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Abstract

This work presents a review of a number of control re-
sults for mechanical systems. The key technical ad-
vances derive from the homogeneity properties of affine
connections models for a large class of mechanical sys-
tems. Recent results on nonlinear controllability and
on series expansions are presented in a unified fashion.

1 Introduction

In this paper we provide a review of some recent work
concerning the employment of an affine connection
framework to study mechanical systems. The emphasis
of the presentation here is on the homogeneity prop-
erties possessed by these systems, and how this arises
in various results, especially those of the authors. It is
this property of homogeneity which accounts for a great
deal of the structure seen in so-called affine connection
control systems. The structure of these systems makes
them an ideal proving ground for many techniques in
nonlinear control—the systems are simple enough that
one may fruitfully approach difficult problems, but are
nontrivial enough to require sophisticated machinery
to have any degree of success. For example, typical lin-
earization techniques are not useful in this category of
control systems.

The classic structure of mechanical system exploited
in stabilization problems is passivity. Indeed, numer-
ous important control problems rely in their essence
on the existence of a total energy function and its
use as a candidate Lyapunov function, see for exam-
ple the books [2, 20, 23]. This paper focuses on a dif-
ferent property of mechanical systems, i.e., their ho-
mogeneity. This property characterizes the Lie alge-
braic structure of mechanical systems, and accordingly,
it plays a key rôle in nonlinear controllability [15], nor-
mal forms [12, 16], series expansions [5], algorithms for
motion planning [7, 21] averaging via the average po-
tential [3, 6], optimal control [13], and various other
areas of control theory. It is a contention of this paper

that this property has for long time been neglected and
that instead its consequences should be investigated in
greater detail.

This paper relies on the notion of affine connection con-
trol systems to model a large class of systems which are
of current interest in the control community. Broadly
speaking, Lagrangian mechanical systems with kinetic
energy Lagrangians are effectively modeled in the affine
connection framework, and this is the topic of the pa-
pers [15] and [7]. If one adds constraints linear in ve-
locity to this class of systems, the resulting systems
may still be modeled using affine connections, and the
control setting here is described by Lewis [14].

2 Affine connections and mechanics

In this section we begin with a brief overview of affine
connections, and how they come up in mechanics. We
also mention how homogeneity enters the picture in
terms of the basic problem data for the control problem.

2.1 Affine connections

We refer to [10] for a comprehensive treatment on affine
connections and Riemannian geometry. An affine con-
nection on a manifold Q is a smooth map that assigns
to a pair of vector fields X,Y a vector field ∇XY such
that for any function f and for any third vector field Z:

1. ∇fX+Y Z = f∇XZ + ∇Y Z;

2. ∇X(fY + Z) = (LXf)Y + f∇XY + ∇XZ.

We also say that ∇XY is the covariant derivative of
Y with respect to X. Vector fields can also be covari-
antly differentiated along curves, and this concept will
be instrumental in writing the Euler-Lagrange equa-
tions. Consider a smooth curve γ : [0, 1] → Q and a
vector field along γ, i.e., a map v : [0, 1] → TQ such
that π(v(t)) = γ(t) for all t ∈ [0, 1] (π is the tan-
gent bundle projection). Let the vector field V satisfy



V (γ(t)) = v(t). The covariant derivative of the vector
field v along γ is defined by

Dv(t)

dt
, ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣∣
q=γ(t)

.

In a system of local coordinates (q1, . . . , qn), an affine
connection is uniquely determined by its Christoffel
symbols Γi

ij :

∇ ∂

∂qi

( ∂

∂qj

)
= Γk

ij

∂

∂qk
,

and accordingly, the covariant derivative of a vector
field is written as

∇XY =
(∂Y i

∂qj
Xj + Γi

jkXjY k
) ∂

∂qi
.

In settings where Q possesses a Riemannian metric g

(such as is provided, for example, by kinetic energy),
one derives a canonical affine connection associated
with g. This connection is called the Levi-Civita affine
connection, and is most directly characterized by its
Christoffel symbols, which are given in terms of the
metric components as follows:

Γi
jk =

1

2
gi`

(∂gj`

∂qk
+

∂gk`

∂qj
−

∂gjk

∂q`

)
.

Although this is the affine connection commonly seen
in applications, our treatment here is not restricted to
the Levi-Civita connection. Indeed, systems with non-
holonomic constraints are directly modelled within the
same framework, but not using Levi-Civita connections;
see [14].

2.2 Control systems described by affine connec-

tions

We introduce a class of control systems that is a gener-
alization of Lagrangian control systems. This approach
to modeling of vehicles and robotic manipulators is
common to a number of recent works; see [4, 15, 14, 5].
An affine connection control system is defined by the
following objects:

1. an n-dimensional configuration manifold Q, with
q ∈ Q being the configuration of the system and
vq ∈ TqQ being the system’s velocity,

2. an affine connection ∇ on Q, whose Christoffel
symbols are {Γi

jk : i, j, k = 1, . . . , n},

3. a family of input vector fields Y = {Y1, . . . , Ym}
on Q.

The corresponding equations of motion are written as

∇q̇(t)q̇(t) = ua(t)Ya(q(t)) (1)

or equivalently in coordinates as

q̈i + Γi
jk(q)q̇j q̇k = ua(t)Y i

a (q), (2)

where the indices i, j, k ∈ {1, . . . , n}. These equations
are a generalized form of the Euler-Lagrange equations.
That is to say, if one takes for ∇ the Levi-Civita affine
connection associated with a kinetic energy Riemannian
metric g, then the equations (1) are the forced Euler La-
grange equations for the associated kinetic energy La-
grangian and with input forces modeled by the vector
fields Y1, . . . , Ym. However, as we mentioned in the pre-
vious section, we do not wish to restrict our attention to
Levi-Civita affine connections, and so the equations (1)
in consequence give, for example, the forced equations
of motion for a nonholonomic system with a kinetic en-
ergy Lagrangian, and constraints linear in velocity.

The second-order system in equation (2) can be writ-
ten as a first-order differential equation on the tangent
bundle TQ. Using { ∂

∂qi ,
∂

∂vi } as a basis for vector fields
on the tangent bundle to TQ, we define vector fields Z

and Y lift
a , a = 1, . . . ,m, on TQ by

Z(vq) = vi ∂

∂qi
− Γ(q)i

jkvjvk ∂

∂vi
,

Y lift
a (vq) = Y i

a (q)
∂

∂vi
,

so that the control system is rewritten as

v̇(t) = Z(v(t)) + ua(t)Y lift
a (v(t)), (3)

where t 7→ v(t) is now a curve in TQ describing the
evolution of a first-order control affine system. We refer
to [15, 11] for coordinate independent definitions of the
lifting operation Ya → Y lift

a and of the drift vector field
Z. The latter vector field is called the geodesic spray .

2.3 Homogeneity and Lie algebraic structure

One fundamental structure of the control system in
equation (1) is the polynomial dependence of the vec-
tor fields Z and Y lift on the velocity variables vi. This
structure leads to some enormous simplifications when
performing iterated Lie brackets between the vector
fields in the set {Z, Y lift

1 , . . . , Y lift
m }. Apart from the pa-

pers of the authors concerning the consequences of the
structure of these Lie brackets, we refer to the work of
Sontag and Sussmann [22] on time-optimal control for
robotic manipulators. Other work on optimal control
for affine connection systems is that of Lewis [13].

We focus here on the notion of geometric homogeneity1

as described in [9]. Generally, given two vector fields X

and XE , we say that the vector field X is homogeneous

1Geometric homogeneity corresponds to the existence of an
infinitesimal symmetry in the equations of motion. For control
systems described by an affine connection the symmetry is invari-
ance under affine time-scaling transformations.



with degree m ∈ Z with respect to XE if

[XE ,X] = mX.

For affine connection control systems, we introduce the
Liouville vector field L on TQ (see [17, page 64]), as

L = vi ∂

∂vi
.

Straightforward computations verify the following.

Lemma 2.1 Let ∇ be an affine connection on Q with
geodesic spray Z, and let Y be a vector field on Q. The
following statements hold:

1. [L,Z] = (+1)Z;

2. [L, Y lift] = (−1)Y lift.

Hence, the vector field Z is homogeneous of degree +1,
and the vector field Y lift is homogeneous of degree −1
with respect to the Liouville vector field. In the fol-
lowing, a vector field X on TQ is simply homogeneous
of degree m ∈ Z if it is homogeneous of degree m with
respect to L. Let Pj be the set of vector fields on TQ

of homogeneous degree j, so that

Z ∈ P1, and Y lift ∈ P−1.

Let us leave our general discussion of homogeneity at
that for the moment, and in the next section we will in-
vestigate these properties, and illustrate how they may
be used in an investigation of nonlinear controllability
for affine connection control systems.

3 Controllability of affine connection control

systems

The matter of controllability for affine connection con-
trol systems was first undertaken systematically by
Lewis and Murray [15]. Here the precise character of
the Lie bracket structure for affine connection control
systems was undertaken, and in the presence of a po-
tential energy term in the Lagrangian. In this section,
we distill the essence of this structure without potential
energy (with potential energy, the systems are not affine
connection control systems as we have defined them in
Section 2.2). As we shall see, the resulting structure
allows us to quickly understand the character of the set
of configurations one can reach starting from a state
with zero velocity.

First we observe that the sets Pj enjoy various inter-
esting properties: Figure 1 illustrates them, and their
proof is via direct computation. Here are these proper-
ties illustrated in the table, but expressed via formulas:

(1, 1)

#Y lift

2

1

3 4

#Zg

2

(2, 1)

(i, j)

1

P1 P0 P−1

{0} {0}

{0}

Figure 1: Table of Lie brackets between the drift vector
field Z and the input vector fields Y lift

a . The
(i, j)th position contains brackets with i copies
of Y lift and j copies of Z. The corresponding
homogeneous degree is j− i. All Lie brackets to
the right of P

−1 vanish. All Lie brackets to the
left of P

−1 vanish when evaluated at vq = 0q.

1. [Pi,Pj ] ⊂ Pi+j , i.e., the Lie bracket between a
vector field in Pi and a vector field in Pj belongs
to Pi+j ;

2. Pk = {0} for all k ≤ −2;

3. for all X(vq) ∈ Pk with k ≥ 1, X(0q) = 0q.

The key observation here is that all brackets are homo-
geneous of some degree, and if one is evaluating brack-
ets at points of zero velocity, the only contributions
will come from those brackets which are homogeneous
of degree −1 or 0. It turns out that one can characterize
these brackets, and this is exactly what is undertaken
by Lewis and Murray [15].

To understand what a vector field from Pi looks like,
let us work in local coordinates. We write a vector field
X on TQ as

X = Xi
h

∂

∂qi
+ Xi

v

∂

∂vi
. (4)

Here we think of the components Xi
h, i = 1, . . . , n,

as being “horizontal” and the components Xi
v, i =

1, . . . , n, as being “vertical.” Let Hi be the set of scalar
functions in the local chart for TQ which are arbitrary
functions of q and which are homogeneous polynomials
in {v1, . . . , vn} of degree i. One verifies that a vector
field X on TQ of the form (4) is in Pi exactly when the
functions Xi

h, i = 1, . . . , n, are in Hi, and the functions
Xi

v, i = 1, . . . , n, are in Hi+1.

Let us focus for a moment on the Lie bracket
[Y lift

a , [Z, Y lift
b ]] where a, b ∈ {1, . . . ,m}. Since this Lie

bracket belongs to P−1, there must exist a vector field
on Q, which we denote 〈Ya : Yb〉, such that

〈Ya : Yb〉
lift

= [Y lift
b , [Z, Y lift

a ]].



This vector field we call the symmetric product between
Ya and Yb and a direct computation shows that it sat-
isfies

〈Yb : Ya〉 = ∇Ya
Yb + ∇Yb

Ya,

or equivalently in coordinates

〈Yb : Ya〉
i
=

∂Y i
a

∂qj
Y

j
b +

∂Y i
b

∂qj
Y j

a + Γi
jk

(
Y j

a Y k
b + Y k

a Y
j
b

)
.

The adjective “symmetric” comes from the obvious
equality 〈Ya : Yb〉 = 〈Yb : Ya〉. It turns out, in fact,
that all Lie brackets of vector fields from the set
{Z, Y lift

1 , . . . , Y lift
m } which are also vector fields in P−1

are vertical lifts of iterated symmetric products of the
vector fields {Y1, . . . , Ym}. We denote distribution
spanned by all such iterated symmetric products by
Sym(Y).

Now let us focus on another type of bracket, those
of the form [[Z, Y lift

a ], [Z, Y lift
b ]] for a, b ∈ {1, . . . ,m}.

This bracket, under our classification scheme, is in P0.
Therefore, if τQ : TQ → Q is the tangent bundle pro-
jection, there is a vector field Xab on Q which satisfies

τQ([[Z, Y lift
a ], [Z, Y lift

b ]](vq)) = Xab(q).

A routine computation shows that in fact Xab =
−[Ya, Yb]. Thus when we evaluate brackets in P0, we
expect to get something involving Lie brackets of vec-
tor fields whose vertical lifts are brackets from P−1.
Indeed, all Lie brackets of vector fields from the set
{Z, Y lift

1 , . . . , Y lift
m } which are also vector fields in P0

project to a vector field on Q which is a Lie bracket
of two iterated symmetric products. Somewhat more
precisely, if Lie(D) denotes the smallest integrable dis-
tribution containing a distribution D, the distribution
on Q generated by the projection to Q of brackets from
P0 is given by Lie(Sym(Y)).

To summarize, we have made believable the following
result of Lewis and Murray [15].

Theorem 3.1 For an analytic affine connection con-
trol system, the set of configurations reachable from
q ∈ Q starting at zero initial velocity forms an open
subset of the integral manifold through q of the inte-
grable distribution Lie(Sym(Y)).

To make this precise requires some effort, but we hope
to have made it clear the important rôle homogeneity
plays in studying affine connection control systems.

4 A series expansion for the forced evolution

from rest

As in the previous section, the homogeneity and Lie al-
gebraic structure of mechanical systems leads to a novel

characterization of their flow. Assuming zero initial ve-
locity, the evolution of the second order initial value
problem in equation (3) can be described via a first or-
der differential equation. Precise statements and proof
are available in [5].

In the computation of series expansions as well as in
the general study of perturbation methods for differen-
tial equations one key tool is the variation of constants
formula. We start by introducing some notation. A
time-varying vector field (q, t) 7→ X(q, t) gives rise to
the initial value problem on Q

q̇(t) = X(q, t), q(0) = q0.

We denote its solution at time T via q(T ) = ΦX
0,T (q0).

We also refer to it as the flow of X. Consider the initial
value problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0, (5)

where X and Y are analytic (in q) time-varying vector
fields. If we regard X as a perturbation to the vector
field Y , we can describe the flow of X +Y in terms of a
nominal and perturbed flow. The following relationship
is referred to as the variation of constants formula and
describes the perturbed flow:

ΦX+Y
0,t = ΦY

0,t ◦ Φ
(ΦY

0,t)
∗X

0,t , (6)

where, given any vector field X and any diffeomorphism
φ, the φ∗X is the pull-back of X along φ. The re-
sult is proven in [1, equation (3.15)], see also [5, Ap-
pendix A.1]. If X and Y are time-invariant, the classic
infinitesimal Campbell-Backer-Hausdorff formula pro-
vides a mean of computing the pull-back:

(ΦY
0,t)

∗X =
∞∑

k=0

adk
Y X

tk

k!
.

If instead X and Y are time-varying, a generalized ex-
pression is, see [1]:

(ΦY
0,t)

∗X(q, t) = X(q, t) +
∞∑

k=1

∫ t

0

. . .

∫ sk−1

0
(
adY (q,sk) . . . adY (q,s1) X(q, t)

)
dsk . . . ds1. (7)

In general the convergence of this series expansion
is a delicate matter. However, if the Lie brackets
adY (sk) . . . adY (s1) X vanish for all k greater than a
given N , the series in equation (7) becomes a finite
sum, and this is the key observation for us.

Now let us apply this result to the differential equa-
tion (3) on TQ, which we rewrite here for convenience:

v̇ = Z(v) + ua(t)Y lift
a (v) , Z(v) + Y (v, t)lift.



The homogeneous structure described in Figure 1 sim-
plifies the application of the variation of constant for-
mula. Let the geodesic spray Z play the role of the
perturbation to the vector field Y lift. Then the infinite
series in equation (7) collapses. We briefly illustrate
this process in what follows.

Let 0q0
denote the point on TQ, with configuration q0

and zero velocity. The solution from rest to the previous
equation is

v(T ) = ΦZ+Y lift

0,T (0q0
).

Utilizing equation (6) we compute

v(T ) = ΦY lift

0,T (w(T )) = w(T ) +

∫ t

0

Y (q, s)ds

where some straightforward manipulations lead to

ẇ(t) =
(
ΦY lift

0,T

)
∗

Z(w(t))

= Z +

∫ t

0

[Y lift(q, s)Z]ds

−
1

2

∫ t

0

∫ t

0

〈Y (q, s1) : Y (q, s2)〉
lift

ds1ds2,

with initial condition w(0) = 0q0
. It is worth noting

that the transformed initial value problem in w does
now again enjoy the same homogeneity properties as
the original one in equation (3). In other words, the
resulting system satisfies a set of equations similar to
the original one, except for some different forcing terms.
One can therefore iterate this procedure for an infinite
number of times and, under mild assumptions, obtain
a locally convergent solution.

To summarize, we have made believable the following
result of Bullo [5].

Theorem 4.1 Define recursively the time-varying vec-
tor fields Vk:

V1(q, t) =

∫ t

0

ua(s)Ya(q)ds

Vk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

〈
Vj(q, s) : Vk−j(q, s)

〉
ds.

The solution t → q(t) to equation (1) satisfies the for-
mal series expansion

q̇(t) =

+∞∑

k=1

Vk(q(t), t).

5 Simplifications in example systems

While the treatment present up to here is always appli-
cable, there are two situations in which further struc-
ture in the affine connection ∇ and in the input forces
Ya simplifies the computation of symmetric products.

5.1 Simple systems with integrable forces

Here we consider systems with Lagrangian equal to “ki-
netic minus potential” and with integrable forces; such
systems are referred to as “simple.” In the interest of
brevity, we refer to the textbooks [8, 18] for a detailed
presentation and review here only the necessary nota-
tion. The affine connection of a simple system is the
Levi-Civita connection associated with the kinetic en-
ergy metric 〈〈· , ·〉〉. If the control forces are integrable,
then for all input vector fields Ya there exists a scalar
function ϕa such that

Ya(q) = gradϕa(q). (8)

One remarkable simplification takes place under these
assumptions: the set of gradient vector fields is closed
under the operation of symmetric product. Let ϕ1, ϕ2

be scalar functions on R
n and define a symmetric prod-

uct between functions according to

〈ϕ1 : ϕ2〉 , 〈〈gradϕ1 , gradϕ2〉〉.

Then the symmetric product of the corresponding gra-
dient vector fields equals the gradient of the symmetric
product of the functions. In equations:

〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉 .

Accordingly, Theorem 4.1 can be restated as follows.

Lemma 5.1 Define recursively the time-varying func-
tions:

φ1(q, t) =

∫ t

0

ua(s)ϕa(q)ds

φk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

〈
φj(q, s) : φk−j(q, s)

〉
ds, k ≥ 2.

Then the solution q : [0, T ] → Q satisfies

q̇(t) = grad

+∞∑

k=1

φk(q(t), t).

In other words, the flow of a simple system forced from
rest is written as a time-varying gradient flow.

5.2 Invariant systems on Lie groups

Next we investigate systems with kinetic energy and in-
put forces invariant under a certain group action. These
system have a configuration space G with the structure
of an n-dimensional matrix Lie group. Examples in-
clude satellites, hovercraft, and underwater vehicles.

The equations of motion (1) decouple into a kinematic
and dynamic equation in the configuration variable
g ∈ G and the body velocity v ∈ R

n.2 The kinematic
2More precisely, the body velocity v lives in the Lie algebra of

the group G.



equation can be written as a matrix differential equa-
tion using matrix group notation ġ = gv̂; we refer to [19]
for the details. The dynamic equation, sometimes re-
ferred to as Euler-Poincarè, is

v̇i + γi
jkvjvk = ua(t)yi

a, (9)

where the coefficients γi
jk are uniquely determined from

the knowledge of the inertia metric and of the group G.
The input vectors ya are constant.

Within this setting, the result in Theorem 4.1 is sum-
marized as follows. The solution to the equation (9)
with initial condition v(0) = 0 is v(t) =

∑
∞

k=1 vk(t),
where

v1(t) =

∫ t

0

ua(a)yads

vk(t) = −
1

2

k−1∑

j=1

∫ t

0

〈
vj(s) : vk−j(s)

〉
ds, k ≥ 2,

and where the symmetric product between velocity vec-
tors is 〈x : y〉

i
= −2γi

jkxjyk. Local convergence for the
series expansion can be easily established in this set-
ting. This result supersedes the treatment in [7].
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