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Abstract

This paper presents a series expansion for the evolution
of nonlinear systems which are analytic in the state and
linear in the controls. An explicit recursive expression
is obtained assuming that the input vector fields are
constant. Additional simplifications take place in the
analysis of systems described by second order polyno-
mial vector fields. Sufficient conditions are derived to
guarantee uniform convergence over the finite and in-
finite time horizon. The treatment relies only on ele-
mentary notions on analytic functions, number theory
and operator norms.

1 Introduction

This papers studies series expansions for the evolution
of a class of nonlinear control system. Series expansions
play a key rôle in the study of sufficient and necessary
conditions for local nonlinear controllability; see Suss-
mann [20] and Kawski [8], and in other areas such as
geometric integration; see McLachlan et al. [16], and
realization theory; see Isidori [7, Section 3.4 and 3.5].
Additionally, series expansions are an enabling tool in
trajectory generation and optimization problems, e.g.,
see Lafferriere and Sussmann [13], Leonard and Krish-
naprasad [14] and the author’s work [4]. In these algo-
rithms, simple computable expressions and small trun-
cation errors are desirable.

Volterra series and other types of expansions have been
the subject of attention of many researchers. Some
early work includes Brockett [1], Gilbert [6], Lesiak and
Krener [15]. Later Fliess [5] provided a comprehensive
treatment to what is now known as the Chen-Fliess
series. Motivated by controllability and normal form
theory, Sussmann and Kawski [9, 19] obtained increas-
ingly sophisticated versions of the Chen-Fliess series.
On a related line of research, the textbook Rugh [17]
focuses on the input/output representation of nonlin-

ear systems via series expansions: this is sometimes re-
ferred to as the Volterra/Wiener approach to nonlinear
control. Finally, the author presented in [2, 3] a series
expansion for mechanical systems specially tailored to
the the homogeneous structure of such systems.

This paper presents novel series expansions for nonlin-
ear control systems described by analytic drift vector
fields and constant input fields. We call such systems
“linear in the controls.” We obtain recursive expres-
sions for the general case, as well as we illustrate how
they further simplify when dealing with vector fields
with polynomial components. The presentation and
derivation rely only on elementary tools and the final
expansions appear in a format similar but not identical
to the classic Volterra format.

Asymptotic bounds on the truncation error and conver-
gence properties for the series are fully characterized.
The series expansion converges uniformly over all time
provided the linearized system is stable and the input
norm is bounded by a computable constant. Alterna-
tively, for an arbitrary input, the series is guaranteed
to converge over a specific finite interval of time, where
the time lower bound is computable. These results are
in agreement with the classic limitation of perturba-
tion and averaging methods in dynamical systems, e.g.,
see Khalil [10, Section 8.2] and Sanders and Verhulst
[18, page 71]. We refer the reader to a later publication
for a more thorough comparison of this paper with the
literature on Volterra series.

2 Preliminaries

Some elementary number theory: We refer
to [11] for some basic introduction into the subject of
generating function. We quickly review some notation.

Let N be the set of positive integer numbers, R the
set of real numbers and C the set of complex num-
bers. Let k ∈ N, and let P (k) be the set of or-



dered partitions of k. For example, P (3) is the collec-
tion {{3}, {2, 1}, {1, 2}, {1, 1, 1}}. It is easy to see that
P (k) contains 2k−1 elements. Let P (i, j) be the set of
ordered sequences of j integers that sums up to i, and
let P (k) − {k} be the set P (k) minus the element {k}.

The initial value problem and Taylor expan-

sions: Let x take value in R
n and let t belong to an

interval I: the finite time case, i.e., I = [0, T ], as well as
the infinite horizon case, i.e., I = [0,∞), are of interest.
Consider the initial value problem

ẋ(t) = f(x(t)) + g(t) (1)

x(0) = 0,

where components {fi, i = 1, . . . , n} of f are analytic
functions in a neighborhood of the origin 0 ∈ R

n. Let gi

be the ith component of g and assume it to be integrable
over the interval I. The initial value problem (1) is
thought of as a control system by setting g(t) = Bu(t);
we refer to this system as with additive controls as the
inputs appear independently of x.

Let f(0) = 0, and for i = 1, . . . , n, develop the func-
tions fi in a Taylor expansion about the origin via

fi(x) =

+∞∑

m=1

∑

j1+···+jn=m
j1,... ,jn>0

1

j1! · · · jn!

(

∂m

∂xj1
1 . . . ∂xjn

n

fi(0)

)

xj1
1 · · ·xjn

n .

Equivalently, let

fi(x) =
+∞∑

m=1

f
[m]
i (x, . . . , x),

where for all m ∈ N the tensors f
[m]
i : R

n × . . . × R
n

︸ ︷︷ ︸

m

→

R
n are computed according to

m!f
[m]
i (y1, . . . , ym)

=

n∑

k1,... ,km=1

(
∂m

∂xk1
. . . ∂xkm

fi(0)

)

(y1)k1
· · · (ym)km

= m!
n∑

k1,... ,km=1

(

f
[m]
i

)k1...km

(y1)k1
· · · (ym)km

,

and the vectors y1, . . . , ym belong to R
n. These defi-

nitions and results are readily repeated in vector for-
mat for the vector field f simply by neglecting the sub-
script i. It will be convenient to adopt the notation
Ax = f [1](x).

Remark 2.1 The sequence of tensors {f [m],m ∈ N}
uniquely determines the Lie algebraic structure at the

origin of the control system in equation (1). For exam-
ple, one can see that

1

2
[g(t2), [g(t1), f(x)]]

∣
∣
∣
x=0

= f [2] (g(t1), g(t2)) .

Some operator norms and their estimates:

In defining mapping and norms we follow the notation
in [10, Chapter 6]. Consider the normed linear space
Ln
∞ of piecewise continuous, uniformly bounded func-

tions over the interval I

x : I ⊂ R+ → R
n

t 7→ x(t),

with norm

‖x‖L∞
= sup

t∈I

‖x(t)‖∞ = sup
t∈I

max
i=1,...,n

|xi(t)| < ∞.

Assume the matrix A is Hurwitz or that the interval I
is finite, and let HA be the mapping

HA : Ln
∞ → Ln

∞

x(t) 7→
∫ t

0

eA(t−τ)x(τ)dτ.

The Ln
∞ iinduced norm for HA is

‖HA‖L∞
=

∥
∥eAt

∥
∥
L1

= max
i=1,... ,n

n∑

j=1

∫

t∈I

|(eAt)ij |dt.

Next, we consider the vector field f and its derived
tensors f [m]. For simplicity and for later use we start
by considering the 2-tensor f [2] : Ln

∞ × Ln
∞ → Ln

∞

defined via

(x(t), y(t)) 7→ f [2](x(t), y(t)).

and defining its induced norm
∥
∥f [2]

∥
∥
L∞

via

∥
∥
∥f [2]

∥
∥
∥
L∞

, max
‖y1‖L∞

=1

‖y2‖L∞
=1

∥
∥
∥f [2](y1, y2)

∥
∥
∥
L∞

.

More generally, we examine the m-tensor f [m] and de-
fine its induced norm via

∥
∥
∥f [m]

∥
∥
∥
L∞

, max
‖yj‖L∞

=1

j=1,... ,m

∥
∥
∥f [m](y1, . . . , yj)

∥
∥
∥
L∞

≤ max
i=1,... ,n

n∑

k1,... ,km=1

1

m!

∣
∣
∣
∣

∂m

∂xk1
. . . ∂xkm

fi(0)

∣
∣
∣
∣
.

Note that the estimates on the norm of the mappings
are only upper bounds whenever m ≥ 2.

An upper bound on the operator norm
∥
∥f [m]

∥
∥
L∞

is
provided by the Cauchy estimates for the Taylor series



coefficient of an analytic function, see [12, Section 2.3].
Since we assumed the vector field f analytic about the
origin, there exists a ρ ∈ R+ such that f is analytic
over the domain

Dρ = {(z1, . . . , zn) ∈ C
n | |zi| < ρ}.

We let ‖f‖ρ denote the maximum value attained by the
magnitude of all components of f over Dρ. The clas-
sic result states that for any collection of nonnegative
indices j1 + · · · + jn = m,

∣
∣
∣
∣
∣

∂m

∂xj1
1 . . . ∂xjn

n

fi(0)

∣
∣
∣
∣
∣
≤ j1! · · · jn!

ρm
‖f‖ρ .

Conservatively bounding the right hand side by
(m!/ρm) ‖f‖ρ, we have

∥
∥
∥f [m]

∥
∥
∥
L∞

≤
n∑

k1,... ,km=1

1

m!

j1! · · · jn!

ρm
‖f‖ρ

≤ 1

ρm
‖f‖ρ

n∑

k1,... ,km=1

1 =

(
n

ρ

)m

‖f‖ρ .

Finally, given any scalar function h of a scalar vari-
able η, we let RemainderM (h)(η) be its Taylor remain-
der of order M .

3 A series expansion

Let ε be a positive constant and consider the initial
value problem

ẋ(t, ε) = f(x(t, ε)) + εg(t) (2)

x(0, ε) = 0,

where the solution x is a function of both t ∈ I and
ε ∈ R+. Following is the main result of the paper.

Proposition 3.1 Consider the initial value problem in
equation (2). The solution x : I × R+ 7→ R

n satisfies
the formal expansion

x(t, ε) =

+∞∑

k=1

εkxk(t) (3)

x1(t) =

∫ t

0

eA(t−τ)g(τ)dτ

xk(t) =
∑

{i1...im}∈P (k)−{k}

∫ t

0

eA(t−τ)f [m](xi1 , . . . , xim
)dτ,

where the argument τ is dropped for simplicity.

Assume f analytic over the domain Dρ. Without loss
of generality let ‖g‖L∞

= ‖f‖ρ, and compute

β =

(
n

ρ

)
∥
∥eAt

∥
∥
L1

‖f‖ρ . (4)

If βε ≤ 1 + 2β − 2
√

β + β2, the series in equation (3)
converges absolutely and uniformly in t ∈ I, and for all
integers M the truncation error is bounded by

∥
∥
∥
∥
∥
x −

M∑

k=1

xk

∥
∥
∥
∥
∥
L∞

≤
( ρ

n

)

RemainderM (hβ) (βε), (5)

where

hβ(η) =
1 + η −

√

1 − 2(1 + 2β)η + η2

2(β + 1)
.

Proof: The following notation is inspired by the
treatment in [10, Section 8.1] on the perturbation
method. In computing power series expansions of a
generic function y(ε), it will be convenient to use the
notation

[εk] y(t, ε)

for the coefficient of εk in y(t, ε); this notation is taken
from [11, Section 1.2.9]. For the left side of equation (2)
we easily have

[εk] ẋ(t, ε) = [εk]

+∞∑

j=1

εj ẋj(t) = ẋk(t).

For the right hand side we compute

f(x)
∣
∣
∣
x=

∑+∞

j=1
xj

+ εg(t) = εg(t) +

(

f [1](x) + . . . + f [m](x, . . . , x) . . .
) ∣

∣
∣
x=εx1+...+εjxj ...

.

The coefficient of ε is f [1](x1) + g(t) = Ax1 + g(t), and
accordingly

ẋ1 = [ε]
(
f(x) + εg(t)

)

= Ax1 + g(t).

The definition of x1 in the proposition follows from not-
ing that the initial condition of x1, as well as for any
other xk, is zero. We compute the coefficient of εk as
follows:

[εk]f(x(t, ε)) =

= [εk]

+∞∑

m=1

f [m]

(
+∞∑

i1=1

εi1xi1 , . . . ,

+∞∑

im=1

εimxim

)

=

k∑

m=1

[εk] f [m]

(
k∑

i1=1

εi1xi1 , . . . ,

k∑

im=1

εimxim

)

=

k∑

m=1

∑

{i1...im}∈P (k,m)

f [m](xi1 , . . . , xim
) (6)

= f [1](xk) +
∑

{i1...im}∈P (k)−{k}

f [m](xi1 , . . . , xim
),



where P (k,m) is the set of ordered sequences of m in-
tegers summing up to k. The differential equation for
the order εk term is therefore

ẋk = Axk +
∑

{i1...im}∈P (k)−{k}

f [m](xi1 , . . . , xims).

This proves the recursive definition of xk.

In the second part of the proof we seek an upper bound
on ε which guarantees that the series in equation (3)
converges absolutely and uniformly over t ∈ I. Using
the operator norms and bounds discussed in Section 2,
we compute

‖x1‖L∞
≤

∥
∥eAt

∥
∥
L1

‖g‖L∞
=

∥
∥eAt

∥
∥
L1

‖f‖L∞
,

and

‖xk‖L∞
≤

∥
∥eAt

∥
∥
L1

×
∑

{i1...im}∈P (k)−{k}

∥
∥
∥f [m]

∥
∥
∥
L∞

‖xi1‖L∞
· · · ‖xim

‖L∞
.

The summation in the last equation can be rewritten
as

‖f‖ρ

∑

{i1...im}∈P (k)−{k}

(
n

ρ

)m

‖xi1‖L∞
· · · ‖xim

‖L∞
.

Let β =
(

n
ρ

)∥
∥eAt

∥
∥
L1

‖f‖ρ, and define the series of pos-

itive numbers a1 = 1, and

ak = β
∑

{i1...im}∈P (k)−{k}

ai1 · · · aim

or equivalently

ak =
β

1 + β

∑

{i1...im}∈P (k)

ai1 · · · aim
.

By induction one can show that

‖xk‖L∞
≤

( ρ

n

)

βkak. (7)

To characterize the behavior of the sequence {ak} we re-
sort to the method of generating functions; see [11]. We
introduce the function h(η) =

∑+∞
k=1 akηk, and study it

as follows:

h(η) = η +
β

β + 1

+∞∑

k=2

ηk
∑

{i1...im}∈P (k)

ai1 · · · aim

= η +
β

β + 1

+∞∑

k=2

∑

{i1...im}∈P (k)

(ai1η
i1) · · · (aim

ηim).

The summation from k = 2, . . . ,+∞ is rewritten as

−η +

+∞∑

k=1

∑

{i1...im}∈P (k)

(ai1η
i1) · · · (aim

ηim).

In the spirit of the generating function method one per-
forms the simplification

+∞∑

k=1

∑

{i1...im}∈P (k)

(ai1η
i1) · · · (aim

ηim)

=
+∞∑

j=1

(
+∞∑

i=1

aiη
i

)j

=
+∞∑

j=1

(h(η))
j

=
h(η)

1 − h(η)
,

where the first equality is equivalent to equation (6)
and the last equality holds under the assumption h < 1.
This bound will be established a posteriori. The rest
is ordinary algebra. We compute h as a function of η
from the equation

h = η +
β

β + 1

(

−η +
h

1 − h

)

to obtain1

h(η) =
1 + η −

√

1 − 2(1 + 2β)η + η2

2(β + 1)
.

The function h is defined real for any 0 ≤ η ≤ 1 + 2β −
2
√

β + β2 and over this domain it attains a maximum
value of

max
0≤η≤1+2β−2

√
β+β2

h = 1 −
√

β

β + 1
.

As the parameter β increases, the convergence region
and the maximum value of h diminishes. The bound
on η translates into a (conservative) estimate on how
large ε can be in order for the series in equation (3)
to converge. The bound on h(η) translates into an es-
timate of the corresponding norm of the displacement
‖x(t)‖L∞

over the domain of guaranteed convergence.
In any case h is always less than unity, so that the
bound h < 1 is justified a posteriori.

Finally, from the estimate in equation (7) we obtain

∥
∥
∥
∥
∥
x −

M∑

k=1

xk

∥
∥
∥
∥
∥
L∞

≤
∑

k>M

εk ‖xk‖L∞
≤

( ρ

n

) ∑

k>M

akεkβk

=
( ρ

n

)

RemainderM (h(βε)) .

The convergence statement follows by noting that h(βε)
can be developed in a convergent Taylor expansion
about ε = 0 in a radius βε ≤ 1 + 2β − 2

√

β + β2.

Comments: To illustrate the result we compute
some terms of the series. Dropping the argument τ

1A second solution is discarded because of incorrect initial

conditions.



inside the integral, the first few xk read

x2(t) =

∫ t

0

eA(t−τ)f [2](x1, x1)dτ

x3(t) =

∫ t

0

eA(t−τ)
{

2f [2](x2, x1) + f [3](x1, x1, x1)
}

dτ

x4(t) =

∫ t

0

eA(t−τ)
{

2f [2](x3, x1) + f [2](x2, x2)

+3f [3](x2, x1, x1) + f [4](x1, x1, x1, x1)
}

dτ.

Higher order terms can be easily computed on symbolic
manipulation software.

A second remark concerns the truncation error estimate
in equation (5). At M = 0, the estimate turns into an
upper bound on the solution ‖x‖L∞

. In other words,
whenever convergence is guaranteed we have

‖x‖L∞
≤

( ρ

n

)
(

1 −
√

β

1 + β

)

.

The convergence properties are similar to the ones dis-
cussed in [10, Chapter 8]. The definition in quation (4)
guarantees that β < ∞ for any stable system. Hence,
the condition

βε ≤ 1 + 2β − 2
√

β + β2,

implies that for any stable system there exists a small
enough ε? = ε?(β) such that for all ε < ε? the series
converges. Alternatively, given a specific value of ε,
convergence is assured by finding a small enough β, that
is, by finding a small enough

∥
∥eAt

∥
∥
L1

. This is always
possible since this norm goes to zero as the length of
interval I vanishes.

4 Second order polynomial systems

Polynomial vector fields are common2 in example ap-
plications, see [4], and it is instructive to investigate
whether simpler expressions or stronger convergence
properties might be available for this subclass. Low or-
der polynomial systems are of independent interest in
the study of normal forms. Finally, series expansions
for mechanical systems [2, 3] are related to the case of
second order polynomial nonlinearities.

Motivated by this reasoning, we present here simpler
expressions with stronger convergence properties for
systems described by a vector field f whose compo-
nents are low order polynomial functions. For simplic-
ity, we consider the case of a control system with only
a “quadratic” nonlinearity, i.e., the only nonvanishing

2Systems may be written in polynomial form via coordinate

transformations as well as via dynamic extension.

tensors are f [1] and f [2]. In equation we mean:

ẋ(t, ε) = Ax(t, ε) + f [2](x(t, ε), x(t, ε)) + εg(t) (8)

x(0, ε) = 0.

Proposition 4.1 Consider the initial value problem in
equation (8). The solution x : I × R+ 7→ R

n satisfies

x(t, ε) =

+∞∑

k=1

εkxk(t) (9)

x1(t) =

∫ t

0

eA(t−τ)g(τ)dτ (10)

xk(t) =
k−1∑

i=1

∫ t

0

eA(t−τ)f [2](xi(τ), xk−i(τ))dτ, k ≥ 2.

(11)

Without loss of generality assume ‖g‖L∞
=

∥
∥f [2]

∥
∥
L∞

,
and compute

β = 2
∥
∥eAt

∥
∥
L1

∥
∥
∥f [2]

∥
∥
∥
L∞

. (12)

If β2ε < 1, the series converges absolutely and uni-
formly in t ∈ I, and for all integers M the truncation
error is bounded by
∥
∥
∥
∥
∥
x −

M∑

k=1

xk

∥
∥
∥
∥
∥
L∞

≤ 1

β
RemainderM

(

1 −
√

1 − β2ε
)

.

Comments: The proof of Proposition 4.1 is
straightforward given the statement and proof in the
previous section. We refer the interested reader to a
later publication. Like in the comments after Propo-
sition 3.1, we present the first few terms of the series.
Equation (11) reads:

x2(t) =

∫ t

0

eA(t−τ)f [2](x1, x1)dτ

x3(t) =

∫ t

0

eA(t−τ)
{

2f [2](x2, x1)
}

dτ

x4(t) =

∫ t

0

eA(t−τ)
{

2f [2](x3, x1) + f [2](x2, x2)
}

dτ.

Note the agreement with the expressions for the ana-
lytic case. The polynomial nature of the control sys-
tem (8) leads to simplifications in the bound on the
solution ‖x‖L∞

and in the computation of the the pa-
rameter β which roughly describes the nonlinearity and
stability of the system. In computing β, no norms over
complex planes are required. Whenever convergence is
guaranteed it holds

‖x‖L∞
≤ 1

β
.

Even though the estimates for polynomial vector fields
have a simpler expression, they qualitatively agree with



the ones for the more general analytic vector field
case: given the parameter β, the series converges for
all forcing terms smaller in magnitude than a constant
ε? = ε?(β).

5 Conclusions

We have presented series expansions for the evolution
of a large class of nonlinear control systems. One im-
portant feature is the detailed convergence analysis. In
particular, assuming the origin is an exponentially sta-
ble equilibrium point, we provide sufficient conditions
for convergence over the infinite horizon.

A number of research avenues remain open. It is of
interest to characterize the relationship with the Chen-
Fliess series, to extend Proposition 3.1 to systems with
generic inputs, and to pursue further simplifications via
normal form theory. Finally, the simplicity and conver-
gence properties of the novel series might help in areas
such as nonlinear controllability, trajectory generation,
and numerical optimal control.
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