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Abstract

In this paper, we present algorithms for the design of
feasible and optimal trajectories of nonlinear control
systems. We focus on stable polynomial control sys-
tems linear in the controls. We prove existence of local
solutions near the minimum energy control for the lin-
earized system and we investigate provably convergent
iterative schemes. Finally, we formulate the trajectory
optimization problem as a low dimensional nonlinear
program.

1 Introduction

Versatile robots and autonomous vehicles will pervade
scientific and commercial applications in the future and
will impact a variety of areas such as factory automa-
tion, search and rescue operations, oceanographic and
aerospace missions, and medical robotics. Technologi-
cal advances in computing and manufacturing will en-
able these future devices to operate in diverse environ-
ments with increasing levels of autonomy and dexterity.
These mechanical systems will interact with diverse en-
vironments via rolling constraints, impacts and viscous
forces, and the primary tasks requested of them will be
fast, reliable motion in Euclidean space.

Current research finds agile and efficient autonomous
vehicles, trajectory generation for high dimensional
multibody systems, and design and control of
biomimetic locomotion devices as particularly relevant
applications. The key problem common to these exam-
ples is how to quickly compute trajectories that satisfy
the nonlinear dynamic equations of the system, as well
as the constraints on the control authority.

Various current numerical and analytical techniques
tackle this problem. In numerical optimal control
open loop control and trajectories are obtained through
a numerical optimization, see the classic Bryson and Ho
[2]. Because the problem is infinite dimensional, various
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forms of transcription (discretization/parametrization)
are used to cast the variational problem into a nonlin-
ear program. Nonetheless, nonlinear programming al-
gorithms are limited in speed and reliability. The high
dimension and complexity of the motion to be designed
render the numerical methods too slow, and the lack
of convergence guarantees hinder their relevance in real
time applications.

A great deal of mathematical work has been directed
in the past towards the analytical understanding of op-
timal control and locomotion problems. One very suc-
cessful method involves the notion of feedback lin-
earization and differential flatness. Flat systems
are presented in Fliess et al. [9], and a catalog of flat sys-
tems is described by Murray et al. [14]. However, there
are a few fundamental limitations to this approach.
Most systems do not fit the restrictive requirements of
flatness, nor is there any established notion of approxi-
mately flat systems. Lastly, in trajectory optimization
problems it is not clear how to deal with control mag-
nitude and rate limits. One can set up a nonlinear
program to deal with these limitations, but then the
advantages of flatness disappear.

An important method to analyze locomotion and design
trajectories revolves around the notion of Lie bracket
and of controllability. Systems in chained form and
the use of sinusoidal inputs were discussed in Mur-
ray and Sastry [15], driftless vehicles were considered
in Leonard and Krishnaprasad [12], a very general ap-
proach to driftless systems was presented in [11]. We
shall refer to these algorithms as Lie brackets based
planners. These planners have been used only on sys-
tems that are driftless and accordingly neither linearly
controllable nor linearly stable. The typical planner re-
lies on oscillations in order to move, in a way similar
to how one parks a car or how an animal changes its
shape to locomote. An example of this paradigm is our
earlier work in Bullo et al. [4], Cerven and Coverstone-
Carroll [5], where local Lie-bracket based methods are
proposed for certain classes of vehicles. The classic lim-



itation of Lie bracket methods is their local nature, as
only small amplitude motions can be planned satisfac-
torily. We claim that Lie bracket methods for motion
planning rely on series expansions as a way to charac-
terize the evolution of a nonlinear system. Indeed, the
local nature of Lie-bracket base planners results from
the poor convergence properties of series expansions.
This is seen in the work of Chen [7], Fliess [8], Suss-
mann [16].

The central goal of this paper are novel algorithms for
the generation of feasible and optimal trajectories for
locomotion systems. We aim to design algorithms that
would reduce the computational requirements of the
commonly used “transcription plus nonlinear program-
ming” approach in numerical optimal control. We plan
to accomplish this by overcoming the classic limitations
found in Lie-bracket-based trajectory planners. This is
based on two fundamental ideas:

(i) In order to obtain simple expressions, easy to im-
plement and fast to evaluate, we restrict the class
of admissible nonlinearities. Polynomial approxi-
mations were an obvious choice as representative
of a large class of systems, although other choices
were possible.

(ii) Under the assumption of hyperbolic stability, we
employ series expansions that converge over infi-
nite time and for inputs bounded by a computable
finite size constant. This is in contrast with € size
planners, where by assumption ¢ < 1.

The availability of a convergence analysis is a novelty in
the context of Lie brackets based motion planners. Ex-
ploiting the simpler expressions but more importantly
the stronger convergence properties, various algorithms
can be designed. It is precisely the strong convergence
properties that lead to the design of approximation
schemes with desired error bounds. We summarize two
methodologies that will be detailed in the next sections:

Existence of local trajectories: Near the optimal
solution of the linearized system, one can set up an it-
erative procedure that proves the existence and unique-
ness of a solution for the nonlinear system.

Trajectory optimization via low dimensional
nonlinear programming: The optimal control prob-
lem (including constraints on inputs) is cast as a low
dimensional nonlinear program, to be solved for exam-
ple via classic sequential quadratic programming ap-
proaches.

The paper is organized as follows. Section 2 describes
polynomial control systems, and Section 3 presents se-
ries expansions for such systems. Section 4 contains
the trajectory optimization algorithms. Section 5 illus-

trates some simulation results for a PVTOL model.

2 Polynomial control systems

As first step, we select a family of nonlinearities that
lead to a tractable treatment while retaining expressive
power. Polynomial control systems satisfy these two re-
quirements. Specifically, we consider here second order
polynomial control systems

& = P(z,z) + Az + Bu(t) (1)

where z € R*, u € R™, A and B represent a classic
linear system terms, while P : R* x R* — R” is a
bilinear map (so that the components of P(x,z) are
homogeneous polynomials of degree two).

This model and its higher order polynomial extensions
describe a large class of mechanical systems. As first ex-
ample, consider the kinematic equations of a rigid body
in two or three dimensional motion. Let the angular
and linear position be described by a unit quaternion
and a translation vector (¢,p). Let (w,v) be the angu-
lar and linear body velocity. The kinematic equation
can be written as
4 = qu, Z=v+zXw

where z is the location of the origin expressed in body
coordinates. Since the entries of the matrix ¢ depend
linearly on ¢, these equations are polynomial in the
state (q,z,w,v).

A second set of examples is provided by robotics
systems with Centripetal and Coriolis forces, gravity
forces, linear damping, and gyroscopic terms. If co-
ordinate changes are allowed, these systems often have
polynomial structure. For more general systems, a Tay-
lor expansion can be used for conversion to a polyno-
mial system. In this case, bounds on the truncation
error are known.

As a final point, note that if the force input does not
appear linearly, as in the term Bu, a simple dynamic
extensions can be employed, i.e., & = v and then v is
the new input that appears linearly.

A PVTOL model

To render this discussion as concrete as possible, we
here present a simple planar vertical takeoff and landing
aircraft model based upon that of Martin et al. [13]
with added viscous damping forces; see Figure 1. We
parametrize its configuration and velocity space via the
state variables {s,c¢,x,z,w,v,,v,}. We let z and z be
the inertial coordinates of the aircraft,  be its roll angle
and we let

s =sinf, c¢=cosf — 1.



The angular velocity is w and the linear velocities in the
body-fixed x (respectively z) axis are v, (respectively
v,). Explicitly separating the linear from the homoge-
neous polynomial component, the equations are written
as:
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Control u; corresponds to the body vertical force minus
gravity, while uy corresponds to coupled forces on the
wingtips with a net horizontal component. The other
forces depend upon the constants k;, which parametrize
some damping force, and g, the gravity constant. The
constant h is the distance from the center of mass to
the wingtip, while m and J are mass and moment of
inertia, respectively.
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Figure 1: Diagram of the PVTOL model.

3 Series expansions

We present the results in Bullo [3]. Consider the dif-
ferential equation (1) with initial condition z(0) = 0.
For an appropriate time length 7', the solution z : I =
[0,T] — R™ is formally written as a series
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From [10] we recall various norms on tensors
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where y1,y2 € R, and on function spaces
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Without loss of generality we set ||B||, = ||P||,, and
5 =2, IPIL. 2)

If 5% |Jull,_ < 1, the series converges absolutely and
uniformly in ¢ € [0,7], and for all integers K the trun-
cation error is bounded by

K
_—
k=1 Loo
1 .
< B Remainder g (1 — /1 =2 ||u||£w) .

where, given any 1 — h(n), Remainderys(h)(n) is its
Taylor remainder of order M.

Note that if the matrix A is Hurwitz, then the norm
||eAt|| £ is finite also over the infinite horizon. There-
fore, the series converges for all time provided the input
is bounded according to 82 |lul|,_ < 1.

4 Trajectory design

Exploiting the characterization just obtained, we for-
mulate a novel efficient ways to design feasible and op-
timal trajectories. For simplicity, we consider the min-
imum energy optimal control problem with bounded
input:

1 /7
minimize 3 / || (t)]|?dt 3
0

4
5
6

subject to 2(0) =0, z(T) = Tiarget
& = P(z,z) + Az + Bu
|ui|§ 1.

3)
(4)
(5)
(6)

A feasible trajectory is one that satisfies the con-
straint (4) (5), and (6). Rate constraints on u are also
often present, but we neglect them here.

The series expansion reduces the feasibility con-
straints (4) and (5) that involve both the signal z and
u, into a constraint only on the input w. Justified by



the truncation bound above, we truncate the series ex-
pansion and call a trajectory feasible if

K
Ttarget = Z T (T) (7)
k=1

The accuracy as well as the complexity of the repre-
sentation in equation (7) increase proportionally to the
truncation order K. In what follows, we set K =2 and
illustrate how efficient these approximations can be in
the design of various trajectory generation schemes. A
reliable implementation of these algorithms would mon-
itor the magnitude of the truncation error.

Base functions for input

The feasibility equation (7) is now a constraint on the
input functions u (all the terms zj are computed as
a function of w). This constraint can be discretized
(transcribed) into a finite dimensional equation via a
collection of base functions {¢;(t) : i = 1,..., Ny},
where we assume N,, > n. In other words, if we write

Ny

u(t) =Y capi(t),

i=1

and numerically compute (e.g., via FFT techniques)

t
Wi(t) = / A=) By, (r)dr,
0
t
i(t) = / AT P (T Bi) dr,
0

then equation (7) turns into

N, Ny
Ttarget = Z ci\Ili(T) + Z cicj\Ilij(T)
i=1

i,j=1

=Vic+ \I’Z(Ca C), (8)
where we have defined the tensors ¥; and ¥,.

Some remarks are in order. As base functions we might
select shape functions, see Zefran and Kumar [17], as
they lead to simple expressions for magnitude and rate
constraints (and are common choice in finite element
methods). A more refined choice would be piecewise
cubic Hermite polynomials, that are quite successful in
classic optimal control settings [1]. More general base
functions can be considered for unilateral or quantized
control inputs. In the context of real-time applications,
the computation of the tensors ¥, ¥, can be performed
off-line through FFT or other techniques.

4.1 Existence of local trajectories

In general no analytic solution to the nonlinear equa-
tion (8) appears available. In this section we provide
sufficient conditions for the existence of one solution

and design an iterative algorithm guaranteed to con-
verge to it. The key tool is the contraction mapping
theorem [10].

The tensor ¥; € R**MNu characterizes the behavior of
the linearized system. Roughly speaking it describes
the first order, linear controllability effects, whereas the
tensor W5 describes the second order nonlinear effects.

If the system is linearly controllable, then the map ¥, :
RV — R” is full rank under mild assumptions on the
family of base functions {1;}. We let ! be its pseudo-
inverse, let x € R® and write

c=Uly

so that equation (8) can be rewritten as

X = Ttarget — Uy (‘IIJ{Xa \I!J{X) £ T(X) (9)

Lemma 4.1 Let S = {x : ||x — Ztarget|| < ||Zrarget]|}
If

4[| 191 [z carges | < 1,

there exists a unique vector x* satisfying x* = T(x*),
and it can be computed by iterating the map T starting
from any initial condition in S.

Proof: If x € S, then ||x|| < 2||2target]|- The set S
is invariant under 7T since:

1700 = wiargell = |2 (e, w1
2
< 11121 I
< 1l |24 racgen | < [losasge -

Over S, the map T is a contraction since

||T(X1) - T(X2)||
= H‘I’2 (‘I’J{Xl, ‘I’J{Xl)H - H‘I’2 (‘I’IX% ‘I’IX2) H
= H‘I’2 (‘I’I(m +x2), ¥l — X2)) H

< N I 1xa + x2ll s — xell
<N NP4 lcargenll X1 = xell < b = X2l

The statement follows from the contraction mapping
theorem. -

Three remarks are in order. First, our pseudo inverse
procedure mimicks the computation of minimum en-
ergy control for linear systems; see [6, page 557]. If the
base functions {t;} are chosen according to the treat-
ment in [6], then the solution to equation (9) is the
optimal solution for the linearized system, or a nearby
solution for W5 # 0. Second, the setup above assumes
linear controllability of the given system. In fact, more



similar methods can be used in the case of a system
that is controllable via low order Lie brackets, i.e., via
the tensor ¥,. Finally, note that even if iteration (9) is
guaranteed to find the unique solution, a steepest de-
scent or a Newton’s algorithm might be preferred for
better convergence speed.

4.2 Trajectory optimization via nonlinear pro-
gramming

In this section, we use the series expansion represen-
tation of feasibility directly inside the optimal control
setup. We define

T
Qij :/0 Vi (t) Y, (t)dt,

and rewrite the optimal control problem in equa-
tions (3)-(6) as

1

minimize 50'@0

subject to  Zyarget = Y1+ ¥a(c, ),
le] <1,

where the component-wise inequality constraint |¢| < 1
is the transcription of the magnitude constraints on u
(i.e., we use triangular base functions that lead to this
simple transcription). The problem is a finite dimen-
sional nonlinear program (specifically, a quadratic cost,
quadratically constrained program), and can be tackled
numerically via sequential programming techniques, as
in the classic numerical optimal control setting.

In short, this approach is similar to the standard “col-
location plus nonlinear programming” technique, with
one key difference. The proposed methodology only
parameterizes (discretizes) the input u and therefore
the nonlinear program is defined over a limited num-
ber of variables (N,). Collocation is one of the classic
transcription methods that discretizes also the value of
the state variables z, so that it needs a arguably much
larger number of variables (N, + N,). In applications
where the dimension of the state space is much larger
than the number of inputs, this limited dimensionality
is very advantageous.

5 Simulations

The iterative algorithm in Section 4.2 was applied to
the PVTOL model described in Section 2. Matlab™
was chosen for its built-in functions: ’lsim’ computes
the evolution of a linear system, and ’fmincon’ finds
the constrained minimum of several variables ( indeed
implements an SQP algorithm).

The Matlab™ simulation results are illustrated in Fig-
ures 2 and 3 for approximations of order K = 1 and

K = 2. As base functions we used triangular shape
functions described in [17]. Parameter values were cho-
sen to be J = 10,m = 10,h = 5,9 = 981,k =
4,ks = 5,k3 = 6, with control parameters of T = 4
seconds, and N,, = 9. The state desired in Figure 2
is (0,0,5,0.1,0,0,0). The optimization routines took
in the order of 10 seconds on a 350Mhz Pentium com-
puter.

6 Conclusion

We have provided a methodology and some algorithms
for the trajectory generation and optimization prob-
lems. Our semi-analytical solution seeks a midpoint
between the analytical requirements of flatness and the
brute force numerical approach of nonlinear program-
ming. Series expansions are the key technical tool,
see the companion paper [3] for more details on this
topic. These novel algorithms aim at the design of
adaptive, reconfigurable, real-time control schemes for
autonomous vehicles, locomotion devices and high de-
grees of freedom multibody systems.
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