric product is
a linear combination of lower order good symmetric prod-
ucts, and
(ii) the distribution Lie(

∑
i∈I Symi(Yi))(q) is full rank at

every q ∈W .
Theorem IV.8: The hybrid mechanical control sys-

tem (11) is kinematically controllable on an open set W
if it possesses decoupling vector fields {V1, . . . , Vk} whose
involutive closure has maximal rank at all q ∈W .

Proof of Theorem IV.7: We start by examining the
set of configurations reachable at zero velocity for the ith
regime. For any point q0 ∈ W , consider the distribution
Lie(Symi(Yi)), and let Ni ⊂ Q be its maximal integral
manifold through the point q0. Because of Lemma IV.1
the trajectories of the ith mechanical system starting from
point q0 at zero velocity are constrained to remain on Ni.
Additionally, because each bad symmetric product is com-
pensated by a lower order, good symmetric product, each
configuration on Ni ∩W is reachable at zero velocity (see
Lemma IV.2). In other words, the set of configurations
that can be reached starting and finishing at zero velocity
for the control system

(∇i)q̇ q̇ = Y i
1u

i
1 + . . .+ Y i

mu
i
m, (14)

is equal to the set of configurations that can be reached for
the control system

q̇ = Xi
1v

i
1 + . . .+Xi

pi
vipi

, (15)

where the family of vector fields {X i
1, . . . , X

i
pi
} generate

the distribution Symi(Yi) = Symi(Y
i
1 , . . . , Y

i
m).

Next, we consider the first order control system

q̇ =
∑

i∈I

(Xi
1v

i
1 + . . .+Xi

pi
vipi

), (16)

where vector fields from all regimes i ∈ I are present.
By assumption (ii), the system in equation (16) satisfies
the Lie algebra rank condition and it is therefore locally
controllable at every point q ∈ W . According to Propo-
sition 2.3 in [15], for any pair qinitial, qfinal ∈ W , there ex-
ist a sequence of vector fields {Xk, k ∈ {1, . . . , N}} be-
longing to ∪i∈I{Xi

1, . . . , X
i
pi
,−Xi

1, . . . ,−Xi
pi
} and positive

numbers {εk, k ∈ {1, . . . , N}} such that

qfinal = ΦXN
εN

◦ · · · ◦ ΦX1
ε1

(qinitial),

where ΦX
ε (q) denotes the flow along the vector field X for

time ε starting from point q.
Finally, we show how to construct a sequence of inputs

to steer the second order control system in equation (14)
from the configuration qinitial at zero velocity to the con-
figuration qfinal at zero velocity. We start by defining
qk = ΦXk

εk
◦· · ·◦ΦX1

ε1
(qinitial). Observe that qk = ΦXk

εk
(qk−1),

and that there exist indices ik ∈ I and j ∈ {1, . . . , pik} such
that Xk = Xik

j or Xk = −Xik
j . Therefore, the configura-

tion qk ∈W is reachable from the configuration qk−1 ∈W
for the control system in equation (15) with i = ik. Fol-
lowing our earlier argument leading to equation (15), the
configuration qk ∈ W is reachable from the configura-
tion qk−1 ∈ W for the control system in equation (14)
with i = ik starting and finishing at zero velocity. Since
the system can switch between regimes at arbitrary points,
we steer the second order control system in equation (14)
from qinitial at zero velocity to qfinal at zero velocity by
switching between regimes ik and ik+1 at configuration qk
and zero velocity.
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Proof of Theorem IV.8: The argument follows the
same three steps as the previous proof. We start by consid-
ering the set of configurations reachable for the ith regime
via a sequence of integral curves of decoupling vector fields.
This set is the maximal integral manifold Ni of the family
of decoupling vector fields {V i

1 , . . . , V
i
ki
} for regime i. In

other words, the set of configurations that can be reached
along integral curves of decoupling vector fields for the con-
trol system (14) is equal to the set of configurations that
can be reached for the control system

q̇ = V i
1 v

i
1 + · · ·+ V i

ki
viki

, (17)

where the input magnitudes {vi1, . . . , viki
} take value in the

discrete set {{1, 0, . . . , 0}, . . . , {0, . . . , 0, 1}}. The rest of
the proof is identical to the previous proof of Theorem IV.7.
Equation (17) plays the same role as equation (15), the
decoupling vector fields V i

j play the same role as the vector

fields Xi
j above, invoking Proposition 2.3 in [15] we can

design a sequence of integral curves connecting the required
configurations, and the final argument is unchanged.

Remark IV.9: The two conditions for equilibrium con-
trollability have the following interpretation. Condition (i)
is the functional equivalent of the bad versus good Lie
bracket condition in Lemma IV.2 and guarantees that the
system is controllable (as opposed to accessible) when re-
stricted to the maximal integral manifold of Lie(Symi(Yi)).
Condition (ii) guarantees that by combining subsequent
motions feasible in different regimes, an open neighborhood
of the initial point is accessible. ¤

Remark IV.10: Both theorems provide sufficient tests
for controllability assuming the velocity at impact is zero.
Roughly speaking, this assumption leads to a decoupling
of the regimes: the system evolves in one regime, stops,
switches to another regime and starts again. By exploring
the equilibrium controllability property (i.e., the fact that
any configuration can be reached at zero velocity), we re-
duce the computation of the reachable configurations for a
second order control system (with drift) to those for a first
order kinematic control system (without drift).

Requiring zero velocity impacts is a restrictive assump-
tion. Nonetheless, this assumption is closely related to the
notions of equilibrium and kinematic controllability, and
leads to tests that are powerful enough for the planar hy-
brid mechanism. How to provide general conditions involv-
ing impacts at non-zero velocity remains an open problem
at this time; see some initial contributions in [31]. ¤

D. Controllability results for the hybrid planar mechanism

The controllability results in the previous subsections
are directly applicable to the planar sliding, clamped, and
rolling mechanism. In this section we discuss how each indi-
vidual regime of the planar mechanism is neither kinemat-
ically nor equilibrium controllable, and how most mecha-
nisms that can switch between two or more regimes are
kinematically and equilibrium controllable.

Let us start by examining the smooth mechanical control
systems corresponding to the three individual regimes for

the hybrid planar mechanism. We compute the symmetric
closure of the input distribution in the three regimes. Let
Y i = Y i

1 denote the input vector field in the ith regime,
and compute

〈
Y 0 : Y 0

〉
0
=

−9 sin θ2
`3(−5 + 3 cos θ2)2

Y 0,

〈
Y 1 : Y 1

〉
1
= 0,

〈
Y 2 : Y 2

〉
2
=

9 sin θ2
4`3(cos θ2 − 2)2

Y 2.

(18)

From these computations, we draw the following conclu-
sions for all three individual regimes (i.e., for all i ∈
{0, 1, 2}):
(i) Symi(Yi) = Yi, so that all (good and bad) symmetric
products are linear combination of first order symmetric
products,
(ii) because of the obvious equalities

〈
Y i : Y i

〉
i

=

2(∇i)Y iY i, the control vector fields Y i are decoupling in
their respective regimes,
(iii) let Ni(q0) be the integral manifold through q0 ∈ Q
of the distribution Yi, i.e., the image of the integral curve
of the control vector field Y i through q0. According to
Lemma IV.1, the evolution of the system in regime i start-
ing from rest at q0 is confined to the 1-dimensional sub-
manifold Ni, and
(iv) the mechanical system defined as the restriction of the
ith regime to the Ni submanifold is kinematically control-
lable and therefore equilibrium controllable.

In summary, the three individual regimes evolve along
1-dimensional submanifolds, over which they are kinemati-
cally controllable. For example, the clamped regime is kine-
matically controllable over a configuration space consisting
of the only variable θ2 ∈ T. However, the three individual
regimes are neither equilibrium nor kinematically control-
lable over the full configuration domain Q = R2 × T2.
Remark IV.11: A smooth mechanical systems with a sin-

gle input for which Symi(Yi) 6= Yi is the roller racer;
see [32], [11], [27]. Similarly to the planar mechanism in the
rolling regime, the roller racer is a two-link planar mech-
anism endowed with two wheels, the difference being that
the two links are assumed to have different length and mass.
It is known [32] that the set of reachable configurations for
the roller racer is an open subset of Q = R2 × T2. ¤

Since the planar mechanism is not equilibrium or kine-
matically controllable in any of his smooth regimes (over
the full configuration domain Q = R2 × T2), we set
out to investigate controllability for the hybrid systems
that can switch between any of these regimes. By
combining the three regimes in all possible manners
{{0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}, we examine four hybrid me-
chanical control systems. According to Theorem IV.7, we
need to look at the following Lie brackets computations.
• For the hybrid mechanical control system {Σ0,Σ1},

rank
{
Lie(Y 0, Y 1)(q)

}

= rank
{
Y 0, Y 1, [Y 0, Y 1], [Y 0, [Y 0, Y 1]]

}
(q) = 4,
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for all (xCM, yCM, θ1, θ2).
• For the hybrid mechanical control system {Σ1,Σ2}

rank
{
Lie(Y 1, Y 2)(q)

}

= rank
{
Y 1, Y 2, [Y 1, Y 2], [Y 2, [Y 1, Y 2]]

}
(q) = 4,

for all (xCM, yCM, θ1, θ2) such that θ2 6= ±π.
• For the hybrid mechanical control system {Σ0,Σ2}

rank
{
Lie(Y 0, Y 2)(q)

}
= 2.

• No further computations are necessary to analyze the
hybrid mechanical control system {Σ0,Σ1,Σ2}.

Theorem IV.7 leads to the following statements. First,
the hybrid mechanical control systems Σ = {Σ0,Σ1}, Σ =
{Σ1,Σ2} and Σ = {Σ0,Σ1,Σ2} are kinematic and equilib-
rium controllable. These three systems correspond to the
hybrid devices: “slide and clamp,” “clamp and roll,” “slide
and clamp and roll.” Second, the system Σ = {Σ0,Σ2},
corresponding to “slide and roll,” does not satisfy condi-
tions of either theorem. Since the theorems only provide
sufficient conditions, we are unable to provide a conclusive
answer as to whether the system is kinematic or equilib-
rium controllable.

E. Application example to motion planning

This section illustrates an application of the modeling
and controllability results above: for the hybrid planar de-
vice we devise a motion planning algorithm based on the
notion of kinematic controllability. We consider for simplic-
ity the hybrid system consisting of regimes {0, 1}, i.e., the
planar device that can slide or clamp. The algorithm de-
velopment is parallel to that for the smooth setting; see [9].

E.1 Integral curves of decoupling vector fields

First, we investigate the decoupling vector fields for
regime 0 and regime 1, and obtain closed form expressions
for their integral curves. We start by rescaling the two
input vector fields Y 0 and Y 1, and redefining:

Y 0 =
∂

∂θ1
− 2

∂

∂θ2
,

Y 1 =
`

2

(
− sin(θ1 + θ2)

∂

∂xCM

+ cos(θ1 + θ2)
∂

∂yCM

)
+

∂

∂θ2
.

The flow along Y 0 for time ∆t is

ΦY 0

∆t (xCM0, yCM0, θ10, θ20) = (xCM0, yCM0, θ10 +∆t, θ20 − 2∆t),

and along Y 1 for time ∆t is

ΦY 1

∆t (xCM0, yCM0, θ10, θ20) =
(
xCM0 +

`

2

(
cos(∆t+ θ10 + θ20)− cos(θ10 + θ20)

)
,

yCM0+
`

2

(
sin(∆t+θ10+θ20)−sin(θ10+θ20)

)
, θ10, θ20+∆t

)
.

E.2 Motion primitives for xCM, yCM, or θ1 displacements

Next, we concatenate integral curves of the vector fields
Y 0 and Y 1 to design the useful combinations which we refer
to as motion primitives. We assume θ2 = 0 at beginning
and end of each primitive, and design motion plans to steer
the variables (xCM, yCM, θ1) from (0, 0, 0) to desired values.

Primitive 1: To rotate the device an angle ∆θ1, we per-
form the sequence of motions
1: Flow along sign(∆θ1)Y

0 for time |∆θ1|
2: Flow along sign(∆θ1)Y

1 for time |2∆θ1|
Accordingly, we write the equations

P 1
∆θ1

(q0) = ΦY 1

2∆θ1

(
ΦY 0

∆θ1
(q0)

)
.

While obtaining the required rotation, this primitive also
results in a center of mass translation in the direction
(− sin θ1, cos θ1) for the amount ` sin(∆θ1). ¤

Primitive 2: To translate the device’s center of mass
along the direction (cos θ1, sin θ1), i.e., along the body-fixed
x-direction, for a positive quantity ∆xCM ∈ [0, 2`] we per-
form the sequence of motions
1: Flow along − sign(αx)Y

0 for time |αx|
2: Flow along − sign(αx)Y

1 for time |αx|
3: Flow along sign(αx)Y

0 for time |αx|
4: Flow along sign(αx)Y

1 for time |αx|
where αx = arccos(1−∆xCM/`). Accordingly, we write the
equations

P 2
∆xCM>0

(q0) = ΦY 1

αx

(
ΦY 0

αx

(
ΦY 1

−αx

(
ΦY 0

−αx
(q0)

)))
.

To obtain a final negative displacement in the amount
∆xCM ∈ [−2`, 0], we employ the opposite order

P 2
∆xCM<0

(q0) = ΦY 0

αx

(
ΦY 1

αx

(
ΦY 0

−αx

(
ΦY 1

−αx
(q0)

)))
,

where αx = arccos(1 + ∆xCM/`). To obtain translations of
amount |∆xCM| > 2`, we iterate the primitive a number of
times equal to the smallest integer greater than or equal to
|∆xCM|/2`. ¤

Primitive 3: To translate the device’s center of mass
along the direction (− sin θ1, cos θ1), i.e., along the body-
fixed y-direction, for a quantity ∆yCM ∈ [−3

√
3/2`, 3

√
3/2`],

we perform the sequence of motions:
1: Primitive 1 for amount αy

2: Primitive 2 for amount αy

3: Primitive 1 for amount −αy

where αy is the unique solution in the range [−2π/3, 2π/3]
to the equation ∆yCM/` = 2 sin(αy)(1 − cosαy). Accord-
ingly, we write the equations

P 3
αy

(q0) = P 1
−αy

(
P 2
αy

(
P 1
αy

(q0)
))

.

While obtaining the required translation, this primitive
also results in a center of mass translation in the direction
(cos θ1, sin θ1) for an amount `(cosαy − cos 2αy). ¤
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Fig. 2. Steering the sliding and clamping machine from the origin
to (xCM, yCM, θ1, θ2) = (1/2, 1/2, π/4, 0). The top figure displays
the profile of θ1 (thick line), xCM (dashed line), and yCM (solid
line), and the bottom figure displays the machine’s position at
the moment of switches between different regimes. We let ` = 1.

E.3 Motion planning via inversion

Finally, we combine motion primitives to reach a desired
endpoint (xd, yd, θd, 0) starting from (xCM, yCM, θ1, θ2) =
(0, 0, 0, 0). The key observation is that

(xd, yd, θd, 0) =

P 1
θd

(
P 2
xd−`(cos(αy)−cos(2αy))

(
P 3
yd−` sin θd

(0, 0, 0, 0)
))

,

provided |yd/`−sin θd| ≤ 3
√
3/2. In summary, we combine

the primitives in the order and amount:
1: Primitive 3 for amount yd − ` sin θd
2: Primitive 2 for amount xd − `(cos(αy)− cos(2αy))
3: Primitive 1 for amount θd
Figure 2 illustrates a motion plan to the final configuration
(xd, yd, θd, 0) = (1/2, 1/2, π/4, 0). A total of 14 switches
between integral curves of Y 0 and Y 1 are required, and
the figure illustrates the total 15 initial and final moments
of each regime.

V. Conclusions

We have presented some geometric tools for the study
of hybrid mechanical control system. This class of hybrid
systems has interesting features such as a very structured
smooth dynamics (described by a set of affine connections)
and jump transition maps linear in the velocity. We have
presented a controllability test that characterizes the reach-
able set via zero velocity impacts. The essential technical
step involves a “reduction” procedure from a dynamic to
a kinematic analysis. Further research will focus on mo-
tion planning and on controllability problems with jumps

at non-zero velocity; see some initial contributions in [31].
Finally, although our results are specific to Lagrangian sys-
tems, we hope to exploit the insight gained from these
structured examples in more general problems.
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