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Abstract

This paper presents new techniques for controlling the mo-
tion of an underactuated vehicle when disturbances are
present and only imperfect state measurements are available
for feedback. A state feedback controller is developed and
then it is converted to an imperfect state measurement feed-
back controller. The state feedback tracking control law uses
anH∞-optimal design and produces a locally exponentially
stable closed-loop system. The imperfect state measurement
feedback controller combines the state feedback control law
with anH∞-£lter to estimate the states and achieves a mod-
i£ed form of disturbance attenuation. The state estimator
exploits a unique structure in the nonlinear equations of mo-
tion to develop a direct solution. The MATLAB simulations
illustrate both control algorithms for an underactuated ship
model.

1 Introduction

We consider in this paper the problem of designing a con-
trol law to make a nonlinear underactuated vehicle track a
trajectory when disturbances are present and only imperfect
state measurements are available for feedback. The primary
design techniques will rely onH∞-optimal control methods.
We start with a brief outline of the problem and a review
of the associated literature to provide a framework for our
contributions. After this introduction, the following sections
will describe the underactuated vehicle model, the controller
design process, and the simulation results.

The vehicles under consideration display four attributes that
make the motion planning and control problems challeng-
ing. The attributes are that (i) the vehicles are underactuated,
(ii) the equations of motion are nonlinear, (iii) there are un-
known disturbances entering the equations of motion, and
(iv) the state of the system is only available through noisy
partial state measurements. Individually, these factors can
be dif£cult to handle, so their combination in a single de-
sign problem presents a formidable task.

To formally state the problem, we assume we are given an
accurate, time-invariant model of a nonlinear underactuated
vehicle that we want to control. In addition, we are given
a feasible trajectory for the vehicle to track. A feasible tra-
jectory is one that the vehicle could track exactly if there
were no initial condition errors and no disturbances. Our
objective is to design a controller that causes the vehicle to
track the feasible trajectory while also attenuating the effect
of disturbances. The control design problem can be subdi-
vided into two parts. The £rst part will be to design a state
feedback controller for the nonlinear underactuated system
assuming perfect state information is available. The second
part will be to modify the state feedback controller to ac-
count for the imperfect state measurement case.

There are two main contributions described in this paper.
First, we present the design of a state feedback controller for
an underactuated vehicle that locally exponentially tracks a
desired trajectory in the presence of disturbances. Second,
we develop an imperfect state measurement controller for
the same system by using a decomposition of the equations
of motion to estimate the states and then prove a form of
disturbance attenuation for the closed-loop system.

Our original contributions build directly on some of the re-
cent results in the literature. We used a model of an un-
deractuated ship and posed a tracking problem inspired by
the work of Pettersen and Nijmeijer [5]. Their controller
is based on a variation of the backstepping technique and
allows the ship to recover from initial errors to track a refer-
ence trajectory. Godhavn developed a more traditional type
of backstepping controller to make a ship track a desired tra-
jectory [3]. Under certain initial conditions, Godhavn’s ap-
proach would allow the ship to rotate 180 degrees and track
the reference path backwards. Our approach corrects this
de£ciency, and the simulations show the vehicle makes nat-
ural maneuvers to recover from poor initial conditions. In
addition and in contrast to both backstepping techniques, our
approach also offers the advantage of explicitly accounting
for disturbances in the controller design.

Other literature directly related to our problem addresses



the solution to theH∞ -optimal control problem. We have
adopted a game-theoretic approach to solve the control prob-
lem, and Başar and Bernhard provide a complete account
of the solution for linear and nonlinear systems [1]. Başar
and Olsder provide an additional reference on noncoopera-
tive dynamic games [2], which will also be instrumental in
our design. TheH∞ controller design presented here will
build on contributions from Walshet al. [7]. Our approach
extends their results to account for the disturbances in the
system. Finally, we will use the results by Pan and Başar [4]
to complete the disturbance attenuation proofs.

2 Underactuated Vehicle Model

In this section we introduce an underactuated ship model
which we will use for our analysis. This model is based
on the one that was studied earlier by Pettersen and Nijmei-
jer [5]. We have made only minor changes to simplify the
notation and to include disturbances. The relevant equations
of motion for this system are

¢u = muvr−duu+u1 +w1 (1)

¢v = mvur−dvv+w2 (2)

¢r = mr uv−dr r +u2 +w3 (3)

¢x = u cos(ψ)−v sin(ψ) (4)

¢y = u sin(ψ)+v cos(ψ) (5)

¢ψ = r (6)

whereu, v and r are the body-frame velocities in the for-
ward (surge), lateral (sway) and rotational (yaw) directions,
respectively,x andy are the inertial positions andψ is the
inertial rotation angle. The coef£cientsmi anddi represent
combined mass terms, including added mass, and damping
coef£cients. The two control inputs areu1 andu2. The dis-
turbanceswi only appear in equations (1) through (3) be-
cause they represent forces or torques that in¤uence the ac-
celeration of the vehicle.

One of our research objectives is to design the control inputs
u1 andu2 such that the vehicle tracks a feasible trajectory.
A feasible trajectory can be generated by selecting control
inputs and simulating the ship model described above with-
out the disturbances. The equations that describe the desired
system, are the same as equations (1) through (6), without
the disturbances. We will append a subscriptd to the vari-
ables to indicate the desired values for the states and control
inputs.

An equivalent way to state the tracking problem is to sta-
bilize the error dynamics of the system. We can write the
error differential equations by subtracting the desired equa-
tions from the system equations and de£ning the error vari-
ables asae = a−ad, wherea represents any state or control
variable

To help ease notation, we will use the following vector ex-

pression to represent the system given in (1)–(6):

¢q = f (t,q)+B(t)u+D(t)w, q(t0) = q0, (7)

where f (t,q) is a vector-valued nonlinear function and we
have used the following de£nitions:

q :=
[

u v r x y ψ
]′

u :=
[

u1 u2
]′

w :=
[

w1 w2 w3 w4 w5 w6
]′

.

Using the vector form of the equations will show how the
design techniques are relatively general and not tailored to a
speci£c model.

3 Perfect State Feedback Tracking Control

We begin the design process with the perfect state feedback
tracking controller. Our current objective is to design a con-
trol law to track a feasible trajectory and to reject the effect
of disturbances. We will assume that the feasible trajectory
has already been created and that we have full knowledge
of its required control inputs. At this stage, we also assume
we can use the full state vector in the feedback control law.
The initial control law usesH∞-optimal design techniques
applied to a linearized version of the system model to fol-
low the reference trajectory. We prove that the solution to
the linearized version of the problem provides a locally ex-
ponentially stabilizing control law for the nonlinear system
and establish conditions under which the solution is valid.

The equations of motion for the vehicle are given by (7) and
the initial conditionq0 does not necessarily agree with the
desired initial con£guration for the vehicle. The desired sys-
tem uses the control inputsud(t) to generate the feasible
trajectory we want to track. The desired trajectory is repre-
sented by the differential equation

¢qd(t) = f (t,qd)+B(t)ud(t), qd(t0) = qd0 (8)

where we assume that the initial conditionqd0 is known.
We want the actual trajectory to approach the desired trajec-
tory, so we consider the error dynamics. If we subtract (8)
from (7) we arrive at the equations for the error system

¢qe(t) = fe(t,qe)+B(t)ue(t)+D(t)w(t), qe(t0) = qe0

(9)

whereqe = q−qd andue = u−ud. Note that in (9) theB(t)
andD(t) matrices are the same as in (7) because the control
inputs and disturbances enter the equations linearly.

Tracking the desired trajectory is equivalent to £nding a set
of control inputsue(t) for the error system to drive the error
state to the origin and keep it there. If we can £nd these
control inputs, then we can calculate the tracking control
inputs for the underactuated vehicle asu = ud +ue.



The tracking controller uses a relatively simple linearization
approach to achieve surprisingly good results. We start with
the error differential equations in (9) and linearize the non-
linear system about the originqe = 0 to get the new system
matrices

Ae(t) =
∂ fe(t,qe)

∂qe

∣

∣

∣

∣

qe=0
, Be(t) = B(t), De(t) = D(t).

(10)

Note that linearizing the error equations about the origin is
equivalent to linearizing the actual system equations about
the desired trajectory. We can now write (9) as

¢qe = Ae(t)qe+Be(t)ue+De(t)w+[ fe(t,qe)−Ae(t)qe]
(11)

with the same initial condition and where the term in square
brackets is the remaining nonlinear portion and iso(|qe|).

We will start the controller design process by formulating
an optimal disturbance attenuation problem and then modify
the results to prove local exponential stability. For the initial
design, we will ignore the nonlinear term in square brackets
in (11), but we will account for it in our stability analysis.

If we associate a quadratic performance index with the lin-
ear portion of the system given in (11), we can compute a
solution to theH∞ control problem and £nd the optimal dis-
turbance attenuating controller for thelinear problem. Ac-
cordingly, we select the performance index to be

Lγ(ue,w) =
∫ t f

t0

{

|qe(t)|
2
Q(t) + |ue(t)|

2− γ2|w(t)|2
}

dt

+ |qe(t f )|
2
Qf

(12)

whereQf > 0, Q(t) ≥ 0, t ∈ [t0, t f ], andγ > 0. The solution
to the optimal control problem depends on £nding a unique
positive de£nite solution,Zγ(t), to the generalized Riccati
differential equation (GRDE)

¢Z+A′
eZ+ZAe+Q−Z

(

BeB
′
e− γ−2DeD

′
e

)

Z = 0, (13)

Z(t f ) = Qf .

Following the development in [1], we de£ne the in£mum of
values forγ that allow a solution to (13) as

γ∗ := inf{γ > 0 : The GRDE (13) does not have a

conjugate point on[t0, t f ]}. (14)

As described in [1], there always exists aγ∗ such that for any
γ > γ∗ we can £nd a positive de£nite solution to (13). The
solution to the GRDE leads to a unique feedback saddle-
point solution to the differential game, with

u∗(t,qe(t)) = −B′(t)Zγ(t)qe(t) (15)

w∗(t,qe(t)) = γ−2D′(t)Zγ(t)qe(t), t ≥ t0 (16)

whereu∗ andw∗ are the optimal control and worst-case dis-
turbance, respectively.

We can solve (13) in reverse time forZγ(t) becauseAe de-
pends on only the desired trajectory, which we assumed can
be computed in advance, and we can pickγ > γ∗ andQf > 0
in our design. The computational requirements for the so-
lution depend on the £delity of the model (i.e., the size of
the state vector) and the length of the time interval for the
motion.

The control inputu∗ provides an optimal controller for the
linearized error equations (11), so we will setue = u∗. We
construct the locally optimal solution for (7) by summing
ue(t)+ ud(t) =: u(t), since we knowud(t) in advance. We
can then apply

u(t) = ud(t)−B′(t)Zγ(t)qe(t) (17)

as the state feedback controller for the full nonlinear system.

Before we present the stability proof for this design, we
make one slight adjustment to the control law that introduces
the design parameterκ(t). Set the controller for the error
system to be

ue(t) = −κ(t)B′Zγ(t)qe(t) (18)

whereκ(t) > 0 for all t ∈ [t0, t f ]. This control law is just a
scaled version of the optimal control law and offers some ad-
ditional ¤exibility in the design. We can now prove that (18)
leads to a locally exponentially stable closed-loop system
under mild restrictions onκ(t).

To prove that the controller provides reasonable tracking
performance, we examine the stability of the closed-loop
system without the presence of disturbances. We will work
directly with the error equations for the system and we
rewrite (11) without the disturbances to get

¢qe = Aeqe+Beue+o(|qe|). (19)

Assume we have pickedQ = qI, Qf = qf I , whereq and
qf are positive scalar constants, andγ > γ∗ to solve (13) for
Zγ(t). If we apply control law (18) and suppress theγ sub-
script onZγ, we get the following closed-loop system

¢qe =
(

Ae−κBeB
′
eZ

)

qe+o(|qe|). (20)

We choose as a candidate Lyapunov function

V(t,qe) = q′
eZ(t)qe, (21)

and note that for allt ∈ [t0, t f ] we have thatV(t,qe) is pos-
itive de£nite and radially unbounded becauseZ(t) > 0 for
t ∈ [t0, t f ]. After solving forZ(t), we can also £nd real con-
stantsm andM such that

0 < mI ≤ Z(t) ≤ M I . (22)

SinceAe(t) is time-varying and depends on the desired tra-
jectory, the constantsm andM will have to be determined
numerically. To show that the closed-loop system is lo-
cally exponentially stable, we want to show that the time



derivative of the candidate Lyapunov function is negative
de£nite in a neighborhood of the origin. We compute the
time derivative as

¢V = −q′
e

[

Q+(2κ−1)ZBeB
′
eZ+ γ−2ZDeD

′
eZ

]

qe

+2q′
eZ o(|qe|). (23)

If we chooseκ(t) ≥ 1
2 on [t0, t f ], then for allt ∈ [t0, t f ] we

have
[

Q+(2κ−1)ZBeB
′
eZ+ γ−2ZDeD

′
eZ

]

> 0.

The remaining term in (23) is sign inde£nite, but vanishes
as|qe| approaches the origin, so we can use the bounds onZ
and our knowledge ofQ to £nd a neighborhood of the origin
where ¢V < 0. Following the approach presented in [7], we
can £nd someε > 0 such that

o(|qe|) ≤
1
4

q
M

|qe|, ∀qe such that|qe| < ε. (24)

Using (24) and standard arguments [6], we can show that
in the ε neighborhood of the origin, we have exponential
stability for the closed-loop system. Several remarks about
the control law are in order.

Remark 1. We do not take advantage of the term[(2κ−
1)ZBeB′

eZ+γ−2ZDeD′
eZ] in our stability analysis. This term

is nonnegative de£nite forκ ≥ 1
2 and will improve the sta-

bility of the design. ¦

Remark 2. Even though we ignore the disturbances in the
stability analysis, we expect the state feedback control law to
exhibit reasonable disturbance attenuation properties. The
reason for this expectation is that the control law closely re-
sembles the optimal disturbance attenuating control law for
the linearized system and uses the sameZ(t) matrix. If we
chooseκ(t) ≡ 1, we recover the optimal disturbance attenu-
ating controller. ¦

Remark 3. We are using a control law based on the lin-
earization of the system, so we cannot draw any global con-
clusions about stability or the disturbance attenuation prop-
erties of the closed-loop nonlinear system. ¦

This section has described the state feedback control law for
an underactuated vehicle and outlined a proof of local ex-
ponential stability for the closed-loop system. The control
approach relies on linearizing the equations of motion about
the candidate trajectory and applyingH∞ design tools to de-
termine the control inputs. The next section will address the
imperfect state measurement version of the tracking prob-
lem.

4 Imperfect State Measurement Tracking Control

The controller developed in the previous section relies on
perfect state measurements for the feedback law. In a real-
istic situation, the entire state for the system usually cannot

be measured. In our example of an underactuated ship, we
can expect to directly measure the position and orientation
of the vehicle, but not the velocities. In addition, the posi-
tion and orientation measurements will likely be corrupted
by disturbances, which we will have to account for in the
analysis. We will now modify the controller designed in the
previous section to handle the imperfect state measurement
case. We still rely on theH∞ design tools to develop the so-
lution and will exploit a unique structure in the model for the
underactuated vehicle to achieve the results. The approach
will allow us to prove a modi£ed version of disturbance at-
tenuation.

As before, we want to determine the control inputs to cause
the underactuated vehicle to track a feasible trajectory and
attenuate the effect of disturbances. The feasible trajectory
will be constructed in advance and the controller will be able
to use the inputs which generated the trajectory.

We will use the same equations for the actual, desired and
error systems as presented in Section 3. We introduce the
following measurement equation

y(t) = C(t)q(t)+E(t)w(t). (25)

Our approach will be to use the measurementsy(t) to esti-
mate the full state of the systemq(t) and then substitute the
estimate for the actual state in the feedback controller devel-
oped in Equation (17). We will denote the estimate for the
state aŝq.

The £rst step in this design process is to use the structure of
the model for the underactuated vehicle to write the equa-
tions of motion in a more convenient format. The nonlinear
error equations for the vehicle can be decomposed into two
sets of equations, where each equation is af£ne if the state of
the other subsystem is known. For this analysis, we will sup-
press thee subscript on the error equations. The equations
for the two subsystems are given as

¢q1 = A11(q2)q1 +α1(q2)+B1u1 +D1w1 (26)

¢q2 = A22(q1)q2 +α2(q1)+B2u2 +D2w2 (27)

where

q =

[

q1

q2

]

, u =

[

u1

u2

]

, w =

[

w1

w2

]

. (28)

For our model, we have

q1 =
[

u v x y
]′

, q2 =
[

r ψ
]′

u1 = u1, u2 = u2

w1 =
[

w1 w2 w4 w5
]′

, w2 =
[

w3 w6
]′

.

The αi(q j) terms are nonlinear and we would like to make
a £rst order approximation of them. To do so, we take the
Jacobian of theαi(q j) terms with respect toq j to identify
the linear portions

A12 =
∂α1(q2)

∂q2

∣

∣

∣

∣

q2=0
A21 =

∂α2(q1)

∂q1

∣

∣

∣

∣

q1=0
.



We now rewrite the subsystem equations as

¢q1 = A11(q2)q1 +A12q2 +[α1(q2)−A12q2] (29)

+B1u1 +D1w1

¢q2 = A22(q1)q2 +A21q1 +[α2(q1)−A21q1] (30)

+B2u2 +D2w2.

Combine the subsystem equations to get

¢q =

[

A11(q2) A12

A21 A22(q1)

][

q1

q2

]

+

[

α1(q2)−A12q2

α2(q1)−A21q1

]

+

[

B1 0
0 B2

][

u1

u2

]

+

[

D1 0
0 D2

][

w1

w2

]

which we write compactly as

¢q = A(q)q+α(q)+Bu+Dw. (31)

We are going to estimate the stateq using y so we
rewrite (31) as

¢q = A(q̂)q+α(q̂)+Bu+Dw (32)

+[A(q)q−A(q̂)q+α(q)−α(q̂)]

where the estimatêq depends on past measurementsy[t0,t] :=
{y(τ) : τ ∈ [t0, t]}.

We can consider (32) as an af£ne system with time-varying
elements and a nonlinear perturbation term in square brack-
ets. We would like to use results similar to those by Pan and
Başar [4] to prove disturbance attenuation for this system.
To mimic the problem presented in [4], we use a change of
variables to rewrite (32) as

¢q = A(q̂)q+α(q̂)+Bu+Dw (33)

+ ε [a(t,q)+b(t,q)u+d(t,q)w] .

Equation (33) is similar to Equation (1a) in [4], with the dif-
ference being that (33) contains the af£ne termα(q̂). We can
develop a disturbance attenuating controller with the af£ne
term in the equations if we make minor modi£cations to the
derivation in [4].

The candidate control law will substitute the estimate for
the state,̂q, in the control law (17) from the linearized error
equations to get

µ(t,y[t0,t]) = −B′(t)Z(t)q̂. (34)

We use the following equation to estimate the state of the
system

¢̂q = [A− (BB′− γ−2DD′)Z]q̂+α(q̂) (35)

+[I − γ−2ΣZ]−1ΣC′N−1(y−Cq̂),

q̂(t0) = 0

along with the followingH∞-£lter error covariance equation

¢Σ = AΣ+ΣA′−Σ(C′N−1C− γ−2Q)Σ+DD′
,(36)

Σ(t0) = [Q0−ηI ]−1

where Q(t) ≥ 0, Q0 − ηI > 0, η > 0, and N(t) :=
E(t)E′(t) > 0. The performance index associated with the
imperfect state measurement case is

L(u,w,q0;ε) = |q(t f )|
2
Qf

+
∫ t f

t0

[

|q(t)|2Q + |u(t)|2 (37)

+ ε
(

q(t,q(t))+u′(t)r(t,q(t))u(t)
)]

dt.

We will assume that the initial state is unknown and treat it
as part of the disturbance. The associated zero-sum differ-
ential game has the following soft-constrained cost function

Lγ(u,w,q0;ε) = L(u,w,q0;ε)− γ2(

|q0|
2
Q0

+‖w‖2)
. (38)

As presented in [6], we can £nd a solution to dynamic game
and prove that for someM > 0, we have

sup
q0∈IRn

sup
w∈Hw

{

L∗− γ2(

|q0|
2
Q0

+‖w‖2)} ≤ M. (39)

Inequality (39) implies that the difference betweenL∗ and

γ2
(

|q0|
2
Q0

+‖w‖2
)

is always bounded by a £xed value. This

translates into a condition relating the rates of growth forL∗

and the disturbance terms. This result is a modi£ed form of
disturbance attenuation for the nonlinear system. Since, in
general, we have to account for the af£ne terms which are
sign inde£nite, we can only guarantee the modi£ed form of
disturbance attenuation.

Our analysis has designed a control law for the imperfect
state measurement case and proven a form of local distur-
bance attenuation for the closed-loop system. In Section 5
we will simulate a system using this controller, as well as the
state feedback controller designed in Section 3, to examine
their tracking and disturbance attenuation performance.

5 Simulation Results

This section presents the results of simulations that imple-
ment the the state feedback controller and the imperfect
state measurement controller algorithms. For the simula-
tions, we used the following values for the coef£cients in
equations (1) through (3):

mu = 0.5, mv = −2.0, mr = 0.5

du = 1.0, dv = 2.0, dr = 1.0.

The simulations £xed the disturbance attenuation parameter
at γ = 5 and use weighting matricesQ = I andQf = I .

The state feedback controller simulations start the vehicle
with an initial condition that did not match the desired ini-
tial condition and monitored the tracking and disturbance at-
tenuation performance of the system. Figure 1 displays the



results for one sample desired trajectory where the system
disturbances were sinusoidal signals withw1 = w2 = w3 =
0.1cos[2π(0.2)t]. The disturbances have amplitudes which
are 10% of the magnitude of the input signal used to create
the desired trajectory. The controller successfully corrected
for the poor initial condition and approximately tracked the
desired trajectory. We note that the vehicle makes a natu-
ral maneuver to recover from the poor initial condition and
capture the desired trajectory.
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Figure 1: State feedback tracking control results. The desired
(solid) and actual (dashed)x-y trajectories are shown.

We then applied the imperfect state measurement tracking
controller to the same desired trajectory and system distur-
bances used in the £rst simulation. The only change in the
problem was that we also estimated the state of the sys-
tem. The measurement noise was sampled white noise with
σ = 0.5. Figure 2 shows the results. The simulation indi-
cates that the imperfect state measurement controller per-
forms very well in terms of tracking and attenuating the dis-
turbances.
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Figure 2: Imperfect state measurement tracking control results.

6 Conclusion

We have developed in this paper a controller that allows a
nonlinear underactuated vehicle to track a feasible trajec-
tory in the presence of disturbances and when only imperfect
state measurements are available. The design process starts
with a perfect state feedback controller that uses lineariza-
tion about the desired trajectory to £nd an optimal control
law. We proved local exponential stability for the closed
loop state feedback system. The approach then incorporates
anH∞-optimal estimate for the states to handle the imperfect
state measurement case. We then proved a form of local dis-
turbance attenuation for the resulting system, and presented
the results of two simulations to illustrate the performance
of the approach.
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