ACC 2001, To appear

Motion Planning for Nonlinear Underactuated
Vehicles using H*> Techniques

Gregory J. Toussaint

Tamer Basar

Francesco Bullo

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street, Urbana, IL 61801

Abstract

This paper presents a new solution to the motion
planning problem for nonlinear underactuated vehicles.
The approach solves the problem by generating a poly-
nomial curve connecting the desired initial and final
positions for the vehicle and then using the curve to
estimate the vehicle’s complete configuration along the
trajectory. The algorithm introduces an iterative H°°-
filter to improve upon the initial estimate for the trajec-
tory. The solution to the basic motion planning prob-
lem can be coupled with randomized path planning al-
gorithms to solve the obstacle avoidance and multiple
vehicle versions of the problem. Numerical simulations
illustrate the algorithm’s performance on an underac-
tuated planar vehicle.

1 Introduction

Automated motion planning is a key element in devel-
oping vehicles that can operate independently in an un-
explored environment. When the vehicles are both non-
linear and underactuated, the motion planning problem
becomes very challenging because we must account for
the dynamics of the vehicle, as well as the physical con-
straints in the environment. We formulate such a few
motion planning problems and present novel solutions
based on certain classes of polynomial curves and on
an iterative H*°-filter.

A good starting point to understand the motion plan-
ning problem (considered in the setting of systems with
no dynamics) and some of the common solution tech-
niques is a recent survey paper and the textbook by
Latombe [1, 2]. Another general reference is a col-
lection edited by Li and Canny [3] which focuses on
nonholonomic systems, and it is therefore more closely
associated with motion planning for underactuated ve-
hicles. From the literature (see also [4] for a complete
review), we learn that randomized techniques are the
best algorithms for fast planning problems with obsta-
cles and multiple vehicles.

In this paper, we present a technique that can quickly
generate paths for nonlinear underactuated vehicles,

that can handle obstacles in the environment, and that
can accommodate planning for multiple vehicles. We
develop an original solution to the basic motion plan-
ning problem which uses a deterministic approach to
handle the nonlinear underactuated dynamics of the
vehicle, but cannot directly accommodate the other as-
pects of the problem. We extend the solution to the ba-
sic motion planning problem by coupling it with an ex-
isting randomized planning techniques that allow us to
consider obstacles in the environment and plan trajec-
tories for multiple vehicles. From the various random-
ized techniques available, we select rapidly-exploring
random trees (RRTs), as the algorithm [5, 6] and its
variations [7, 8] have shown to be fast and widely ap-
plicable.

The paper is organized as follows. In Section 2, we for-
mally state the problem. Sections 3 and 4 describe the
solution to the basic motion planning problem and its
extensions. We present simulation results in Section 5.

2 Problem Formulation

In the basic motion planning problem, we assume we
are given the equations of motion for the vehicle we
want to control. We are also given the initial and final
configurations for the vehicle as well as a time interval
for the motion. Denote the initial and final configura-
tions as qg and qy, respectively, and the time interval
as [to, tf]. Our goal is to find the control inputs to
move the vehicle from qo to q; during the time inter-
val [tg, ty]. We can then apply these control inputs
to the equations of motion for the vehicle to generate
a feasible trajectory. A feasible trajectory is one that
the underactuated vehicle could follow in the absence of
any disturbances and the vehicle’s initial configuration
aligned with the trajectory.

For the basic motion planning problem, there are no ob-
stacles in the environment and no other requirements
for the vehicle, except that its motion must satisfy the
dynamic equations. We introduce obstacles and addi-
tional vehicles in Section 4 after solving the basic prob-
lem. Even though the vehicle is underactuated, there
are still an infinite number of control laws that move

the vehicle from one configuration to the other in the
given time. As a final aspect of the problem formula-
tion, we present the vehicle model used for this research
effort. The model was used earlier by Pettersen and Ni-
jmeijer [?] and we have made minor changes to simplify
the notation. The relevant equations of motion are

u My V7 — dy U+ Uuq (1)
U = muyur—dy,v (2)
o= mpuv—d.r+us (3)
&t = wcos(v) — v sin(y) (4)
§ = wsin(p)+v cos(®) 5)
b= r (6)

where u, v, and r are the body-frame velocities in surge,
sway, and yaw respectively, x and y are the inertial
positions, and v is the inertial rotation angle. The
coefficients m; and d; represent combined mass terms,
including added mass, and damping coefficients. The
two control inputs are u; and us.

3 Basic Motion Planning

The basic motion planning algorithm consists of four
main steps to generate a feasible trajectory that moves
the vehicle from qg to qf. The first step generates a
polynomial curve in the z-y plane that connects the ini-
tial and final positions and has the proper orientation
at each endpoint. The second step uses this curve to
estimate the complete trajectory and a corresponding
set of control inputs. We call these results the candi-
date trajectory and the candidate inputs, respectively.
The third step uses the candidate inputs to generate a
feasible trajectory for the vehicle. If this feasible tra-
jectory approaches the desired final configuration, then
the fourth step is not required. If the feasible trajec-
tory is not satisfactory, the fourth step implements an
H°-filter which uses the underactuated dynamics of
the vehicle to update the estimate for the trajectory
and the control inputs.

Step 1: Polynomial position curve generation
The first step in the motion planning process uses one
of two techniques to generate a polynomial position
curve connecting the initial and final positions for the
vehicle with the correct orientation at each endpoint.
The first technique uses cubic splines to generate the
curve and is sufficient for most problems. The second
technique uses Pythagorean hodograph curves to con-
nect the points and is slightly more complicated than
the cubic spline approach. The additional complexity
associated with the second approach may be justified
if we want to quickly calculate the curve length or the
curvature along the curve [9].

Both curve generation techniques require knowledge of
the initial and final configurations for the vehicle, which
are given as qg and qy, respectively. We compute the

initial and final velocities in the inertial frame, @(t)
and y(t), by using qo and qy to evaluate (4) and (5)
at to and ty, respectively. When combined with the
orientation information, the initial and final velocities
determine the direction of motion for the vehicle at the
endpoints. We use this information along with the z-
y coordinates of the endpoints to find an appropriate
polynomial position curve. Once we have the polyno-
mial expressions for z(t) and y(t), we can use them to
estimate the other states of the system.

Step 2: Candidate trajectory estimation The sec-
ond step in the algorithm uses the polynomial position
curve to estimate the complete trajectory between the
endpoints and to estimate a pair of control inputs cor-
responding to the trajectory. To develop accurate esti-
mates, we use the equations of motion for the system
and make some reasonable assumptions about the mo-
tion of the vehicle.

For the first step of the trajectory estimation, we use
the polynomials for z(¢) and y(t) as the estimates for
the position of the vehicle, so that &(¢t) = «(¢) and
§(t) = y(t), where the ‘hat’ notation denotes an esti-
mated value. These position estimates may not rep-
resent a feasible motion for the underactuated vehicle,
but they do represent the type of curve we would like
the vehicle to follow to satisfy the boundary conditions.
We treat the difference between the z-y curve and a
similar feasible path as a disturbance for the motion
planning algorithm to attenuate. The iterative H°°-
filter attenuates this disturbance as it improves the es-
timate for the trajectory.

To find estimates for the other states, we perform a
local analysis of the vehicle’s motion. The instanta-
neous motion of the vehicle is in the direction given
by the vector combination of Z(t) and ¢(t) and is tan-
gent to the x-y curve. If the vehicle was moving with
a steady motion along a straight line, the orientation
would align with the direction of motion. Since the
vehicle is underactuated, it cannot maintain an orien-
tation that is tangent to the x-y curve if the motion
contains any turn. To develop an estimate for 1, we
assume the vehicle is turning in a circle at a constant
velocity and account for the offset angle in the turn
caused by the underactuated dynamics. The following
result is based on one presented by Godhavn [10] for
a similar type of underactuated vehicle. See [4] for a
detailed derivation. The resulting orientation estimate

v

U(t) = (t) — arctan { (7)

where

. . _ d -

b(t) = arctan [2(2),g(1)], 7(t) = —¥(D).

The function arctan(a, b) with two arguments gives the
argument of the complex number a + b, so that the
value of 9(t) can range from —m to 7. We can use the

estimate for 1&(1&) to generate the estimate for r(t) as

follows: J
#(t) = 5 (0). ®)

We now have expressions for Z, ¢, 1[), and 7. To estimate
the remaining two states, we can use (4) and (5) to
arrive at the following expressions for 4(t) and o(t):

(1) = cos [00)] Sa0) +5in [9(0)] Ti) ()
() = —sin [1[)(15)} %:ﬁ(t)—kcos [z/l(t) %g}(t). (10)

Now that we have estimates for the complete trajectory
q, we can estimate the two control inputs by using
equations (1) and (3) and the derivatives £4(t) and

%f(t):

1 (0) = Ta(t) — mad()P() + i) (1)
ia(t) = T4(t) —mea()o(r) + i) (12)

The state estimation procedure fully exploits the infor-
mation in the equations of motion to provide an ini-
tial trajectory estimate from a polynomial z-y position
curve. We denote this candidate trajectory by q(t).
We also have made an initial estimate for the two con-
trol inputs, 41 (t) and 49(t), which we denote as u(t).
Finding these estimates marks the end of the second
step in the motion planning algorithm.

Step 3: Generating the feasible trajectory The
next step in the motion planning process is to use the
inputs 1 to numerically integrate the equations of mo-
tion given by (1) through (6) starting at qo. This nu-
merical integration generates a feasible trajectory, q(t),
for the underactuated vehicle. If the feasible trajec-
tory approaches the desired final configuration, then
we have found a solution to the basic motion planning
problem. In general, the feasible trajectory will not
follow closely the estimated trajectory q. Large dif-
ferences between the two trajectories might arise be-
cause the position curve is significantly different from
a straight line or a circular arc. In addition, there are
differences because we are using the initial condition
qo to generate the feasible trajectory and it may not
match the estimated initial condition q(to) obtained
from the previous step.

One way to reduce the differences between the feasi-
ble trajectory and the estimated trajectory is to use
the estimated initial configuration q(¢p) to initiate the
numerical integration. This adjustment introduces an
error between the initial configurations for the vehicle
and the feasible trajectory. If the initial configuration
error is small enough, then the tracking controller is
able to compensate and we have a suitable feasible tra-
jectory. If adjusting the initial condition introduces

a significant configuration error, then a tracking con-
troller may not be able to recover from the initial error
to follow the feasible trajectory. We remark that track-
ing controllers for general nonlinear control system do
in general have a limited stability region.

Step 4: Iterative H>°-filtering We propose an H°-
filter for the setting in which the feasible trajectory
generated by the first three steps does not closely ap-
proach the desired final configuration. The objective
of the H-filter is to iteratively improve the estimate
for the control inputs and the resulting feasible trajec-
tory. In summary, the filtering approach relies on the
fact that we can decompose the system equations into
two subsystems that are each affine if the state of the
other subsystem is known. The interlaced subsystems
allow us to compute improved estimates for the state
of the system that account for the nonlinear underac-
tuated dynamics of the vehicle. We then use the new
state estimates to update the estimates for the control
inputs that generate a feasible trajectory.

We derive the iterative H*-filter starting with the
equations of motion for the vehicle. We have polynomi-
als representing the -y positions we want the vehicle to
track, but since it is an underactuated vehicle, it may
not be able to do so exactly, because the motion may
be infeasible. Therefore, we treat the z-y curve as an
imperfect measurement of the position of the vehicle.
We now use this measurement of the vehicle’s position
and the equations of motion to estimate the remaining
four states of the system that are consistent with the
measurements. We let y represent the measurement
vector as follows:

L] e o
where w, and w, represent disturbance terms that cap-
ture the error in the measurements. To develop the
He°-filter, we first decompose the nonlinear system
into two subsystems with the property that each one is
affine if the state of the other subsystem is known. We
let q = [q],q3]", where

T T
aa=[uv v z y]l, a=[r v].
The two subsystems can be written compactly as

q1 = An(gq2)ar + ai1(qe) + Biug (14)

42 = A22(q1)q2 + az(q1) + Bous. (15)

In (14) and (15), the «a;(q;) variables represent the
affine terms. We would like to identify a first-order
approximation for each affine term, so we calculate the
linear portion of ar; and a as follows:

_ Oan(qr)

0 Aoy = 78042(q1).
q2

A
12 o

)

We can now rewrite equations (14) and (15) as

q1 = An(gz2)a1 + 41292 + [@1(q2) — A1292] + Biug
42 = A22(q1)q2 + A2191 + [a2(q1) — A2191] + Baus.

and combine them into a single set of equations as

q= A11(<l2) Aqo 041((?12) — Ai2q2
Aoy Az (qr) as(qi) — Aaiqn

B, 0
+{ 0 BQ}“

where u = [u, us]T. We can then write the combined
subsystem equations compactly as

q=A(q)q + a(q) + Bu. (16)

We do not know the value of q in advance, so we use
the estimate q, to be defined shortly, in the terms A(q)
and a(q) to get

q = A(q)q+a(q)+Bu+[A(q)q — A(@)q + a(q) — a(q)] -

We can characterize the nonlinear term in square brack-
ets as a disturbance term so that we can write

q=A(qQ)q+ a(q) + Bu+ Dw (17)

where w is the disturbance vector. We take (17) to be
the affine differential equation that describes the mo-
tion of the vehicle. We can measure the states x and
y and want to use those measurements to estimate the
remaining states. We use the following H*°-filter dif-
ferential equations to estimate the states and compute
the corresponding covariance matrix [11]:

a=A(@q+a(@ + Bu+SC"N "y - Cq)
a(to) = qa(te) (18)
¥ = A@)2+324T(q)-2(CTNLC—y2Q)8+DD"
S(to) =Qy - (19)

n (18), the A(q) matrix and the affine term a(q) de-
pend on the state estimate, which is available informa-
tion and allows us to capture the nonlinear dynamics
in an affine differential equation.

We need to know u to compute the state estimates
in equation (18), but u represents the control inputs
we are trying to determine to generate a feasible tra-
jectory. To resolve this circular problem, we use the
estimate @ in place of u in (18). We then implement
the H°-filter to develop a new estimate for the con-
figuration vector for the vehicle. With the new config-
uration estimates, we use (11) and (12) to update the
estimates for the control inputs. Finally, we repeat the
H°-filtering to improve the results. It is important
to remark that for all iterations the output signal y
is the polynomial curve generated during Step 1. We
run the iterative H°°-filter until the final configuration
error no longer improves, but we limit the number of
iterations to guarantee that the iteration terminates.
We use the final results of the H°-filter to generate a
feasible trajectory for the vehicle.

Assuming the system is linear, and the polynomial
curve for the center of mass is a feasible output, then

there exists a input/state trajectory which is a fixed
point for the iteration, and the fixed point is attrac-
tive. Since the system is nonlinear, we rely on a lin-
earization along the estimated trajectory as a way to
still use linear filtering. The H°°-filter provides some
disturbance attenuation as a means to deal with the
neglected nonlinearities. Finally, we use a particular
way of linearizing the equations, based on the inter-
laced structure. In our numerical experimentation, ex-
ploiting this structure is helpful. Future research will
focus on analytically characterizing the properties of
this iterative filtering technique.

4 Extensions to Basic Motion Planning

We consider two extensions to the basic motion plan-
ning problem. The objective is to solve planning prob-
lems when obstacles are present and when other vehi-
cles are in the environment. Before we extend the plan-
ning techniques to handle these problems, we briefly
describe a useful randomized planning algorithm.

4.1 Rapidly-Exploring Random Trees

From the many techniques available to address the ob-
stacle avoidance and multiple vehicle planning prob-
lems, we selected the rapidly-exploring random trees
(RRTs) approach developed by LaValle and Kuffner [5,
6] as the one to use for our application. This approach
offers the advantages of easily handling the underactu-
ated nature of our problem, automatically accounting
for obstacles, and, with minor modifications, handling
the multiple vehicle case.

There are many variations of the RRT algorithm, so
we briefly describe the one that we implemented for
our problem. The algorithm builds two search trees,
with one starting at the initial configuration and the
other starting from the goal configuration. The trees
consist of nodes that represent configurations the ve-
hicle could achieve after applying an input for an in-
cremental time step. The objective is to build the two
trees towards each other so that they can eventually
be linked to form a complete trajectory between the
initial and goal states. At each time step, a random
configuration in the space of all possible configurations
is selected. The algorithm then searches one of the
trees to find the closest node to the new configuration.
The distance between two configurations is determined
by a metric, which is a key element in the design pro-
cess. Once the algorithm identifies the closest node
in the tree, it samples a list of possible inputs to find
values that, in one time step, move the configuration
as close as possible to the new node without colliding
with an obstacle. The resulting configuration is then
added as a new node to the tree. The process is then
repeated with the roles of the trees swapped and the
whole algorithm is iterated until the number of nodes
is exhausted or the trees are connected.

4.2 Obstacle avoidance and multiple vehicles
motion planning

We extend the basic motion planning problem to the
setting of environments with obstacles. The objective
is to find a feasible trajectory for the underactuated ve-
hicle that avoids collisions with the (fixed) obstacles. A
similar problem is that of planning motions for multi-
ple vehicles: the goal is to identify feasible trajectories
for each vehicle that satisfy the motion requirements
and do not cause collisions. If few vehicles are present,
the multiple vehicles problem can be cast in a central-
ized planning setting as a larger dimensional planning
problem with obstacles.

We solved the problem of planning motions around ob-
stacles by using the RRT algorithm and carefully de-
signing one of its key elements: the metric needed to
evaluate the separation between configurations. The
standard metrics in [5, 6] are based on a Euclidean-
type distance between the configurations. As suggested
in [6], these metrics are not appropriate for an underac-
tuated vehicle, because it is possible that two configura-
tions separated by a small Euclidean distance whereas
the underactuated vehicle would have to travel a rel-
atively long trajectory to move between them. The
new metric tries to compensate for this deficiency by
including a measure of the path length for the trajec-
tory the vehicle would actually follow. Given two con-
figurations, the new metric computes the length of a
Pythagorean hodograph curve connecting the two po-
sitions, with the curve having the proper tangent at
each endpoint. The tangents are determined by the ve-
hicle’s velocity and orientation at the endpoints. The
new metric sums the square of the path length with
the squares of the errors in the other four state vari-
ables and then takes the square root of the result. This
metric attempts to provide a more reasonable estimate
of the separation between two configurations than the
simple Euclidean metrics and our simulations indicate
it can improve the results of the RRT algorithm.

We solved an obstacle avoidance problem for the under-
actuated vehicle using the modified RRT software with
both the standard metric and the new Pythagorean
hodograph curve metric. Our simulations indicate
there are three advantages to using the Pythagorean
hodograph curve metric compared to the standard met-
ric. First, the algorithm could find solutions with fewer
nodes in the trees, which translates into fewer explo-
ration steps. Second, the resulting trajectories are usu-
ally shorter than with the standard metric, so the mo-
tion is more efficient. Third, the maximum jump be-
tween any two nodes is usually smaller with the new
metric, so the paths are smoother and it is easier for
the tracking controller to follow the trajectories.

Finally, we smooth the trajectories generated by the
RRT algorithm to improve the motion of the vehicle.
The trajectories generated by the RRT algorithm sat-
isfy the motion planning requirements, but the result-
ing motion may be very rough because the inputs are

randomly selected at each time step. There are two
simple methods for smoothing that are based on the
basic motion planning algorithm. The first smooth-
ing method applies the iterative H°-filter to the fea-
sible trajectory to refine the results from the RRT ap-
proach. The second smoothing method samples the
original RRT-generated trajectory and uses the basic
planning algorithm to design motions between the sam-
pled configurations. With either technique, the result-
ing trajectory is smoother than the original and retains
the overall shape, so it likely avoids the obstacles and
other vehicles, as originally planned.

5 Simulation Results

We now present the simulations that implement the
motion planning algorithms described in the previous
sections. The simulations used the following values
for the coeflicients in the underactuated vehicle model
given in Section 1: m, = 0.5, m, = —2.0, m, = 0.5,
d, = 1.0, d, = 2.0, and d,, = 1.0. We applied the mo-
tion planning algorithms to two example problems to
demonstrate its features and additional examples can
be found in [4].

The first example is shown in Figure 1 and illustrates
how the iterative H*°-filter improves the feasible tra-
jectory to make the vehicle’s final configuration ap-
proach the goal configuration. In this example, we left
the initial configuration of the vehicle as its actual con-
figuration for the motion planning algorithm. This de-
sign choice appears in Figure 1 as a difference between
the candidate position curve (dotted line) and the fea-
sible planned position curves along the initial segment
of the path. This difference does not diminish as the
iterative H*°-filter operates on the system. Using the
estimated initial configuration to generate the feasible
trajectory would significantly reduce this initial error.

y

Figure 1: Basic motion planning results. The dotted line
shows the candidate position curve, the solid
line shows the first feasible trajectory and the
dashed lines show the feasible trajectories as
the H*°-filter iterates on the results.

Figure 2 provides another example of a feasible motion
developed using the basic motion planning algorithm.
The results Figure 2 show how the vehicle would make

a lateral displacement from the origin. In this case,
we used the estimated initial condition to develop the
feasible trajectory and we did not need the iterative
H*-filter to achieve reasonable performance.

y

Figure 2: Basic motion planning results using only the
first three steps. The required motion is side-
ways translation.

For the third example, Figure 3 illustrates the results of
planning motions for two vehicles around obstacles and
using sampling to smooth the trajectories. In this sim-
ulation, we required a minimum amount of sampling to
capture the important aspects of the vehicles’ motions
to avoid collisions. The two vehicles achieve the mo-
tion planning objectives with natural maneuvers while
avoiding each other and the obstacles.

y y

|] |]
70 70
]]
60 60
]]
50 50
]]
40 —— 40 -
]]
X X
30 40 50 60 70 30 40 50 60 70
]]

Figure 3: Motion planning for multiple vehicles with ob-
stacles. The left figure shows the results of
the RRT algorithm and the right figure shows
how smoothing the trajectories with sampling
improves the results. Vehicle 1 moves from
(40,40) to (50,50) and vehicle 2 moves from
(40, 50) to (50, 40).

6 Summary

We have presented motion planning techniques to gen-
erate feasible trajectories for an underactuated vehi-
cle. The solutions address the basic motion planning
problem and the situations where obstacles or other
vehicles are present in the environment. The solution
to the basic problem uses a polynomial position curve

to estimate the trajectory the vehicle follows and in-
corporates an iterative H-filter to improve the tra-
jectory estimate. The obstacle avoidance and multi-
ple vehicle problems rely on rapidly-exploring random
trees to generate an initial solution, which can later be
smoothed to find a more realistic trajectory.

References

[1] J.-C. Latombe, “Motion planning: A journey of
robots, molecules, digital actors, and other artifacts,”
International Journal of Robotics Research, vol. 18,
no. 11, pp. 1119-1128, 1999.

[2] J.-C. Latombe, Robot Motion Planning. Dor-
drecht, The Netherlands: Kluwer Academic Publishers,
1991.

[3] Z.Liand J. F. Canny, eds., Nonholonomic Mo-
tion Planning. Dordrecht, The Netherlands: Kluwer
Academic Publishers, 1993.

[4] G. J. Toussaint, Robust Control and Motion
Planning for Nonlinear Underactuated Systems using
H*> Techniques. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, June 2000. Available
electronically at http://black.csl.uiuc.edu.

[5] S. M. LaValle and J. J. Kuffner, “Random-
ized kinodynamic planning,” in IEEE Int. Conf. on
Robotics and Automation, (Detroit, MI), pp. 473-479,
May 1999.

[6] S. M. LaValle and J. J. Kuffner, “Rapidly-
exploring random trees: Progress and prospects,” in
Workshop on Algorithmic Foundations of Robotics,
(Dartmouth, NH), pp. 293-308, Mar. 2000.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron, “A hy-
brid control architecture for aggressive maneuvering of
autonomous helicopters,” in IEEE Conf. on Decision
and Control, (Phoenix, AZ), pp. 2471-6, Dec. 1999.

[8] T. Karatas and F. Bullo, “Randomized searches
and nonlinear programming in trajectory planning,” in
IEEFE Conf. on Decision and Control, (Orlando, FL),
pp. 5032-5037, Dec. 2001.

[9] H. Bruyninckx and D. Reynaerts, “Path plan-
ning for mobile and hyper-redundant robots us-
ing pythagorean hodograph curves,” Proceedings of
the 1997 8th International Conference on Advanced
Robotics, pp. 595-600, July 1997.

[10] J.-M. Godhavn, “Nonlinear tracking of underac-
tuated surface vessels,” in IEEE Conf. on Decision and
Control, (Kobe, Japan), pp. 975-80, Dec. 1996.

[11] T. Bagar and P. Bernhard, H*-Optimal Control
and Related Minimaz Design Problems. Boston, MA:
Birkhauser, 2 ed., 1995.

