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Abstract

This paper presents a series expansion for the evolution of a class of nonlinear systems characterized by constant input vector
fields. We present a series expansion that can be computed via explicit recursive expressions, and we derive sufficient conditions
for uniform convergence over the finite and infinite time horizon. Furthermore, we present a simplified series and convergence
analysis for the setting of second order polynomial vector fields. The treatment only relies on elementary notions on analytic
functions, number theory, and operator norms.
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1 Introduction

This papers studies series expansions for the evolution
of a class of nonlinear control systems. Series expan-
sions are an enabling tool in trajectory generation and
optimization problems, e.g., see Lafferriere and Suss-
mann [18], Leonard and Krishnaprasad [19], Rui et al.
[24], and the author’s work [5]. Furthermore, series ex-
pansions play a key role in the study of sufficient and
necessary conditions for local nonlinear controllability;
see Kawski [12], and in other areas such as geometric in-
tegration; see McLachlan et al. [22], and realization the-
ory; see Isidori [10, Section 3.4 and 3.5].

Volterra series and other types of expansions have re-
ceived much attention in the literature. Some early work
includes the Magnus [21] and Chen [6] series. Volterra
series were then studied in Brockett [2], Bruni et al.
[3], Gilbert [9], Lesiak and Krener [20]. Fliess [7] later
provided a comprehensive treatment of what is now
known as the Chen-Fliess series. Motivated by control-
lability and normal form theory, Kawski and Sussmann
[13] obtained increasingly sophisticated versions of the
Chen-Fliess series. In a related line of research, the
two textbooks Rugh [23] and Schetzen [27] focus on
the input/output representation of nonlinear systems
via series expansions. Some advanced results within
this context are found in Sandberg [25] and Boyd and
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Chua [1]. These works and this work’s contribution are
compared below.

The main contributions of this paper are novel series
expansions for nonlinear control systems described by
smooth ordinary differential equations linear in control.
The model system we consider is described by the dif-
ferential equation

ẋ(t) = f(x(t)) +Bu(t),

where the vector field f is analytic, the matrix B be-
longs to Rn×m, and the components (u1, . . . , um) of the
control u are piecewise continuous functions of time. We
call such analytic systems linear in control. For this class
of nonlinear systems we present a series expansion that
can be computed via explicit recursive expressions. Ad-
ditionally, we present a simplified series assuming the
components of f are polynomial of first and second de-
gree. The presentation and derivation rely only on el-
ementary tools and the final series appear in a format
similar but not identical to the classic Volterra format.

The convergence properties for the series are character-
ized via asymptotic bounds on the truncation error. The
series expansion converges uniformly over the infinite
time horizon provided the linearized system is exponen-
tially stable (i.e., the Jacobian linearization of the drift
vector field at the origin is a Hurwitz matrix) and the
input norm is bounded by a computable constant. Al-
ternatively, for an arbitrary input, the series is guaran-
teed to converge over a computable finite time interval.
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These limitations are similar to the ones present in per-
turbation and averaging methods in dynamical systems
theory, e.g., see Khalil [14, Section 8.2] and Sanders and
Verhulst [26, page 71].

The presentation is organized as follows. We start by
comparing the novel series expansions with several pre-
vious approaches. Section 2 reviews some basic facts on
operator norms. Section 3 discusses the setting of ana-
lytic systems linear in control while Section 4 discusses
the special case of polynomial systems of second order.
A final discussion is presented in Section 5.

Comparison with Volterra and Chen-Fliess expansions

For a review of Chen-Fliess and Volterra series we refer
to Chapter 3, and to the Bibliographical Notes in Isidori
[10], and to the survey in Fliess et al. [8]. Many of the
following comments are inspired by these works.

Volterra series It is known that bilinear systems
admit explicit expressions for the Volterra kernels.
Because the Carleman linearization procedure trans-
forms a generic nonlinear control system into a bi-
linear system, see Rugh [23, Section 3.3] and Krener
[17], explicit expressions for the kernels of any nonlin-
ear system are theoretically available. However, the
Carleman linearization technique has various disad-
vantages. First of all, the procedure generates a high
dimensional system which only approximates the cor-
rect dynamics; see the discussion in Rugh [23, Section
3.2]. Furthermore, only weaker convergence proper-
ties are presented in the treatments [17, 23] than the
ones provided in this work, see Theorem 3.1 below.

For generic analytical systems, Lesiak and Krener
[20] give explicit (not recursive) expression for the
Volterra kernels under the assumption that the flow
map of the drift vector field is available. From manip-
ulations of the Chen-Fliess series (see below), one can
derive the series expansions for these kernels. To the
best of the author’s knowledge, no explicit or recur-
sive expressions are currently available.

Chen-Fliess series This is arguably the most success-
ful approach to writing the evolution of a nonlinear an-
alytic control system, see Fliess [7] and Fliess et al. [8].
Remarkably, the terms of the Chen-Fliess expansion
are explicitly known. Modified versions of the Chen-
Fliess expansion are proposed by Sussmann [28] and
later by Kawski and Sussmann [13].

With respect to the work presented here, the Chen-
Fliess expansion is more explicit (i.e., we only provide
recursive expressions), and more general (i.e., we re-
quire systems linear in control). On the other hand,
our series has a similar interpretation to the Volterra
series: the kth term has order k with respect to the in-
put magnitude, e.g., the first order term has the con-
ventional interpretation of being the response of the
linearized system. Additionally, the series has stronger

convergence properties than the Chen-Fliess series,
e.g., convergence over the infinite time horizon.

Wiener/Volterra systems representation Finally,
it is worth mentioning the input/output approach. In
this context, models of nonlinear systems are based
on input-output operators, see for example the treat-
ment in Boyd and Chua [1] and the textbooks Rugh
[23], Schetzen [27]. Under a “fading memory” assump-
tion, Boyd and Chua [1] obtain convergence properties
over the infinite time horizon. This fading memory
assumption is consistent with the stability require-
ments of this work and of the classic perturbation
methods from dynamical systems theory, see [14, 26].

2 Preliminaries

Elementary number theory concepts

We refer the reader to [15, 29] for a basic introduction
into the subject of generating function. We will only
quickly review some specific notions when needed here.

Let N be the set of positive integer numbers, R the
set of real numbers, and C the set of complex num-
bers. Let k ∈ N, and let P (k) be the set of or-
dered partitions of k. For example, P (3) is the collec-
tion {{3}, {2, 1}, {1, 2}, {1, 1, 1}}. The set P (k) con-
tains 2k−1 elements. 2 Let P (i, j) be the set of ordered
sequences of j integers that sums up to i, and let
P (k)− {k} be the set P (k) minus the element {k}.

The initial value problem and various Taylor expansions

Let x take value in Rn and let t belong to an interval
I: the finite time case, i.e., I = [0, T ], as well as the
infinite time horizon case, i.e., I = [0,∞), are of interest.
Consider the initial value problem

ẋ(t) = f(x(t)) + g(t) (1)

x(0) = 0,

where f and g are vector fields on Rn. The compo-
nents {f1, . . . , fn} of f are analytic functions in a neigh-
borhood of the origin 0 ∈ Rn, and the components
{g1, . . . , gn} of g are independent of x and piecewise
continuous, uniformly bounded functions of time t. The
initial value problem (1) is thought of as a control sys-
tem by setting g(t) = Bu(t), where B ∈ Rn×m, and
u = (u1, . . . , um). Since the input vector field does not
depend on x, we refer to this system as linear in control.

2 Consider the (k − 1) possible vertical lines separating k
aligned points. There are 2k−1 possible vertical line config-
urations and each corresponds to an ordered partition.
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Let f(0) = 0, and for i = 1, . . . , n, develop the functions
fi in a Taylor expansion about the origin via

fi(x) =

+∞∑

m=1

∑

j1+···+jn=m
j1,...,jn≥0

1

j1! · · · jn!

(

∂m

∂xj1
1 . . . ∂xjn

n

fi(0)

)

xj1
1 · · ·xjn

n .

Equivalently, let fi(x) =
∑+∞

m=1 f
[m]
i (x, . . . , x), where

the tensors f
[m]
i : Rn × . . .× Rn

︸ ︷︷ ︸

m

→ R, for m ∈ N, are

computed according to

f
[m]
i (y1, . . . , ym)

=

n∑

k1,...,km=1

1

m!

(
∂m

∂xk1
. . . ∂xkm

fi(0)

)

(y1)k1
· · · (ym)km

=

n∑

k1,...,km=1

(

f
[m]
i

)k1...km

(y1)k1
· · · (ym)km

.

In the last equation, the vectors y1, . . . , ym belong to Rn,
and the symbol (yj)k denotes the kth component of yj .
These definitions are readily repeated in vector format
for the vector field f by neglecting the subscript i. It will
be convenient to adopt the notation Ax = f [1](x).

Remark 2.1 (i) The setting of systems linear in con-
trol as in equation (1) is not overly restrictive. If the
forcing term g is a function of both time and state,
i.e., g = g(t, x), a change of coordinates might re-
move the dependency on x; the necessary and suffi-
cient condition for the existence of this transforma-
tion is the involutivity of the distribution {g(t, ·), t ∈
R+}. It is also possible to extend the state space by
adding integrators to the control inputs via u̇ = v.
If x(0) 6= 0 or if f(0) 6= 0, it might be possible to
redefine f and g to match the system definition in
equation (1).

(ii) The sequence of tensors {f [m],m ∈ N} uniquely
determines the Lie algebraic structure at the origin
of the control system in equation (1). For example,
one can see that

1

2
[g(t2), [g(t1), f(x)]]

∣
∣
∣
x=0

= f [2] (g(t1), g(t2)) .

Operator norms and their estimates

In defining mapping and norms we follow the notation
in [14, Chapter 6]. Consider the normed linear space Ln

∞
of piecewise continuous, uniformly bounded functions
over the interval I

x : I ⊂ R+ → Rn; t 7→ x(t),

with norm

‖x‖L∞
= sup

t∈I
‖x(t)‖∞ = sup

t∈I
max

i=1,...,n
|xi(t)| <∞.

Assume the matrix A is Hurwitz or that the interval I
is finite, and let HA be the mapping

HA : Ln
∞ → Ln

∞; x(t) 7→
∫ t

0

eA(t−τ) x(τ)dτ.

The Ln
∞ induced norm for HA is

‖HA‖L∞
=
∥
∥eAt

∥
∥
L1

= max
i=1,...,n

n∑

j=1

∫

t∈I

|(eAt)ij |dt.

Next, we consider the vector field f and its derived ten-
sors f [m]. For simplicity we start by considering the 2-
tensor f [2] : Ln

∞ × Ln
∞ → Ln

∞ defined via

(x(t), y(t)) 7→ f [2](x(t), y(t)).

and defining its induced norm
∥
∥f [2]

∥
∥
L∞

via

∥
∥
∥f [2]

∥
∥
∥
L∞

= max
‖y1‖L∞

=1

‖y2‖L∞
=1

∥
∥
∥f [2](y1, y2)

∥
∥
∥
L∞

≤ max
i=1,...,n

n∑

k1,k2=1

|(f [2]
i )k1k2 |. (2)

More generally, we examine them-tensor f [m] and define
its induced norm via
∥
∥
∥f [m]

∥
∥
∥
L∞

= max
‖yj‖L∞

=1

j=1,...,m

∥
∥
∥f [m](y1, . . . , yj)

∥
∥
∥
L∞

≤ max
i=1,...,n

n∑

k1,...,km=1

∣
∣
∣
∣

(

f
[m]
i

)k1...km

∣
∣
∣
∣

= max
i=1,...,n

n∑

k1,...,km=1

1

m!

∣
∣
∣
∣

∂m

∂xk1
. . . ∂xkm

fi(0)

∣
∣
∣
∣
.

Note that the estimates on the norm of the mappings
are only upper bounds whenever m ≥ 2. For example,
consider the 2-tensor f [2]

(
(x1, x2), (y1, y2)

)
= (−x1y1 +

x2y2 + x1y2 + x2y1, 0) defined over L2
∞. Its L∞-norm

is 2, whereas the estimate presented in equation (2) is 4.

An upper bound on the operator norm
∥
∥f [m]

∥
∥
L∞

is pro-

vided by the Cauchy estimates for the Taylor series coef-
ficient of an analytic function, see [16, Section 2.3]. Since
the vector field f is analytic at the origin, there exists a
ρ ∈ R+ such that f is analytic over the domain

Dρ = {(z1, . . . , zn) ∈ Cn | |zi| < ρ}.
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We let ‖f‖ρ denote the maximum value attained by the
magnitude of all components of f over Dρ. For any col-
lection of nonnegative indices j1+ · · ·+ jn = m, we have

∣
∣
∣
∣
∣

∂m

∂xj1
1 . . . ∂xjn

n

fi(0)

∣
∣
∣
∣
∣
≤ j1! · · · jn!

ρm
‖f‖ρ .

Conservatively bounding the right hand side by
(m!/ρm) ‖f‖ρ, we have

∥
∥
∥f [m]

∥
∥
∥
L∞

≤
n∑

k1,...,km=1

1

m!

j1! · · · jn!
ρm

‖f‖ρ

≤ 1

ρm
‖f‖ρ

n∑

k1,...,km=1

1 =

(
n

ρ

)m

‖f‖ρ .

Finally, given any scalar analytic function h of a scalar
variable η, we let RemainderM+1(h)(η) be its Taylor re-
mainder of order (M + 1) about η = 0, i.e., we write

h(η) =
M∑

m=1

h(m)(0)

m!
ηm +RemainderM+1(h)(η).

3 A series expansion

Let ε ∈ R+ and consider the initial value problem

ẋ(t, ε) = f(x(t, ε)) + εg(t) (3)

x(0, ε) = 0,

where the solution x is a function of both t ∈ I and ε ∈
R+. There is no loss of generality in assuming ‖g‖L∞

=

‖f‖ρ, since the constant ε can be redefined. Recall the

notation Ax = f [1](x) = ∂f/∂x(0).

Theorem 3.1 Consider the initial value problem in
equation (3). The solution x : I ×R+ 7→ Rn satisfies the
formal expansion

x(t, ε) =
+∞∑

k=1

εkxk(t) (4)

x1(t) =

∫ t

0

eA(t−τ) g(τ)dτ (5)

xk(t) =
∑

{i1...im}∈P (k)−{k}
∫ t

0

eA(t−τ) f [m](xi1(τ), . . . , xim(τ))dτ. (6)

Assume f analytic over the domain Dρ. Without loss of
generality let ‖g‖L∞

= ‖f‖ρ, and compute

β =

(
n

ρ

)
∥
∥eAt

∥
∥
L1
‖f‖ρ .

If βε ≤ 1 + 2β − 2
√

β + β2, the series in equation (4)
converges absolutely and uniformly in t ∈ I, and for all
integers M the truncation error is bounded by

∥
∥
∥
∥
∥
x−

M∑

k=1

εkxk

∥
∥
∥
∥
∥
L∞

≤
( ρ

n

)

RemainderM+1 (hβ) (βε),

where hβ(η) =
1 + η −

√

1− 2(1 + 2β)η + η2

2(β + 1)
.

Comments

We start by computing some terms of the series. Drop-
ping the argument τ inside the integral, the first few
terms of equation (6) read

x2(t) =

∫ t

0

eA(t−τ) f [2](x1, x1)dτ

x3(t) =

∫ t

0

eA(t−τ)
{

2f [2](x2, x1) + f [3](x1, x1, x1)
}

dτ

x4(t) =

∫ t

0

eA(t−τ)
{

2f [2](x3, x1) + f [2](x2, x2)

+3f [3](x2, x1, x1) + f [4](x1, x1, x1, x1)
}

dτ.

A second remark concerns the truncation error estimate.
AtM = 0, the estimate turns into an upper bound on the
solution ‖x‖L∞

. In other words, whenever convergence
is guaranteed we have

‖x‖L∞
<
( ρ

n

)
(

1−
√

β

1 + β

)

.

The convergence properties are similar to the ones dis-
cussed in [14, Chapter 8]. The condition βε ≤ 1 + 2β −
2
√

β + β2, with β =
(
n
ρ

)∥
∥eAt

∥
∥
L1
‖f‖ρ, implies the fol-

lowing statement: for any stable system there exists a
small enough ε? = ε?(β) such that for all ε < ε? the se-
ries converges. Alternatively, given a specific value of ε,
convergence is assured by finding a small enough β, that
is, a small enough

∥
∥eAt

∥
∥
L1
. This is always possible since

this norm goes to zero as the length of interval I van-

ishes. A lower bound to 1+2β−2
√

β + β2 is 1/(4β+2).
This bound is asymptotically correct as β goes to +∞.
Accordingly, the convergence criteria can be restated in
terms of ε ≤ 1/(4β2 + 2β).

Proof of Theorem 3.1

The proof entails two parts. We first derive the power
series in a formal matter, then show its absolute conver-
gence. Following the perturbation methodology in [14,
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Section 8.1], we proceed as follows: we let x(t, ε) be the
solution to the initial value problem (3) (necessarily a
function of ε), substitute x(t, ε) into both sides of (3),
develop both sides in their power series and equate same
powers of ε. In computing power series expansions of a
generic function y(ε), it is convenient to use the notation
[εk] y(t, ε) for the coefficient of εk in y(t, ε); this notation
is taken from [15, Section 1.2.9] and [29, Section 1.2]. For
the left side of equation (3) we easily have

[εk] ẋ(t, ε) = [εk]

+∞∑

j=1

εj ẋj(t) = ẋk(t).

For the right hand side we compute

f(x)
∣
∣
∣
x=
∑

+∞

j=1
εjxj

+ εg(t)

=

+∞∑

m=1

f [m]

(
+∞∑

i1=1

εi1xi1 , . . . ,

+∞∑

im=1

εimxim

)

+ εg(t).

The coefficient of ε is f [1](x1)+g(t) = Ax1+g(t). Hence

ẋ1 = [ε]
(
f(x) + εg(t)

)
= Ax1 + g(t).

Equation (5) in the text follows from noting that the
initial condition for x1, as well as for any other xk, is
zero. We compute the coefficient of εk as

[εk] f(x(t, ε))

= [εk]
+∞∑

m=1

f [m]

(
+∞∑

i1=1

εi1xi1 , . . . ,
+∞∑

im=1

εimxim

)

=
k∑

m=1

[εk] f [m]

(
k∑

i1=1

εi1xi1 , . . . ,
k∑

im=1

εimxim

)

=
k∑

m=1

∑

{i1...im}∈P (k,m)

f [m](xi1 , . . . , xim) (7)

= f [1](xk) +
∑

{i1...im}∈P (k)−{k}

f [m](xi1 , . . . , xim),

where P (k,m) is the set of ordered sequences of m in-
tegers summing up to k. This proves equation (6), since
the differential equation for the order εk term is

ẋk = Axk +
∑

{i1...ij}∈P (k)−{k}

f [j](xi1 , . . . , xij ).

In the second part of the proof we seek an upper bound
on ε to guarantee that the series in equation (4) converges
absolutely and uniformly over t ∈ I. Using the operators

norms and bounds discussed in Section 2, we have

‖x1‖L∞
≤
∥
∥eAt

∥
∥
L1
‖g‖L∞

=
∥
∥eAt

∥
∥
L1
‖f‖ρ ,

and since
∥
∥f [m]

∥
∥
L∞

≤ ‖f‖ρ
(
n
ρ

)m

,

‖xk‖L∞
≤
∥
∥eAt

∥
∥
L1
‖f‖ρ

∑

{i1...im}∈P (k)−{k}

(
n

ρ

)m

‖xi1‖L∞
· · · ‖xim‖L∞

.

Let β =
(
n
ρ

)∥
∥eAt

∥
∥
L1
‖f‖ρ, and define the series of pos-

itive numbers a1 = 1, and

ak = β
∑

{i1...im}∈P (k)−{k}

ai1 · · · aim

or equivalently ak =
β

1 + β

∑

{i1...im}∈P (k)

ai1 · · · aim . By

induction one can show that

‖xk‖L∞
≤
( ρ

n

)

βkak. (8)

To characterize the behavior of the sequence {ak, k ∈ N}
we resort to the method of generating functions; see [15,

29]. Let h(η) =
∑+∞

k=1 akη
k and compute

h(η) = η +
β

β + 1

+∞∑

k=2

ηk
∑

{i1...im}∈P (k)

ai1 · · · aim ,

where

+∞∑

k=2

ηk
∑

{i1...im}∈P (k)

ai1 · · · aim

= −η +

+∞∑

k=1

∑

{i1...im}∈P (k)

(ai1η
i1) · · · (aimηim)

In the spirit of the generating function method one per-
forms the simplification

+∞∑

k=1

∑

{i1...im}∈P (k)

(ai1η
i1) · · · (aimηim)

=

+∞∑

j=1

(
+∞∑

i=1

aiη
i

)j

=

+∞∑

j=1

(h(η))
j
=

h(η)

1− h(η)
, (9)

where the first equality is equivalent to equation (7) and
the last equality holds under the assumption h < 1. This
bound will be established a posteriori. The remaining
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steps only rely on basic algebra. We compute h as a
function of η from the equation

h = η +
β

β + 1

(

−η +
h

1− h

)

to obtain (discarding a second solution)

h(η) =
1 + η −

√

1− 2(1 + 2β)η + η2

2(β + 1)
.

The function h is defined real for any 0 ≤ η ≤ 1 + 2β −
2
√

β + β2 and attains a maximum value of

max
0≤η≤1+2β−2

√
β+β2

h = 1−
√

β

β + 1
.

As β increases, the convergence region and themaximum
value of h diminishes. The bound on η translates into a
(conservative) estimate on how large ε can be in order
for the series in equation (4) to converge. The bound
on h(η) translates into an estimate of the corresponding
norm of the displacement ‖x(t)‖L∞

over the domain of
guaranteed convergence. In any case h is always less than
unity, so that the equality (9) is justified a posteriori.

Finally, from the estimate in equation (8) we obtain

∥
∥
∥
∥
∥
x−

M∑

k=1

εkxk

∥
∥
∥
∥
∥
L∞

≤
∑

k>M

εk ‖xk‖L∞

≤
( ρ

n

) ∑

k>M

akε
kβk =

( ρ

n

)

RemainderM+1 (h(βε)) .

The convergence statement follows by noting that h(βε)
can be developed in a convergent Taylor expansion about

ε = 0 in a radius βε ≤ 1 + 2β − 2
√

β + β2.

4 Second order polynomial systems

Polynomial vector fields are common in example appli-
cations, e.g., see [5], and are important in the study of
normal forms, e.g., see [11]. Furthermore, control sys-
tems may be written in polynomial form via coordinate
transformations as well as via dynamic extension of the
state space. In this section, we investigate whether sim-
pler expressions or stronger convergence properties are
available for this subclass of systems. Specifically, we fo-
cus on systems described by a vector field f whose com-
ponents are first and second order polynomial functions.
In other words, we consider a control system with f [1]

and f [2] as only non-vanishing tensors:

ẋ(t, ε) = Ax(t, ε) + f [2](x(t, ε), x(t, ε)) + εg(t) (10)

x(0, ε) = 0.

Theorem 4.1 Consider the initial value problem in
equation (10). The solution x : I × R+ 7→ Rn satisfies

x(t, ε) =

+∞∑

k=1

εkxk(t)

x1(t) =

∫ t

0

eA(t−τ) g(τ)dτ

xk(t) =

k−1∑

i=1

∫ t

0

eA(t−τ) f [2](xi(τ), xk−i(τ))dτ, k ≥ 2.

Without loss of generality assume ‖g‖L∞
=
∥
∥f [2]

∥
∥
L∞

,

and compute

β = 2
∥
∥eAt

∥
∥
L1

∥
∥
∥f [2]

∥
∥
∥
L∞

.

If β2ε < 1, the series converges absolutely and uniformly
in t ∈ I, and for all integers M the truncation error is
bounded by

∥
∥
∥
∥
∥
x−

M∑

k=1

εkxk

∥
∥
∥
∥
∥
L∞

≤ 1

β
RemainderM+1

(

1−
√

1− β2ε
)

.

Comments

The first few terms of the resulting series are:

x2(t) =

∫ t

0

eA(t−τ) f [2](x1, x1)dτ

x3(t) =

∫ t

0

eA(t−τ)
{

2f [2](x2, x1)
}

dτ

x4(t) =

∫ t

0

eA(t−τ)
{

2f [2](x3, x1) + f [2](x2, x2)
}

dτ.

Note the agreement with the expressions for the ana-
lytic case. The polynomial nature of the control sys-
tem (10) leads to simplifications in the bound on the
solution ‖x‖L∞

and in the computation of the parame-
ter β: no norms over complex planes are required. When-
ever convergence is guaranteed it holds

‖x‖L∞
<

1

β
.

Even though the estimates for polynomial vector fields
have a simpler expression, they qualitatively agree with
the ones for the more general analytic vector field case:
given the parameter β, the series converges for all forcing
terms smaller in magnitude than a constant ε? = ε?(β).

Finally, we consider the initial value problem

ẋ = −x+ x2 + u(t), x(0) = 0.
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We compute
∥
∥f [2]

∥
∥
L∞

= 1 and
∥
∥eAt

∥
∥
L1

= 1 − e−T ,

assuming the interval of interest is I = [0, T ]. We
write u(t) = εg(t), where we set ε = ‖u‖L∞

and

g(t) = u(t)/ ‖u‖L∞
. Accordingly, the assumption

‖g‖L∞
=
∥
∥f [2]

∥
∥
L∞

in Theorem 4.1 is satisfied. The

convergence bound in Theorem 4.1 becomes

‖u‖L∞
(1− e−T )2 < 1/4. (11)

The guaranteed convergence region is depicted in Fig-
ure 1. Since the origin is an exponentially stable equi-
librium point for the system, convergence is guaranteed
over the infinite time horizon for all ‖u‖L∞

< 1/4. The

bound ‖u‖L∞
< 1/4 is tight, since any constant input

u(t) = u > 1/4 leads to solutions with finite escape
time. The solution at ubound(t) = 1/4 is

xbound(t) =
t

2(2 + t)
. (12)

Figure 2 presents approximations of increasing order
computed according to Theorem 4.1.

PSfrag replacements

‖u‖L∞

T1

−

2 3
1/4

Approximations to xbound(t)

t

5
10

Fig. 1. According to equation (11), convergence for time T
is guaranteed provided ‖u‖L∞

is below the depicted curve.

PSfrag replacements
‖u‖L∞

T
1
−

2
3

1/4

Approximations to xbound(t)

t5 10

Fig. 2. Comparing the exact evolution in equation (12)
(in dashed line) with approximations of increasing order.

Proof of Theorem 4.1

The expressions for the terms of the series are immedi-
ately derived from Theorem 3.1. Since f [m] = 0 for all
m ≥ 3, we restrict the summation indices {i1 . . . im} ∈

P (k)− {k} to the set P (k, 2). With regards to the esti-
mates and the convergence properties, we write

‖x1‖L∞
≤
∥
∥eAt

∥
∥
L1
‖g‖L∞

=
∥
∥eAt

∥
∥
L1

∥
∥
∥f [2]

∥
∥
∥
L∞

‖xk‖L∞
≤
∥
∥eAt

∥
∥
L1

∥
∥
∥f [2]

∥
∥
∥
L∞

k−1∑

i=1

‖xi‖L∞
‖xk−i‖L∞

.

Define the sequence a1 = 1
2 , ak = 1

2

∑k−1
i=1 aiak−i, and

prove by induction that

‖xk‖L∞
≤ 22k−1

∥
∥eAt

∥
∥

2k−1

L1

∥
∥
∥f [2]

∥
∥
∥

2k−1

L∞

ak ≡ β2k−1ak.

Modulo a scaling factor, the numbers {ak, k ∈ N} are the
Catalan numbers, see [29, Section 2.3]. Their generating
function is

h(η) =

+∞∑

k=1

akη
k = 1−

√

1− η,

which is defined real for any 0 ≤ η ≤ 1 and attains a
maximum value of 1. This observation and the estimate
on ‖xk‖L∞

readily lead to

∥
∥
∥
∥
∥
x−

M∑

k=1

εkxk

∥
∥
∥
∥
∥
L∞

≤
∑

k>M

εk ‖xk‖L∞
≤
∑

k>M

εkβ2k−1ak

=
1

β

∑

k>M

ak(β
2ε)k =

1

β
RemainderM+1

(

1−
√

1− β2ε
)

.

The convergence statement follows by noting that
√

1− β2ε can be developed in a convergent Taylor
expansion about ε = 0 in a radius ε < 1/β2.

5 Conclusions

Numerous research avenues remain open, including how
to characterize the relationship with the Chen-Fliess se-
ries and with the series in [4], how to extend Theorem 3.1
to systems with generic forcing term g = g(t, x), and
how to bring to bear normal form theory. Furthermore,
the simplicity and convergence properties of the novel
series might help in areas such as trajectory generation
and optimization, controllability, and model reduction.

Acknowledgments

The author thanks Christoforos Hadjicostis, James
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