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Abstract

This work considers small-time local controllability
(STLC) of single and multiple-input systems, ẋ =
f◦(x) +

∑m
i=1 fiu

i where f◦(x) contains homogeneous
polynomials and f1, . . . , fm are constant vector fields.
For single-input systems, it is shown that even-degree
homogeneity precludes STLC if the state dimension
is larger than one. This, along with the obvious re-
sult that for odd-degree homogeneous systems STLC
is equivalent to accessibility, provides a complete char-
acterization of STLC for this class of systems. In the
multiple-input case, transformations on the input space
are applied to homogeneous systems of degree two, an
example of this type of system being motion of a rigid-
body in a plane. Such input transformations are related
via consideration of a tensor on the tangent space to
congruence transformation of a matrix to one with ze-
ros on the diagonal. Conditions are given for successful
neutralization of bad type (1,2) brackets via congruence
transformations.

1 Introduction

Various concepts of controllability for nonlinear systems
were initially explored in [1, 2, 3]. In particular, [2] is
primarily concerned with the property of accessibility
of the analytic control system ẋ = F (x, u), namely that
the set of points attainable from a given initial point via
application of feasible input is full in the sense that the
interior is nonempty. Sussmann and Jurdjević demon-
strated in [2] that a necessary and sufficient condition
for accessibility of these systems is that the Lie algebra
generated by the system have full rank, the so-called
Lie Algebra Rank Condition (LARC).

In [4], the property of small-time local controllability
(STLC) was explored for affine analytic single-input
systems ẋ = f◦(x) + f1(x)u with |u| ≤ 1. A system
is said to be STLC at a point x◦ if that initial point
is in the interior of the set of points attainable from
it in time T for all T > 0. In this case, the Lie alge-
bra generated by the system, denoted by L({f◦, f1}),
is the distribution spanned by iterated Lie brackets
of f◦ and f1. Sussmann gave various necessary and

sufficient conditions for STLC in [4]. For example,
a necessary condition for STLC is that the bracket
[f1, [f1, f◦]]x◦

be in the space spanned by all brack-
ets with only one occurrence of f1, which is denoted
L1({f◦, f1})x◦

. More importantly, the conditions con-
jectured by Hermes were proved to be sufficient con-
ditions for STLC. These Hermes Local Controllabil-
ity Conditions (HLCC) consist of (1) x◦ is a (regu-
lar) equilibrium point, (2) the LARC is satisfied, and
(3) Lk({f◦, f1})x◦

⊂ Lk−1({f◦, f1})x◦
for all even k > 1

where Lk({f◦, f1})x◦
denotes the span of all brack-

ets with k or less occurrences of f1. Using the addi-
tional notation Sk({f◦, f1})x◦

:=
∑k

i=0 Li({f◦, f1})x◦
,

Stefani provided an extension of Sussmann’s neces-
sary condition by demonstrating that STLC implies
(ad2m

f1
f◦)x◦

∈ S2m−1
x◦

for all m ∈ {1, 2, . . . } [5]. For an
excellent summary and tutorial of these as well as other
results in the single-input case, the inquisitive reader is
directed to Kawski [6].

STLC of multiple-input affine analytic control systems
was addressed by Sussmann in [7], where a general
sufficiency theorem was proven for analytic systems
of the form ẋ = f◦(x) +

∑m
i=1 fi(x)ui with the con-

straints |ui| ≤ 1 for all i ∈ {1, . . . ,m}. Several re-
sults were presented by Sussmann in [7], but in the
context of this paper the most appropriate result is
based on the δθ degree of brackets of the Lie subal-
gebra generated by the system. For a given iterated
bracket B of the vector fields {fi}, |B|i is used to
denote the number of occurrences of fi in B.1 For
θ ∈ [0, 1], δθ is defined by δθ(B) := θ|B|◦ +

∑m
i=1 |B|i.

The general theorem states that systems that satisfy
the LARC at x◦ and have f◦(x◦) = 0 are STLC if
there exists a θ ∈ [0, 1] such that every bracket B with
|B|◦ odd and |B|1, . . . , |B|m all even can be expressed
as a linear combination of N brackets Bk such that
δθ(Bk) < δθ(B) for all k ∈ {1, . . . , N}. It has become
conventional to refer to the brackets with |B|◦ odd and
|B|1, . . . , |B|m all even as bad brackets or potential ob-
structions. Both the single-input and multiple-input re-

1To be precise, B represents an element of the free
monoid (i.e., the set of parenthesized words) in the indetermi-
nates {0, 1, . . . , m}.



sults of Sussmann neutralize bad brackets with brackets
that are of lower degree in some sense.

Both Sussmann in [7] and Kawski in [6] apply a gen-
eralized definition of homogeneity to STLC. This con-
cept of homogeneity begins with definition of a dilation
δε as a parameterized map of IRn to IRn of the form
δε(x) = (εr1x1, ε

r2x2, . . . ε
rnxn) where ri are nonnega-

tive integers. A polynomial p : IRn → IR is then said
to be homogeneous of degree k with respect to the di-
lation, symbolically p ∈ Hk if p(δε(x)) = εk(x). Tra-
ditional homogeneity is recovered via the dilation with
r1 = · · · = rn = 1. The definition of homogeneity is
then extended to vector fields in the following manner:
a vector field f is said to be homogeneous of degree j
if fp ∈ Hk−j whenever p ∈ Hk for all k ≥ 0. A related
area of research that capitalizes on this generalized con-
cept of homogeneity is that of nilpotent and high-order
approximation of control systems presented by Hermes
for example in [8]. One pertinent outcome of this re-
search is that a system is STLC if its Taylor approx-
imation is STLC, where order is defined relative to a
foliation provided by a dilation. However, the converse
question of whether STLC can be determined from a
finite number of differentiations is still open [9].

2 Problem Exposition

In this paper, we address STLC of systems of the form

ẋ = f◦(x) +

m∑

i=1

fiu
i (1)

where |ui| ≤ 1 and x ∈ IRn. fi for i ∈ {1, . . . ,m} are
assumed to be constant vector fields, i.e., fi(x) ≡ fi,
and the components of f◦(x) are homogeneous poly-
nomials of degree k ≥ 1. We use the traditional
definition of homogeneous polynomial p, namely that
p(εx) = εkp(x). The set of such homogeneous vector
fields is denoted by Hk. Our definition of degree-k
homogeneous vector fields is equivalent to that used
in [6, 7, 8] in the following manner: take δε : x 7→ εx
and then Hk is in the general framework the set of
vector fields homogeneous of degree 1 − k. With this
traditional definition, we have the following elemen-
tary facts: (i) f(0) = 0 for f ∈ Hk with k ≥ 1, and
(ii) [f, g] ∈ Hj+k−1 for all f ∈ Hj and g ∈ Hk, where
H−1 is interpreted as the singleton containing the zero
vector field.

Systems of this form are theoretically interesting be-
cause their Lie algebra at x◦ = 0 has a diagonal struc-
ture, as depicted in Figure 1. In particular, the only
brackets B that have a nonzero value at x◦ are those
with |B|!◦ = (k − 1)|B|◦ + 1, where |B|!◦ :=

∑m
i=1 |B|i.

Brackets above this line have homogeneity of degree
greater than zero, hence have zero value at x◦. Brack-
ets below this line are identically zero.

Furthermore, systems of the form (1) arise in mechan-
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Figure 1: Graphical depiction of nonzero brackets of poly-
nomial system (3) with homogeneity degree k.

ics. An example of such a system is the motion of a rigid
body in a plane expressed in body-fixed coordinates, as
depicted in Figure 2. The equations of motion for this
system are

ω̇y = u2 + hu1

v̇x = −ωvy (2)

v̇y = ωvx + u1.

The state consists of rotational velocity ω and the two
body-fixed translation velocities vx and vy. The input
consists of the pure torque u2 and the force u1 applied
at a moment arm of h. Hence f◦(x) = (0,−x1x3, x1x2),
f1 = (h, 0, 1) for some constant h, f2 = (1, 0, 0), and
the system is of the form (1) with homogeneity degree
two. This provides a simple example of a system for
which Sussmann’s sufficient condition is not invariant
with respect to input transformations. In particular,
if a pure force (h = 0) and a pure torque are used as
inputs, then the system satisfies Sussmann’s sufficient
condition for the multiple-input case. However, if an
offset force (h 6= 0) is used, then obstructions appear
in the type (1,2) brackets, i.e., brackets with |B|◦ =
1 and |B|!◦ = 2. In general, we employ the phrase
type (k,`) brackets to refer to all iterated brackets B
of the vector fields F := {f◦, . . . , fm} with |B|◦ = k
and |B|!◦ = `, and denote the distribution spanned by
such brackets as L(k,`)(F).2 Using this system as a
motivating example, we explore the neutralization via
congruence transformation of bad brackets of type (1,2)
with other brackets (perhaps also bad) of type (1,2).

3 Single Input Systems

In this section we consider the single-input system

ẋ = f◦(x) + f1u (3)

where x ∈ IRn, u ∈ [−1, 1], f1 ∈ IRn and f◦ ∈ Hk.
In light of HLCC and Sussmann’s general result, it is

2The notation L is used instead of L to emphasize that
L(k,`)(F) is not necessarily a Lie subalgebra.
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Figure 2: Motion of a rigid body in a plane expressed in
body-fixed coordinates.

clear that for a system as in (3) with odd homogeneity
degree, accessibility is equivalent to STLC, since there
are no nonzero brackets with | · |◦ odd and | · |1 even.
In other words, the question of STLC reduces to the
LARC. The following lemma asserts that if the brackets
of type (1,k) do not add to the Lie algebra rank, then
neither do the higher-degree brackets.

Lemma 1
For system (3) with homogeneity degree k > 0, if

(adk
f1

f◦)x◦
∈ span{f1}, then L({f◦, f1})x◦

= span{f1}.

Proof: Since the Lie algebra structure is invariant
to state transformations, without loss of generality we
can take f1 to be the basis vector e1. Define H11

k to
be the vector fields of homogeneity degree k with the
form (Cxk

1 + η1(x), η2(x), . . . , ηn(x)), with the power
of x1 in ηi being less than k for all i ∈ {1, . . . ,m}.
Then (adk

f1
f◦)x◦

∈ span{e1} implies that f◦ ∈ H11
k ,

since adk
f1

corresponds to the partial derivative opera-

tor ∂k/∂xk
1 . Furthermore, if g ∈ H11

m for some m ≥ 1,
then adf1

g ∈ H11
m−1 and adf◦

g ∈ H11
m+k−1. Since the

Lie subalgebra of (3) is spanned by brackets of the form
[fi1 , [fi2 , · · · [fir−1

, fir
] · · · ]] (apply for example Propo-

sition 3.8 of [10]), all brackets in L({f◦, f1})x◦
are a

multiple of e1.

Turning our attention to systems with even homogene-
ity degree k, we see that L({f◦, f1})x◦

does include bad
brackets. In particular, type (m, (k−1)m+1) brackets
are (odd, even) for m even. We make use of the neces-
sary condition of Stefani restated here for convenience.

Theorem 2 (Stefani [5])
If the system ẋ = f◦(x) + f1(x)u1 is STLC, then

(ad2k
f1

f◦)x◦
∈ S2k−1({f◦, f1})x◦

.

When applied to even systems, Theorem 2 states
that (ad2k

f1
f◦)x◦

∈ span{f1} is necessary for STLC.

But if (ad2k
f1

f◦)x◦
∈ span{f1}, then Lemma 1 asserts

dimL({f◦, f1}) = 1, and systems with n ≥ 2 cannot be
STLC (for otherwise LARC is violated). This reasoning
and the fact that the system ẋ = x2k + u with x ∈ IR
is STLC provides the following result.

Proposition 3
If the system in (3) has odd homogeneity degree, then it
is STLC if and only if it satisfies the LARC. On the other
hand, if the system has even homogeneity degree 2k > 0,
then it is STLC if and only if the state x is scalar.

4 Multiple Input Systems

In this section, we return to consideration of the system
in (1) where f◦ ∈ H2(x). An extension of the above
results to this multiple-input case is problematic. In
particular, the necessary condition of Stefani runs into
the problem of a possibility of balancing between bad
brackets of the same degree. This consideration, along
with the motivating example of planar rigid-body mo-
tion lead us to investigate neutralization of potential
obstructions by brackets of the same type.

Of course, for the system in (1) the general sufficient
condition of Sussmann can be applied to determine
STLC. Since the Lie algebra has a diagonal structure,
the choice of θ ∈ [0, 1] in the theorem is immaterial. Us-
ing Sussmann’s concepts of good and bad brackets, the
sufficient condition allows us to neutralize bad brackets
with good brackets of lower degree. Our goal with this
section is to address the case where there are bad brack-
ets that cannot be neutralized in this manner, and to
neutralize these bad brackets with other brackets of the
same degree via appropriate choice of linear transfor-
mation on the input space. In this endeavor, the diag-
onal structure of the Lie algebra is particularly useful.

Returning to the motivating example of planar motion
in equation (2), it is clear that this system is STLC. (For
example, use the feedback transformation u1 = ωvx+ū1

and u2 = ū2 − hu1 to obtain the system described by
ω̇ = ū2, v̇x = −ωvy, and v̇y = ū1.) However, in at-
tempting to apply Sussmann’s general sufficiency result
directly on the unchanged equations of motion, we have
the apparent obstruction [f1, [f1, f◦]] = (0,−2h, 0) 6∈
span{f1, f2}. This potential obstruction prevents the
use of Sussmann’s sufficient condition for any h 6= 0.
On the other hand, if h = 0 (corresponding to a force
input u1 through the center of mass) then we can apply
the sufficient condition, for we have the good bracket
[f1, [f2, f◦]] = (0,−1, 0) bringing the Lie algebra to full
rank, and STLC is demonstrated. Furthermore, the
system for h 6= 0 can be transformed into the pure
force system (h = 0) via the input transformation

(
u1

u2

)

=

(
1 0
−h 1

) (
ū1

ū2

)

.

Since STLC is clearly invariant to full rank input trans-
formations, we see that a particular choice of input
transformation may provide a means of removing a po-
tential obstruction, thus extending the applicability of
Sussmann’s general theorem for this class of systems.

Remark. It is worth noting that Kawski in [6] has con-



sidered techniques for neutralizing and balancing bad
brackets. However, this technique is not clearly related
to ours. Kawski’s technique applies in the single-input
setting, and neutralizes brackets possibly with brackets
of different degree via parameterized families of con-
trols carefully tailored to the system and the brackets
in question. In some cases these families of controls
involve switching between control limits, with the pa-
rameter affecting the switching times. Our technique
utilizes the freedom of multiple independent inputs to
enforce a linear relation between the inputs in order to
neutralize brackets of the same type.

4.1 Neutralization via congruence transform

Moving to the generic multiple-input homogeneous sys-
tem of degree two, suppose that there is some bracket of
the form [fi, [fi, f◦]] that is not in the span of {fi}m

i=1.
We would like to find a transformation T on the input
space such that the transformed system

ẋ = f◦(x) +

m∑

j=1

(

f̄j

︷ ︸︸ ︷
m∑

i=1

fiTij) ūj

has the corresponding potential obstruction removed.
Of course, the input transformation will not affect
span{fi}m

i=1. We make the restriction |ūj | ≤ 1/λ̄ where
λ̄ is the spectral radius of T in order to have the result-
ing ui satisfy the bounds |ui| ≤ 1. 3

Suppose the subspace B := L(0,1)(F)⊥x◦

∩ L(1,2)(F)x◦

has dimension one and there is at least one bad bracket
of type (1,2) with a nonzero projection onto this sub-
space. Let b ∈ Tx◦

IRn be such that span{b} = B.
Hence b represents the direction of the potential ob-
struction, and if we could annihilate the bad brackets
along this direction, the potential obstruction will have
been removed. It is possible to choose a differential
one-form β such that (βb)(x◦) 6= 0 but (βfi)(x◦) = 0
for all i ∈ {1, . . . ,m}. Roughly speaking, β represents
the projection of a vector field onto B. With β in hand,
we define the map ψβ from Tx◦

IRn × Tx◦
IRn to IR by

ψβ : (f, g) 7→ (β[f, [g, f◦]])x◦
(4)

This map inherits bilinearity from the Lie bracket, and
hence is a tensor of covariant order two at x◦. Next we
derive a matrix Ψβ ∈ IRm×m from ψβ via

(Ψβ)ij := ψβ(fi, fj) (5)

where fi, fj are the input vector fields of the system
in (1). Then Ψβ is the matrix whose ijth element is
the projection of the tangent vector [fi, [fj , f◦]]x◦

onto
the direction b. By employing the Jacobi identity and

3While modification of the control bound can result in diffi-
culties in the balancing of brackets in [6], this is not a concern in
our case, since the neutralization that we achieve is independent
of the relative magnitudes of ūi.

the fact that the input vector fields commute, it is clear
that Ψβ is also symmetric. Denoting by Ψ̂β the corre-
sponding matrix for the transformed system, it is easy
to see that Ψ̂β = TT ΨβT . In this manner, the question
of whether the obstructing brackets can be neutralized
is reduced to the linear algebra question:

Given a symmetric matrix Ψβ 6= 0, is there a
full rank, square matrix T such that the con-
gruence transformation of Ψβ , Ψ̂β = TT ΨβT ,
has all zeros along the diagonal?

Supposing for a moment that such a congruence trans-
form exists, since it is full rank it must be true that
there is some nonzero, off-diagonal element (Ψ̂β)ij .
In other words, if such an input transformation ex-
ists, it not only neutralizes the bad bracket(s) in the
b direction, but also replaces them with good brack-
ets that have nonzero projections in that direction.
Furthermore, the input transformation will not cre-
ate type (1,2) bad brackets in directions orthogonal to
L(1,2)(F)x◦

. (This would be tantamount to TT 0T 6= 0.)
Of course, the input transformation will also rotate the
higher-degree brackets, possibly creating bad brackets
from good.

Recalling that a symmetric matrix is called indefinite
if it has at least one positive eigenvalue and at least
one negative eigenvalue, we have the following answer
to the posed question.

Lemma 4
Given a matrix Ψβ = ΨT

β 6= 0, there exists a full rank

matrix T such that Ψ̂β = TT ΨβT has all zeros on the
diagonal if and only if Ψβ is indefinite.

Proof: First recall that by virtue of its symme-
try, the matrix Ψβ has orthonormal eigenvectors V :=
(v1, . . . , vm) such that V T ΨβV = diag(λ1, . . . , λm)
where λi are the real eigenvalues of Ψβ . Expressing
the columns ti of T in terms of the orthonormal eigen-
vectors, we have (Ψ̂β)ii =

∑m
j=1 λj(t

T
i vj)

2. If Ψβ 6= 0 is
either positive or negative semidefinite, then for any full
rank T there is some column ti that has a nonzero pro-
jection onto an eigenvector that corresponds to some
λj 6= 0, and the corresponding diagonal element (Ψ̂β)ii

will be nonzero.

Suppose Ψβ is indefinite, and group the eigenvalues
into those which are positive {λ+

i }
m+

i=1, those which are
negative {λ−

j }
m−

j=1, and those which are zero {λ◦

k}m◦

k=1.

The eigenvectors are similarly grouped into {v+
i }m+

i=1,
{v−

j }m−

j=1, and {v◦

k}m◦

k=1. We proceed by constructing the
matrix T . The first m◦ columns ti of T are chosen so
that ti = v◦

i , achieving tiΨβti = 0 for i ∈ {1, . . . ,m◦}.
The next m+ columns tj are chosen according to

tj+m◦
=

v+
j

(λ+
j )1/2

− v−

1

(λ−

1 )1/2
(6)



for all j ∈ {1, . . . ,m+}. For this choice, ti⊥tj for
all i ∈ {1, . . . ,m◦} and all j ∈ {1, . . . ,m+}, and
tTj+m◦

Ψβtj+m◦
= 0 for all j ∈ {1, . . . ,m+}. The fi-

nal m− columns tk are chosen to be

tk+m◦+m+
=

v+
1

(λ+
1 )1/2

+
v−

k

(λ−

k )1/2
(7)

for all k ∈ {1, . . . ,m−}. Similarly, this final group of
columns is orthogonal to {ti}m◦

i=1 and has the property
tTk+m◦+m+

Ψβtk+m◦+m+
= 0 for all k ∈ {1, . . . ,m−}.

Furthermore, {t`}m
`=m◦+1 is linearly independent. This

completes the construction of T .

4.2 The planar vehicle example revisited
Applying this line of reasoning to the planar vehi-
cle example presented above, the direction of the
apparent obstruction projected onto L(0,1)(F)x◦

is
b = (0,−2h, 0), and the tensor ψβ in coordinates is
(0, 0, 2h; 0, 0, 0; 2h, 0, 0). The associated matrix Ψβ =

(4h2, 2h; 2h, 0) has eigenvalues 2h2 ± 2
√

h4 + h2. Of
course h 6= 0 is assumed, for otherwise there is no ob-
struction. It is easy to see that Ψβ is sign indefinite,
and hence the construction in the proof of Lemma 4
provides the transformation

Tβ =

(
σ1(h)h − σ2(h)

√
1 + h2 σ2(h)h − σ1(h)

√
1 + h2

σ1(h) σ2(h)

)

where σ1 and σ2 are continuous functions of h > 0
with σi > 0 for all finite h > 0. This transfor-
mation yields Ψ̂β = (0,−2;−2, 0), and the result-
ing type (1,2) brackets of the transformed system are
[f̄1, [f̄1, f◦]] = (0, 0, 0), [f̄1, [f̄2, f◦]] = (0, 1/h, 0), and
[f̄2, [f̄2, f◦]] = (0, 0, 0). Thus the apparent obstruction
to STLC is removed, and the Lie subalgebra generated
by the system at x◦ is spanned by the good brackets
{f̄1, f̄2, [f̄1, [f̄2, f◦]]}. Hence application of Sussmann’s
general result demonstrates STLC. It is interesting to
note that while Tβ is not equal to T determined above,
it does transform the system into one with pure force
and pure torque input for any h > 0.

4.3 Example of balancing two bad brackets

Not only can this technique neutralize a bad type (1,2)
bracket with a good type (1,2) bracket, but it may
also balance two bad brackets. Consider the two
input example with f◦(x) = (x2x3, x1x3, x2

1 − x2
2),

f1 = (1, 0, 0), and f2 = (0, 1, 0). This system
has two apparent obstructions of type (1,2), namely
[f1, [f1, f◦]] = (0, 0, 2) and [f2, [f2, f◦]] = (0, 0,−2).
Furthermore, the good bracket [f1, [f2, f◦]] is (0, 0, 0).
For this example, Ψβ = (4, 0; 0,−4) is clearly in-
definite, and hence we have the desired transforma-
tion T = (0.5,−0.5; 0.5, 0.5). The resulting trans-
formed type (1,2) brackets are [f̄1, [f̄1, f◦]] = (0, 0, 0),
[f̄1, [f̄2, f◦]] = (0, 0, 1), and [f̄2, [f̄2, f◦]] = (0, 0, 0), and
again STLC is achieved. An interesting variation on
this example is obtained if we replace f◦(x) above with

(x2x3, x1x3, x2
1 + x2

2 + αx1x2) where α ∈ IR. This sys-
tem has Ψβ = (4, 2α; 2α, 4) indefinite for |α| > 2. This
condition has the interpretation that the two bad brack-
ets which project onto b with the same sign can be neu-
tralized with the good bracket if its projection onto b
is large enough.

4.4 Effect of neutralization on other directions

Next we consider the effect of neutralization of brack-
ets along one direction on the projection of the brack-
ets in another direction. We consider the system
that evolves on x ∈ IR4 described by f◦(x) =
(x2x4, 0, x2

1 + x1x2, x1x2), f1 = (1, 0, 0, 0), and
f2(0, 1, 0, 0). The type (1,2) brackets for this system
are [f1, [f1, f◦]] = (0, 0, 2, 0), [f2, [f2, f◦]] = (0, 0, 0, 0),
and [f1, [f2, f◦]] = (0, 0, 1, 1). If we concentrate on neu-
tralizing the bad bracket in the direction b = (0, 0, 2, 0),
then we have Ψβ = (4, 2; 2, 0) with eigenvalues λ =
2 ± 2

√
2. The constructed transformation matrix

T = (−2−1/4, 2−1/4; 0, 21/4) neutralizes the bad bracket
along b. However, the transformation produces an ob-
struction along (0, 0, 0, 1), as evidenced by the result-
ing brackets [f̄1, [f̄1, f◦]] = (0, 0, 0,−

√
2), [f̄1, [f̄2, f◦]] =

(0, 0,−1,−1), and [f̄2, [f̄2, f◦]] = (0, 0, 0, 0).

4.5 Interpretation and impact

We have developed a test for neutralizing bad brackets
of type (1,2) for homogeneous degree-two systems that
requires indefiniteness of the matrix Ψβ defined in (5).
To interpret this requirement, we recall that a matrix is
positive definite if and only if all of its principal minors
are positive definite. On the other hand, a matrix is
negative definite if and only if all of its principal mi-
nors are negative definite when of odd dimension and
positive definite when of even dimension. Hence Ψβ will
be indefinite if any principal minor is itself indefinite.
Recalling that the ijth entry of Ψβ is the projection
of the bracket [fi, [fj , f◦]] onto the direction b, the im-
plications of the indefiniteness test become intuitively
clear. Restricting our attention for the moment to cases
where L(1,2)(F)x◦

∩L(0,1)(F)x◦
is spanned by the single

vector b, if there is a single obstructing bad bracket and
a good bracket with nonzero projection onto b, then the
obstruction can always be removed since the principal
minor corresponding to these two brackets is always
indefinite (i.e., the matrix (2a, b; b, 0) has eigenvalues
a ±

√
a2 + 4b2.) If two or more bad brackets project

along b, then they can all be simultaneously neutral-
ized so long as a pair of the bad brackets project with
opposite sign along b. On the other hand, if one or more
bad brackets project onto b with the same sign with all
good brackets being orthogonal to b, then the technique
fails. Notice that while the examples all had just two
inputs, the technique applies without modification to
homogeneous degree-two systems with m ≥ 2.

When other directions are involved, the neutral-
ization may encounter difficulties. Supposing that



Table 1: Applicability of neutralization via congruence
transformation. B := L(0,1)(F)⊥x◦

∩L(1,2)(F)x◦
.

# of good # of bad
dim(B) brackets brackets outcome

0 n.a. n.a. no obstr.
1 1 0 no obstr.
1 1 1 neutralized
1 ≥ 0 2 possible neut.

≥ 2 open question

L(1,2)(F)x◦
∩ L(0,1)(F)x◦

is spanned by {bi}k
i=1 with

k ≥ 2, the question of neutralization of bad brackets
becomes one of simultaneously transforming the ma-
trices Ψβi

so that they all have zeros on the diago-
nals. If the ranges of the matrices Ψβi

are orthogonal,
then the problem could be solved with a block diago-
nal transformation T , where each block appropriately
transforms each Ψβi

. This would require a straightfor-
ward modification of the construction of T that would
allow freedom in the choice of ti on the null space
spanned by {v◦

i }. These interpretations are summa-
rized in Table 1.

Finally, notice that homogeneity is not essential to the
development of neutralization via congruence trans-
form, the construction of the matrix Ψβ being suffi-
ciently general that it applies to any nonlinear sys-
tem linear in control. For example, neutralization
of bad type (1,2) brackets for the system f◦(x) =
(x2x3, x1x3, sin2 x1 − sin2 x2), f1 = (1, 0, 0), and f2 =
(0, 1, 0) proceeds identically to that of the previous ex-
ample with f◦(x) = (x2x3, x1x3, x1 − x2). Clearly the
proposed technique provides for neutralization of bad
brackets of type (1,2) for these more general systems.
A generalization of neutralization via congruence trans-
formation to nonhomogeneous nonlinear systems would
involve incorporation of the rich differential geometry
of nilpotent and higher-order approximations and foli-
ations described for example by Hermes in [8].

5 Conclusion

We have presented a complete characterization of STLC
for the class of single-input, homogeneous polynomial
systems linear in control, where homogeneous is used
in the traditional sense. Specifically for odd-degree
systems, STLC is equivalent to the Lie Algebra Rank
Condition, while even-degree systems are never STLC
except for the degenerate case of a scalar state. For
multiple-input homogeneous systems linear in control,
we have investigated neutralization of bad brackets with
brackets of the same type. The methodology presented
in this paper provides a means of neutralizing bad
brackets of type (1,2). By consideration of the tensor
generated from the bracket structure [·, [·, f◦]] applied
to the direction containing an apparent obstruction, we
have reduced the question of neutralizing an obstruc-
tion to that of finding a congruence transform that re-

sults in a matrix with all zeros along its diagonal. It is
shown that such a transformation exists if and only if
the matrix in question is indefinite. When this test is
translated back to type (1,2) brackets, it has very in-
tuitive implications, which are illustrated with several
simple examples. The methodology presented is limited
in its effectiveness by the fact that it removes an appar-
ent obstruction only along a particular direction in the
tangent space, although an extension to multiple direc-
tions appears attainable. Although the result has been
presented in the context of homogeneous systems, its
development does not rely on homogeneity, and hence
applies to neutralization of type (1,2) brackets for any
nonlinear system that is linear in control.
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