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Abstract

We introduce the notion of kinematic controllability for
second-order underactuated mechanical systems. For
systems satisfying this property, the problem of plan-
ning fast collision-free trajectories between zero velocity
states can be decoupled into the computationally sim-
pler problems of path planning for a kinematic system
followed by time-optimal time scaling. While this ap-
proach is well known for fully actuated systems, until
now there has been no way to apply it to underactuated
dynamic systems. The results in this paper form the
basis for efficient collision-free trajectory planning for a
broad class of underactuated mechanical systems.

1 Introduction

The problem of finding the time-optimal trajectory for a
fully actuated robot manipulator along a specified path is
a classical one in robotics. This problem has been solved
by algorithms proposed by Bobrow et al. [1] and Shin and
McKay [2], and later enhancements due to Pfeiffer and
Johanni [3], Slotine and Yang [4], and Shiller and Lu [5].
These algorithms find the minimum-time time scaling of
the path which respects the actuator constraints.

With the time-scaling algorithms in hand, the prob-
lem of finding a fast collision-free trajectory for an n
joint manipulator in its 2n-dimensional state space can
be decoupled into the computationally simpler problems
of planning paths in the n-dimensional configuration
space (considering joint limits and obstacles) followed
by time-optimal time scaling according to the manip-
ulator dynamics. Any complex geometric configuration
constraints are dealt with in the first phase, irrespective
of the robot dynamics. Shiller and Dubowsky [6] use this
decoupling to find globally near-time-optimal trajectories
for a manipulator by considering the time-optimal time
scaling of a large set of candidate paths.
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Unfortunately, the decoupled approach to trajectory
planning does not extend in general to underactuated
dynamic systems (second-order systems with fewer ac-
tuators than degrees-of-freedom). If the system has n
degrees-of-freedom and m actuators (m < n), there are
n — m state-dependent equality constraints on the fea-
sible accelerations of the system (second-order nonholo-
nomic constraints). Examples of such systems include
robot manipulators with passive joints, spacecraft, and
underwater vehicles (ignoring drag). Since the acceler-
ation constraints cannot be expressed as constraints on
tangent vectors on the configuration space, meaningful
path planning on the configuration space is precluded.
In general, paths returned by a path planner will either
be (1) infeasible for the robot, due to constraints arising
from underactuation, or (2) feasibly followed at only a
certain speed.

In this paper we define a class of kinematically control-
lable underactuated systems for which it is possible to de-
couple trajectory planning between zero velocity states.
The path planner uses a set of decoupling velocity vector
fields defined on the configuration space to find paths
which can be time scaled without violating the second-
order nonholonomic constraints. As a result, for this
broad class of underactuated dynamic systems, we have
the basis for efficient collision-free trajectory planning.
This basic approach was first introduced in deriving a
trajectory planner for a 3DOF robot with a passive third
joint (Lynch et al. [7, 8]). In this paper we formalize the
notions of “kinematically controllable” and “decoupling
vector field” in the geometric framework of [9, 10, 11, 12],
provide tests for them, and give several examples of un-
deractuated dynamic systems which admit decoupling in
trajectory planning.



1.1 Brief overview

Here we briefly summarize the major points of the paper.
The dynamics of an underactuated second-order system
can be written in the form

M@+ Cladi+ 6@ = ( § )

where ¢ € Q = R"™ is the configuration, 7 € R™ is the
control, and there are n — m second-order nonholonomic
constraints due to underactuation. Consider a path of
the system ¢(s) parameterized by s € [0,1] and a time
scaling s(t) which assigns a point on the path for each
t € [0,T]. s(t) is twice-differentiable and $(¢) > 0 for
all t € (0,7). (Such a time scaling is the output of the
minimum-time algorithms described above.) Then the
trajectory of the system can be written ¢(s(¢)), and each
of the n — m second-order nonholonomic constraints has
the form

a(s)3 + b(s)s* + c(s) = 0. (1)

The path ¢(s) is a kinematic motion if the constraints
are satisfied for any time scaling, i.e., §,§ arbitrary. A
velocity vector field V(q) is a decoupling vector field if all
paths ¢(s) satisfying

0s

are kinematic motions. The system is locally kinemati-
cally controllable if there exist p decoupling vector fields
such that the kinematic system

G = ZVc(q)wc (2)
(wi,...,wp) € {Zl,O,..,O),(O,l,O,...,O), ,

is locally controllable.

Tt is clear that the constraints (1) can only be satisfied
for all time scalings s(t) if the potential is zero in the
constrained directions (¢(s) = 0). In this paper we focus
on systems with no potential terms.

If the system is locally kinematically controllable, then
there exists a path between any two configurations in the
same open connected component of free space, and we
can apply any collision-free path planner for the driftless
kinematic system (2). Examples include path planners
for car-like mobile robots [13, 14]. Because each segment
of the resulting path follows one of the decoupling vector
fields, the time scaling along the segment is limited only
by actuator saturation limits, not by the second-order
nonholonomic constraints. Switches between decoupling
vector fields must occur at zero velocity to avoid dis-
continuous velocities, so it is appropriate for the path

planner to minimize the number of switches. The de-
coupling vector fields define a p-dimensional subspace of
the n-dimensional tangent space at any configuration, so
it is not possible to plan a trajectory between arbitrary
states. We focus on trajectory planning between zero
velocity states.

1.2 Organization

Section 2 gives a coordinate-free description of underac-
tuated second-order mechanical systems, and Section 3
provides tests for decoupling vector fields and kinematic
controllability. Section 4 gives examples of kinematically
controllable systems. Although the problem of finding
decoupling vector fields is difficult in general, Section 5
describes a method for finding them for the case of un-
deractuated vehicles.

2 Models of mechanical systems

We consider mechanical control systems with total en-
ergy equal to kinetic energy and control inputs bounded
in magnitude.

Definition 2.1. Let ¢ = (¢%,... ,q") € Q = R" be the
configuration of the mechanical system and consider the
control system:

i + T (@i’ 6" = Vi@ + ...+ Vi (@)um

3)

where the summation convention is in place for the in-
dices j, k that run from 1 to n, and where:

(i) M(q) is the inertia matriz defining an inner product
between vector fields,

(i) the {F;k 20,4,k =1,...,n} are n® Christoffel sym-
bols, derived from M according to
OM,,;
gt

OM,;
Oq?

1 M;;
FsziMMk< —6 ])

og™
where M™* is the (m, k) component of M1,

(i1i) {Fo(q) : a = 1,...,m} are the m input co-vector
fields, and {Y,(q) = M Y (q)F,(q) :a =1,...,m}
are the m input vector fields.

Systems endowed with fewer control actuators m than
degrees of freedom n are called underactuated, i.e., m <
n. Assuming the vector fields Y1, ... ,Y,, span the first
m directions, the n —m second-order constraints in sys-
tem (3) read
(4)

i +Ti(@@d* =0, i=m+1,...,n.



Coordinate-free modeling

In a coordinate-free language, vector fields are written

in terms of the canonical base {a%l’ ... ,%}, and co-
vector fields in terms of {dq!,...,dq"}. We will write

both vectors and co-vectors fields as as column vectors;
given a co-vector field F' and two vector fields X, Xo,
two well defined operations are:

<F7 Xl) = FTXI
(X1, Xo)) = XTI MX,.
Given two vector fields X,Y, the covariant derivative

of Y with respect to X is the third vector field VxY
defined via

QY

- 5
5 )
The operator V is called the Levi-Civita connection for

the mechanical system in equation (3). Using these con-
cepts, the equations of motion can be rewritten as

(VxY)i = X7 4T XY

m
Vig = Z Ya(q)ua(t), (6)
a=1
Equation (6) is a coordinate-free version of equation (3).
Consider the m < n dimensional co-distribution gener-
ated by the input co-vector fields span{Fy, ..., Fy,}. Its
annihilator is an n — m dimensional distribution, which
we shall call the constraint distribution, generated by
some vector fields {Xy,..., X, m}, such that

(Fo(q), Xp(q)) =0

forallge ", 1 <a<m,and 1 <b < n—m. Note that
the vector fields X} are easy to compute since they do not
depend on the inertia tensor M. Given these constraint
vector fields, we compute

m
0= ua(Fa, Xp) = (MVyd, Xp) = (Vd, Xp).
a=1
Therefore, a curve ¢(t) is a solution to the underactuated
system in equation (3) if it satisfies the n —m constraints

(V4d, Xp) = 0. (7)

Equation (7) is a coordinate-free version of equation (4).

Computational issues

Given an arbitrary robot manipulator, it is very de-
manding to compute its Christoffel symbols, the in-
verse of its inertia matrix, and the covariant derivative
of various relevant vector fields. This is true even for
low-dimensional systems, such as the three degree-of-
freedom manipulator later in the paper. Accordingly,
these computations are conveniently implemented in a
Mathematica™ library. The library MechSys is avail-
able at http://motion.csl.uiuc.edu/"bullo/math.

3 Decoupling vector fields and
kinematic controllability

The solution to the equations of motion for a mechan-
ical system obeys the second-order differential equa-
tion (3) on the n-dimensional configuration space @, or
in other words a first-order differential equation on the
2n-dimensional phase space T'Q.

For mechanical control systems, we introduce the no-
tion of first-order solutions described by vector fields on
the configuration space ). We furthermore require the
solution to start and stop at rest.

Let s :[0,T] — [0,1] be a twice-differentiable function
such that s(0) = 0,s(T) = 1,5(0) = $(T) = 0, and
$(t) > 0 for all t € (0,T). We call a curve s with these
properties a time scaling.

Definition 3.1 (Decoupling vector field). The wvec-
tor field V is a decoupling vector field for the mechanical
system (3) if, for any time scaling s and for any initial
condition qo, the curve q(t) on @ solving

4(t) = 3()V(4(®)),

satisfies the n — m constraints in equation (7).

9(0) = qo, (8)

We call one such curve ¢(t) a kinematic motion.
Necessary and sufficient conditions for a decoupling
vector field are as follows.

Lemma 3.2. The vector field V is decoupling for the
mechanical system (3) if and only if

(V,Xp) =0
(VvV,Xe) =0

forall1<b<n-—m.

(9)
(10)

Proof. Consider a curve ¢(t) such that ¢(t) =
5(t)V(g(t)). The property VixY = f(VxY) leads to:
Vg = Vv (sV)
=35V + 5V V =5V + &V V.

The curve ¢(t) is a kinematic motion and V' is a decou-
pling vector field if the constraints (7) are satisfied:

0={(V4q, Xp)
which can be written

0= (3V+8VvV), Xp)

for all 1 < b < n —m. Note that {V, Xp) and
(VyV, Xp) are equivalent to a(s) and b(s) in equa-
tion (1), respectively. Since s is an arbitrary time scaling
and qg is an arbitrary point, V' and VvV must separately
have a vanishing inner product with X;. The same ar-

gument also shows the other implication.
O



Remark 3.3. Roughly speaking, equation (10) encodes
the requirement that motion along V at constant speed be
feasible. Equation (9) requires the system to be able to
speed up and slow down the motion along V.

As described in the introduction, decoupling vector
fields reduce the complexity of motion planning problems
by turning a dynamic problem into a driftless kinematic
one. Accordingly, it is of interest to define the class of
systems for which this approach applies.

Definition 3.4 (Kinematic controllability). The
mechanical system (3) is kinematically controllable if
every point in the configuration space () is reachable
via a sequence of kinematic motions. The system (3)
is locally kinematically controllable if for any ¢ € Q
and any neighborhood U, of q, the set of reachable
configurations from q by kinematic motions remaining
in U,y contains q in its interior.

Obviously, the main difficulty is that there simply
might not be enough decoupling fields for controllabil-
ity. A sufficient test for local kinematic controllability is
given below.

Lemma 3.5. The system (3) is locally kinematically
controllable if there exist p < m vector fields {V1,... ,Vp}
such that

(i) 0 = (Xo, Vo)) = (Xp, V. Vo)
n—-m,1<c<p, and

for alll1 < b <

(it) Lie{V1,...,V,} has full rank at all ¢ € R".

Proof. Property (i) ensures that the vector fields V. are
decoupling. Property (i) ensures the local controllability
of the driftless kinematic system (2)

P
qg = ZVC(Q)U}C
c=1
(wi,...,wp) € {(1,0,...,0),(0,1,0,...,0),...,
0,...,0,1)}

and therefore every point in the configuration space is
reachable. In the presence of obstacles, a collision-free
path exists between any two points in an open connected
set of the configuration space. O

Note that scalar multiples of decoupling vector fields
are again decoupling, but linear combinations may not
be decoupling. There are mechanical control systems for
which no decoupling vector fields can be found. The
maximum number of linearly independent decoupling
vector fields is m.

4 Examples

Numerous examples fit the requirements of Lemma 3.5,
allowing the decoupling of trajectory planning. The most
obvious example is a planar body with a force through
the center of mass and a pure torque. We present this
model in detail below for the purpose of establishing the
required notation. Other locally kinematically control-
lable systems include:

(i) All controllable kinematic mechanical systems as de-
scribed in [12]. Examples include the upright rolling
penny (described in detail in [12]) and a 3R planar
robot arm with a passive first joint (actuator config-
uration (0,1,1)).

A 3R planar robot arm with a passive third joint
(actuator configuration (1,1,0)). This was the orig-
inal motivating example in [8], and it is worked out
below in full detail. For the actuator configuration
(1,0,1), we provide one decoupling vector field, but
we do not answer the kinematic controllability ques-
tion.

Numerous vehicle models including the idealized
planar hovercraft (planar body with two forces away
from center of mass) and a rigid body in SE(3) with
three thrusters away from the center of mass.

(iii)

4.1 Planar body with pure force and
torque

The configuration of the body is (z,y,0) € ®2 x S,
the kinetic energy is 2m(#2 + §2) + 3162, and all of the
Christoffel symbols T'}; are zero. The input co-vectors
are Fy = df and F» = cosf dz + sinf dy. The annihilator
vector field is

X = sin03 - 00503.

ox Oy

As decoupling vector fields we propose pure rotation and
translation along the line of force:

10

106

1 0 1 0
—cosf— + —sinf—.
m

or m Oy

By construction we have (V1 , X)) = (Va2, X)) = 0. Fur-
thermore, an application of equation (5) provides:

1 0
VVl‘/l = FV%%—O
1

m2

Vi=Vi=M"F =

Vo=Yy=M"1F, =

0 ., 0
Vi,V = V(cos 8 2 1sin0 2) (COSG% + smﬁa—y) =0.
In summary, V4, V5 are decoupling vector fields, and since
{V1,Va,[V1,V2]} is full rank, the system is locally kine-
matically controllable.



Figure 1: Three-link planar robot manipulator. This
configuration is known as SCARA. The angles {61, 62,63}
are measured counterclockwise. {z,y} is the location of
the third joint.

4.2 Three link planar robot manipulator
with a passive joint

We consider a three joint robot manipulator moving in a
horizontal plane (Figure 1). Different coordinates will be
suited to different tasks: the set {6;,62,6s} consists of
the absolute angles (measured counterclockwise) of the
three links with respect to the horizontal axis, the set
{61, 72,73} measures the relative angles at the second and
third joint, and {z,y, 85} measures the absolute location
of the third joint and the absolute angle of the third link.

Actuator configuration (0,1,1)

We rely on the coordinate system {61,r2,73}. Accord-
ingly, the input co-vector fields F1, F», and the annihila-
tor vector field X are

0
Fy =dry, Fry =drz, X = —.
1 2, 2 3 601
It is a straightforward computation to see that the inertia
matrix M has the following structure:

M (ra,m3)  Mi2(ra,r3) Miz(ra,rs3)
Mis(ra,rs)  Maa(rs) Mys(rs) (11)
Mys(ra,rs)  Msa(rs) M33

In other words the components of the inertia matrix are
independent of 8; and depend on {rs,r3} in a specific
manner.

Lemma 4.1. Consider the manipulator with o passive
first joint. The system is locally kinematically control-
lable and two decoupling vector fields are

Vi=Yi=M1'F =M ‘dr
Vo=Yy=M"'F,= M 'drs.

Proof. By construction, we have
0= (X, ) =(X, ),
and it is easy to see that
[V1, V2] ¢ span{V1, V2}.

show that 0 =
T™

Next, we (X, VyV) via
Mathematica The following code illustrates the
computations required to prove that the conditions in
Lemma 3.2 are satisfied, so that {V;,V2} are indeed de-
coupling.

(** Mathematica code for SCARA 011. *k
** Configuration, inertia, and connection *k)

Needs["MechSys‘"];

q = {th1,r2,r3};

M = {{M11[r2,r3], Mi12[r2,r3], M13[r2,r3]},
{M12[r2,r3], M22[r3], M23[r3] },
{M13[r2,r3], M23[r3], M33 }};

InvM =
nabla =

Inverse[M];
LeviCivita[M, ql;

(#* input one-forms and annihilator **)
F1={0,1,0}; F2={0,0,1}; X={1,0,0};

(#* decoupling vector fields and #**
** their covariant derivatives **)

Vi = InvM . F1; V2 = InvM . F2;

Vit CovariantDerivative[V1, V1, nabla, ql;

V22 = CovariantDerivative[V2, V2, nabla, ql;

(#* these quantities vanish #*x*)
Simplify[{Vl.M.X, Vi1i.M.X, V2.M.X, V22.M.X}]

O

A second proof of the vanishing of (Vy,V;, X)) is ob-
tained through a detailed study of the problem’s struc-
ture. The key observation is that the system has a sym-
metry [9, 15] and therefore a conserved quantity, in this
case angular momentum about the first joint. Using
these more advanced tools, one can prove not only that
the system is locally kinematically controllable, but also
that it indeed is kinematic, as defined in [12].!

Actuator configuration (1,1,0)

We rely on the coordinate system {z,y,63}. The kinetic
energy of the first two links can be written as

B et el 6]

Let mg3, I3 denote the mass and moment of inertia of the
third link; let I3 be the distance from the third joint to

IThe key fact is that span{V1, V2} is the horizontal subspace of
the bundle induced by the symmetry.



the center of mass of the third link. The kinetic energy
of the third link is

1 . 1 . .
5(]3 + m3l§)0§ + 57’713(.’172 + y2)

+ mgl3f3(y cos B3 — i sin 63).

The input co-vector fields Fi, F5, and the annihilator vec-
tor field X can be written as

0
1 :L.) 2 y) 603
Lemma 4.2. Consider the manipulator with a passive
third joint. The system is locally kinematically control-
lable, and two decoupling vector fields are

0 . 0
Vi= COS@3% +Sm63<‘9_y
0 190

. 0
Vo = s1n036—$ —cosega—y + X8_03

These motions are translation along the third link and
rotation of the third link about its center of percussion,
respectively.

Proof. It is easy to compute that
0= (X, 1) =(X, L)
[V1, V2] & span{Vi, V2 }.

show that 0 =
T™

Next, we (X, VyV) via
Mathematica, To streamline the computations,
we let A\ = (I3 +m3l2)/msls, we redefine the terms
{Mi1, M12, M2} to account for the term tms(? + y?),

and we scale them by a factor msls.

(** Mathematica code for SCARA 110. *k
** Configuration, inertia, and connection *%*)

Needs["MechSys‘"];

q = {x,y,th3};

M = {{M11[x,y], Mi2[x,y]l, -Sin[th3]1},
{M12[x,y], M22[x,y], Cos[th3] },
{-Sin[th3], Cos[th3], lambda }};

nabla = Simplify[ LeviCivital[M, qll;
(#* input one-forms and annihilator *%*)
F1={1,0,0}; F2={0,1,0}; X={0,0,1};

(#* decoupling vector fields and **
** their covariant derivatives *%*)
V1 = {Cos[th3], Sin[th3], 0};

V2 = {Sin[th3], -Cos[th3], 1/lambda };

Vi1l = CovariantDerivative[V1, V1, nabla, ql;
V22 = CovariantDerivative[V2, V2, nabla, ql;
(#* these quantities vanish #*%)

Simplify[{V1.M.X, V11.M.X, V2.M.X, V22.M.X}]

Actuator configuration (1,0,1)

This configuration resembles the (0, 1, 1) setting—we rely
on the same coordinate system and on the expression for
inertia matrix M given in equation (11). Here F; =
by, Fy = dr3, X = 50—, and Y1 = M 'F,Yo = M 'F,.

Lemma 4.3. Consider the manipulator with a passive
second joint. One decoupling vector field is

1 0
o 2 Mog
=Y _'YES;I = | M33—M3sz Moo | >
1 — Moo

M3, — M33 Moy
where Yy is the first component of Y.
Proof. The proof uses Mathematica™.,

(** Mathematica code for SCARA 101. *k
**% Configuration, inertia, and connection *%*)

Needs["MechSys‘"];

q = {th1,r2,r3};

M= {{M11[r2,r3], Mi12[r2,r3], Mi13[r2,r3]1},
{M12[r2,r3], M22[r3], M23[r3] },
{M13[r2,r3], M23[r3], M33 }};

InvM =
nabla =

Inverse[M];
LeviCivita[M, ql;

(#* input one-forms and annihilator **)
F1={1,0,0}; F2={0,0,1}; X={0,1,0};
Yl = InvM . F1; Y2 = InvM . F2;

(*#* decoupling vector field  **

** its covariant derivative *x*)
Vi = Simplify[ Y2 - Y1 (Y2[[111/Y1[[111)];
Vil = CovariantDerivative[V1, V1, nabla, ql;

(#* these quantities vanish #*x*)
Simplify[{Vl.M.X, Vi1.M.X}]

5 Finding decoupling fields

A sufficient test for local kinematic controllability is given
in Lemma 3.5. The primary difficulty is identifying de-
coupling vector fields. Intuition about the behavior of
the system is helpful, but a direct algorithm would sim-
plify the task.

Before proceeding we recall the problem data. The
Y, are the input vector fields, the X, are the constraint
vector fields, and V is the connection.

Assume we look for a decoupling vector field V. Ac-
cording to Lemma 3.2, two conditions need to be satis-
fied. To automatically satisfy the first one while losing
no generality, we write

Vig) =) f(a)Ya(a),



where f(q) = (f'(q),. -
tions on Q. Recalling the identity Vx(fY) = f(VxY)+
(Lx )Y, we compute

V=33 (£ + 0 (Lv ) ),
a=1b=1
so that the vector field V' is decoupling if

m m

0=3 > F@F@ {Xe, Vv, Ys)(9)

a=1b=1

(12)

for all 1 < ¢ < n —m. Equation (12) is nonlinear in the
unknown functions f?® and configuration dependent; no
general solution methodology appears to be available.

In the case of vehicles modeled as rigid bodies with
body-fixed forces, however, equation (12) may be simpli-
fied considerably. In this case, the input vector fields,
their covariant derivatives, and the constraint vector
fields are configuration independent (more precisely, left
invariant), so the inner product {(X., Vy,Ys)) is inde-
pendent of q. Accordingly, define the (n — m) matrices
B¢ e Rm*™ ¢=1,...,n—m according to

Bos = (Xb, Vv, Ya),

and introduce the constant vector f = (f!,...,f™7 €
®™. The condition (12) for a decoupling vector field
simplifies to

fTB°f=0 (13)
forall 1 <c¢<n-—m. If fis a solution to the n —m
quadratic constraints (13) then sois kf for all k € R (par-
ticularly £ = 0), so we impose the additional quadratic
constraint fTIf = 1, where I is the identity matrix. Any
solution f to the n —m + 1 quadratic equations defines
a decoupling vector field V =) fY,.

6 Conclusion

The notions of decoupling vector fields and kinematic
controllability allow us to use the structure of underac-
tuated mechanical systems to construct computationally
efficient collision-free trajectory planners. While kine-
matic path planners already exist for some kinematically
controllable systems (see, e.g., [7, 8]), future work will
be toward constructing a path planner for general locally
kinematically controllable systems. For robust execution
of the planned trajectories, we plan to study feedback
stabilization of kinematic motions.
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