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Abstract

In this paper, we provide controllability tests and motion control algorithms for under-

actuated mechanical control systems on Lie groups with Lagrangian equal to kinetic energy.

Examples include satellite and underwater vehicle control systems with the number of control

inputs less than the dimension of the configuration space. Local controllability properties of

these systems are characterized, and two algebraic tests are derived in terms of the symmet-

ric product and the Lie bracket of the input vector fields. Perturbation theory is applied to

compute approximate solutions for the system under small-amplitude forcing; in-phase signals

play a crucial role in achieving motion along symmetric product directions. Motion control

algorithms are then designed to solve problems of point-to-point reconfiguration, static inter-

polation and exponential stabilization. We illustrate the theoretical results and the algorithms

with applications to models of planar rigid bodies, satellites and underwater vehicles.

Keywords : nonlinear control, mechanical systems, nonlinear controllability, underactuated
systems
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1 Introduction

Underactuated mechanical control systems provide a challenging research area of increasing interest
in both application and theory. In this paper, we examine an important class of underactuated
mechanical control systems and address problems in both nonlinear controllability and nonlinear
control design. It is precisely because we specialize to a structured class of mechanical systems
that we can solve relevant controllability and control design problems; we derive controllability
tests and motion control algorithms by making use of the mechanical system structure.

Underwater vehicles, satellites, surface vessels, airships and hovercrafts are all examples of
simple mechanical control systems on Lie groups. For these systems, relevant Lagrangian models
are available and lift/drag type effects are sometimes negligible. Key features are the following:
(1) the configuration space is a Lie group, as, for example, the group of rotations SO(3) in the
case of a satellite, (2) the Lagrangian is equal to the kinetic energy, and (3) external forces are
fixed with respect to the body. From a theoretical perspective, these systems when underactuated
offer a control challenge as they have non-zero drift (e.g., their dynamics include Coriolis effects),
their linearization at zero velocity is not controllable, they are not stabilizable by continuous state
feedback and exponential stabilization cannot be achieved by smooth time-varying feedback [24].
Further, they are generically not nilpotent, not feedback linearizable, not “configuration flat,” as
defined in [29], and no test is available to establish whether they are differentially flat. In other
words, the motion planning and the stabilization problem for this class of systems cannot be solved
with any established method.

We focus on this class of systems with fewer actuators than degrees of freedom, and we study
several motion control problems in the small-velocity range. From a practical point of view, we are
motivated by vehicles that are underactuated either because of an actuator failure or because of a
design choice. In the former case, our results will improve robustness to actuator failure and thus
will provide autonomous vehicles with greater reliability. In the latter case, our results may allow
for vehicle designs that include fewer actuators than typical leading to lighter, less costly designs.
See [32] for a extensive discussion on autonomous underwater vehicle design.

Relevant past contributions include work on both the nonlinear controllability problem and
the constructive controllability problem (including both motion planning and stabilization). For
our work, the most important references for controllability are the works of Sussmann on small-
time local controllability [34] and of Lewis and Murray on configuration controllability for simple
mechanical systems [19] and [20]. Other contributions include local controllability results for other
classes of mechanical systems, see [10] and [27], and work on global controllability issues, see [1], [7]
and [22]. Regarding the constructive controllability problem, we employ the same approach as
Leonard and Krishnaprasad in [16] and [14], where motion algorithms for a class of kinematic
systems on Lie groups were designed with small-amplitude periodic inputs. In later work [30]
similar techniques were applied to a different class of mechanical system. Other contributions on
motion planning via oscillatory controls include [9, 36, 35]. A somewhat different approach, based
on homogeneous time-varying strategies, was employed in [25] and [28] to design exponentially
stabilizing control laws for underactuated satellites and surface vessels.

The main contributions of this work are approximate local motion primitives and control algo-
rithms. Provided that certain controllability conditions are satisfied, we show how underactuated
vehicles can still perform important tasks such as stabilization (station keeping) and short range
reconfigurations (parking, tracking). In what follows we illustrate the three aspects of this work.

To derive controllability tests for our class of systems, we apply the controllability analysis
described in [34] and [19] to simple mechanical control systems on Lie groups (see also [5]). Key
features of the analysis are a focus on the evolution of the system’s configuration when the initial
velocity is zero. The local controllability properties are characterized by the algebraic operations
of symmetric product and Lie bracket. The symmetric product, which is defined more formally in
Section 2, depends upon the metric that defines the kinetic energy and, as we shall see, explicitly
describes motions that involve both input vector fields and the drift dynamics. Our results are both
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an application of the results in [19]: the computation of Lie brackets and symmetric products are
simplified to algebraic operations on the Lie algebra of the Lie group, the tests, which characterize
reachable velocities and configurations, are independent of the initial configuration.

Guided by our interpretation of the controllability tests, we apply perturbation theory to in-
vestigate the response of the mechanical system to small-amplitude forcing. The initial velocity
is also assumed to have small amplitude. The approximations we obtain give further insight into
the controllability tests and are instrumental in the subsequent control design. Numerous exam-
ples illustrate the meaning of good and bad symmetric products and the effects of in-phase and
out-of-phase sinusoidal inputs.

On the basis of a controllability assumption, we design two motion primitives that perform the
basic tasks of changing and maintaining velocity. These motion primitives use in-phase inputs and
compensate for contributions along bad symmetric product directions. The two motion primitives
synthesize the controllability analysis and are the building blocks for designing high-level motion
procedures. Using discrete-time feedback and multiple calls to the motion primitives, we design
motion algorithms to solve the point-to-point reconfiguration problem (i.e., how to steer the system
to a desired configuration) and the static interpolation problem (i.e., how to steer the system
through a set of desired configurations). We solve point-to-point reconfiguration using a constant
velocity algorithm. A second approach to point-to-point reconfiguration consists of interpolating
a sequence of segments connecting initial to final configuration. We show the advantage of the
latter solution in the case the segments are steady motions of the unforced mechanical system.
Next, iterating an approximate stabilization step we design an algorithm that locally exponentially
stabilizes the system to a desired configuration. Recall that exponential stabilization cannot be
achieved by smooth time-varying feedback, and indeed our motion primitives are continuous, but
not smooth, functions of the state. Accordingly, our approach relies on discrete-time continuous
feedback, see [33], and on the iteration of a motion planning step, see [12] and [21]. Finally,
the three algorithms are implemented numerically to verify the approximations and illustrate the
control design.

The paper is organized as follows. In Section 2 we present some mathematical preliminaries and
provide many examples of mechanical systems on Lie groups. In Section 3 a complete controllability
analysis is presented with definitions, tests and examples. Section 4 and Section 5 contain our main
results. First, we obtain formulas for approximate solutions and we use them to gain insight into the
controllability tests. Second, we design and simulate motion control algorithms. Our conclusions
are given in Section 6 and Appendix A contains various proofs.

2 Preliminaries and Models

In this section we review useful notions from geometric mechanics and Lie group theory and
introduce several examples of mechanical control systems on Lie groups. For a more detailed
treatment of the mathematical background, we refer the reader to [26] and [23]. An overview in a
related investigation is presented in [16].

2.1 Lie groups tools

A Lie group is a smooth manifold endowed with a smooth binary operation called group multipli-
cation (satisfying associativity and existence of identity and inverse elements). A Lie algebra is a
vector space endowed with a skew symmetric, bilinear operation called the Lie bracket (satisfying
the Jacobi identity). An example of a Lie group is the rotation group SO(3) (the set of orthogo-
nal matrices with positive determinant under matrix multiplication). Its associated Lie algebra is
the space of skew symmetric matrices so(3) (under matrix commutation). Other examples of Lie
groups are the sets SE(n) of rigid motions on the n–dimensional Euclidean space Rn.

Let G denote a matrix Lie group and g its Lie algebra. The letters g and h denote elements in
G, and Id is the identity. The Greek letters ξ and η denote elements in g and adξ η = [ξ, η] denotes

4



the Lie bracket operation on g. Although most of the results in this paper hold more generally, for
ease of presentation we make the assumption that:

(A1) The set G is the direct product of an arbitrary number of copies of SE(3) and its proper
subgroups.

G, with the assumption (A1), can be represented as a matrix Lie group with group multiplication
defined by matrix multiplication and the Lie bracket on the associated Lie algebra given by matrix
commutation, i.e., [ξ, η] = ξη − ηξ. Let × denote the cross product on R3 and define the operator
·̂ : R3 → so(3) by x̂y , x× y for all x, y ∈ R3. On SE(3) and se(3) we represent a group element

g = (R, p) ∈ SO(3) × R3 and a velocity ξ = (Ω̂, V ) ∈ so(3) × R3 using homogeneous coordinates

g =

[
R p
0 1

]
, and ξ =

[
Ω̂ V
0 0

]
.

Writing ξ as column vector (Ω, V ), simple algebra shows

adξ =

[
Ω̂ 0

V̂ Ω̂

]
. (1)

Under (A1), we can define a surjective map and local diffeomorphism called the exponential
map exp : g → G; we refer to [23] for the general definition. For example, given x̂ ∈ so(3),
Rodrigues’ formula gives

exp(x̂) = Id + sin ‖x‖ x̂

‖x‖ + (1 − cos ‖x‖) x̂2

‖x‖2
,

where ‖ · ‖ is the standard Euclidean norm. In an open neighborhood of the origin Id ∈ G, we
define x = log(g) ∈ g to be the exponential coordinates of the group element g and we regard
the logarithmic map as a local chart on the manifold G. For example, if R ∈ SO(3) is such that
tr(R) 6= −1, then

log(R) =
φ

2 sinφ
(R−RT ) ∈ so(3),

where φ satisfies 2 cosφ = tr(R)− 1 and |φ| < π. In other words, log(R) is the product of the axis
and angle of rotation of R. Corresponding definitions for the group SE(3) are presented in [26].

On the Lie algebra g an inner product is defined by a self–adjoint positive definite tensor

I : g → g
∗, so that, for example, the norm of ξ is computed as ‖ξ‖g = (Iξ · ξ)1/2

. This induces a
metric on the group G using the logarithm map as d(g, h) = ‖ log(gh−1)‖g.

Remark 2.1 (Notions of Lie bracket). The operation of Lie bracket defined above is an operation
between vectors on the linear space g. This should be contrasted with the usual definition of Lie
bracket between vector fields. The two notions are related and can be described within a unified
framework by introducing the notion of left-invariant vector field. We refer to [23, 26] for this and
related facts.

2.2 Mechanical control systems on Lie groups

A simple mechanical control system on a Lie group is described by the following objects: an n-
dimensional Lie group G (defining the configuration space), an inertia tensor I : g → g

∗ (defining
the kinetic energy) and a set of input co-vectors1 {f1, . . . , fm} ⊂ g

∗ (defining the body-fixed forces).
The system is said to be underactuated if the number of available input forces m is less than the
number of degrees of freedom n.

1To simplify notation, we denote the co-vectors fi with subscripts instead of superscripts.
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Let g ∈ G denote the configuration of the system and ξ ∈ g the body-fixed velocity, so that the
kinetic energy is KE = 1

2ξ
T Iξ. The kinematic and dynamic equations of motion for the system

with Lagrangian equal to the kinetic energy are given by

ġ = g · ξ (2)

Iξ̇ = ad∗
ξ Iξ +

m∑

i=1

fiui(t), (3)

where ad∗
ξ is the dual operator of adξ, the scalar input functions {ui, i = 1, . . . ,m} belong to the

space of bounded measurable functions Um, and
∑
fiui(t) is the resultant force acting on the

mechanical system. In geometric mechanics, the dynamic equation (3) is called the Euler-Poincaré
equation; in robotics, the kinematic equation (2) is usually expressed in some choice of coordinate
system, as, for example, Euler angles for SO(3).

For any vector η with the property that ad∗
η Iη = 0, the curve t ∈ R 7→ (exp(tη), η) is a solution

to the system (2)–(3) with no inputs. These curves are studied in mechanics [23] under the name
of relative equilibria and describe motion that corresponds to constant body-fixed velocity for the
uncontrolled system.

Next, we introduce the notion of the symmetric product on the Lie algebra g. This operation is
useful for characterizing controllability and approximate solutions for mechanical control systems.
It has an elegant generalization using Riemannian geometry as discussed in [19], [18] and in [6].
Define the symmetric product 〈ξ : η〉 of two vectors ξ, η on g, as the vector

〈ξ : η〉 , −I
−1

(
ad∗

ξ Iη + ad∗
η Iξ

)
.

For example, on so(3) ≈ R3 with the inertia tensor J and with the equality ad∗
ξ = −ξ̂, we compute

〈ξ : η〉 = J−1
(
ξ×Jη+η×Jξ

)
. For later reference it is also useful to rewrite the dynamic equation (3)

as

ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t), (4)

where we define bi , I−1fi for simplicity. Additional insight into the meaning of the symmetric
product is provided in [19], where the operation is shown to be equivalent to a Lie bracket between
certain vector fields on the full space TG.

Remark 2.2 (Time scaling). For λ > 0 define τ = λt. Mechanical control systems verify the
following property: if (g(t), ξ(t)) is a solution for t ∈ [0, 1] to the forced system (2)–(3) with
external forcing ui(t), then (g(τ/λ), ξ(τ/λ)/λ) is a solution for τ ∈ [0, λ] with external forcing
ui(τ/λ)/λ2. In other words, if we find an input u(t) that achieves a desired motion in time 1, then
u(t/λ)/λ2 achieves the same motion in time λ. This time/magnitude scaling property should be
taken into account when applying the control laws described later in the paper.

2.3 Examples: planar bodies, satellites and underwater vehicles

The following examples of mechanical control systems on Lie groups illustrate the richness of the
class of systems of interest. They will be often referred to later, as we study controllability and
design control laws. To simplify notation, we let {e1, . . . , en} denote the standard basis on Rn; for
example, for n = 3 we set e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

Planar rigid body

Let g = (θ, x, y) ∈ SE(2) denote the configuration of the planar body and ξ = (ω, v1, v2) its body-
fixed velocity. The kinetic energy is KE = 1

2Jω
2 + 1

2m(v2
1 + v2

2) where J is the moment of inertia
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Figure 1: Rigid body in SE(2) with two forces applied at a point a distance h from the center of
mass CM. Σs denotes an inertial reference system. g = (θ, x, y) denotes the position of the body.
The body reference frame (not depicted) is aligned with the direction of application of f1 and f2.

and m the mass of the body. On se(2) the adjoint operator is computed as

ad(ω,v1,v2) =




0 0 0
v2 0 −ω
−v1 ω 0



 .

The two control inputs consist of forces applied at a distance h from the center of mass, see Figure 1.
After inverting I = diag {J,m,m}, we have b1 = 1

me2 and b2 = −h
J e1 + 1

me3. In coordinates the
equations of motion (2)–(3) read

θ̇ = ω Jω̇ = −hu2(t)

ẋ = cos(θ)v1 − sin(θ)v2 , mv̇1 = mωv2 + u1(t)

ẏ = sin(θ)v1 + cos(θ)v2 mv̇2 = −mωv1 + u2(t).

These equations provide a model for planar vehicles, for example, a hovercraft that glides on the
surface of a body of water with negligible friction.

Satellite with thrusters

Let R ∈ SO(3) be the rotation matrix describing the attitude of the satellite and let Ω =
(Ω1,Ω2,Ω3) ∈ so(3) ≈ R3 be the body angular velocity. The kinetic energy is then KE = 1

2ΩT JΩ,

where J = diag {J1, J2, J3} is the inertia matrix. The adjoint operator is adΩ = Ω̂. Assuming we
have two thrusters aligned with the first two principal axes, the equations of motion are

Ṙ = RΩ̂

JΩ̇ = JΩ × Ω + e1u1(t) + e2u2(t). (5)

Accordingly, b1 = 1
J1

e1 and b2 = 1
J2

e2.

Satellite with rotors

Satellites can alternatively be equipped with internal rotors (momentum wheels). Consider the case
in which there are two rotors aligned with two principal axes of the satellite. The configuration of
the satellite plus rotor system is described by R ∈ SO(3) and (θ1, θ2) ∈ R2 (describing the angular
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position of the wheels). Let Ωrot = (θ̇1, θ̇2, 0) denote the angular velocities of the rotors and Ω the
angular velocities of the carrier. The kinetic energy is

KE =
1

2
ΩT (Jlock − Jrot)Ω +

1

2
(Ω + Ωrot)

T
Jrot(Ω + Ωrot),

where Jlock = diag {J1, J2, J3} is the inertia of the satellite-rotors system with the rotors locked,
while Jrot = diag(Jrot1, Jrot2, 0) is the inertia of the rotors about their spin axes. From the kinetic
energy we compute the inertia matrix as

Jsat–rot =

[
Jlock Jrot

Jrot Jrot

]
.

Also, the adjoint operator satisfies ad(Ω,Ωrot)(v, w) = (Ω × v, 0). The dynamic equations are

[
Jlock Jrot

Jrot Jrot

] [
Ω̇

Ω̇rot

]
=

[
(JlockΩ + JrotΩrot) × Ω

0

]
+

[
0

e1u1(t) + e2u2(t)

]
,

and, by inverting the inertia matrix, the input vectors are

b1 =
1

Jrot1−J1

e1 +
J1

Jrot1(Jrot1−J1)
e4

b2 =
1

Jrot2−J2

e2 +
J2

Jrot2(Jrot2−J2)
e5.

Underwater vehicle in ideal fluid

The motion of a rigid body in incompressible, irrotational and inviscid fluid is Hamiltonian with an
inertia tensor which includes added masses and inertias, see [13] or the original work of Kirchhoff.
Let (R, p) ∈ SE(3) and (Ω, V ) ∈ se(3) denote the configuration and body velocity of the vehicle.
The kinematic equations are

Ṙ = RΩ̂

ṗ = RV.

For a neutrally buoyant ellipsoidal body with uniformly distributed mass, the kinetic energy is
KE = 1

2ΩT JΩ + 1
2V

T MV , where the mass and inertia matrices of the body-fluid system are
M = diag {m1,m2,m3} and J = diag {J1, J2, J3}. The adjoint operator is given by equation (1).
The unforced dynamic equations are therefore

JΩ̇ = JΩ × Ω + MV × V

MV̇ = MV × Ω.

Finally, we assume there are three body-fixed forces applied at a point a distance h from the center
of mass, as depicted in Figure 2. The corresponding input vectors are

b1 =
1

m1

e4, b2 = − h

J3

e3 +
1

m2

e5, and b3 =
h

J2

e2 +
1

m3

e6.

3 Local Controllability Properties

This section deals with the nonlinear controllability properties of the systems described above.
Our treatment was originally presented in [5]; it is based on the conditions for small-time local
controllability (STLC) in [34] and for configuration controllability in [19]. While our accessibility
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Figure 2: Rigid body in SE(3) with three forces applied at a point a distance h from the center of
mass.

analysis is similar to that in [1], [7] and [22], important differences include focusing on small-time,
local controllability properties (as opposed to global controllability) and investigating configuration
controllability (as opposed to full-state controllability). Configuration controllability concerns the
reachable set restricted to the configuration space G and is weaker than full-state controllability.
Notice that, by employing the Lie group theoretical tools introduced above, our results have
advantages: the controllability tests are global in the sense that they are configuration independent,
and the required computations are algebraic manipulations over an n–dimensional linear space,
instead of symbolic differentiations over a 2n–dimensional space.

The controllability conditions presented in this section provide us with enough information to
allow control design for low-velocity maneuvers (described in Section 5). The main limitation is
the assumption that the system is initially at rest. The examples at the end of this section and
the perturbation analysis in the next section provide insight into these controllability results.

3.1 Definitions and tests

For T > 0, a solution of the system (2)–(3), is a pair (g, u), where g : [0, T ] → G is a piecewise
smooth curve on G, u : [0, T ] → Rm is an admissible input in Um and (g(t), u(t)) are a solution to
the equations (2)–(3). Let g0 ∈ G, let V ⊂ G be a neighborhood of g0 and let W ⊂ G × g be a
neighborhood of (g0, 0g), where we let 0g denote the zero vector in g. For T > 0, set

RV
G(g0, T ) = {g1 ∈ G | there exists a solution (g, u) of the system (2)–(3)

such that (g, ξ)(0) = (g0, 0g), g(t) ∈ V for t ∈ [0, T ] and g(T ) = g1},

and define the set of reachable configurations as

RV
G(g0,≤ T ) =

⋃

0≤t≤T

RV
G(g0, T ).

Similarly, set

RW
G×g

(g0, T ) = {(g1, ξ1) ∈ G× g | there exists a solution (g, u)(t) of the system (2)–(3)

such that (g, ξ)(0) = (g0, 0g), (g, ξ)(t) ∈W for t ∈ [0, T ] and (g, ξ)(T ) = (g1, ξ1)},
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and define the set of reachable states as

RW
G×g

(g0,≤ T ) =
⋃

0≤t≤T

RW
G×g

(g0, T ).

3.1.1 Accessibility and configuration accessibility

We present definitions, tools and tests that characterize two notions of accessibility.

Definition 3.1. The system (2)–(3) is small-time locally accessible at g0 and zero velocity if
RW

G×g
(g0,≤ T ) contains a non-empty open subset of G× g for all T > 0 and for all neighborhoods

W of (g0, 0g). If this holds for any g0 ∈ G, then the system is called small-time locally accessible
at zero velocity (accessible at zero velocity).

The system (2)–(3) is small-time locally configuration accessible at g0 if RV
G(g0,≤ T ) contains

a non-empty open subset of G for all T > 0 and for all neighborhoods V of g0. If this holds for
each g0 ∈ G, then the system is called small-time locally configuration accessible (configuration
accessible).

The following concepts are helpful in providing computable tests for the notions of accessibility.
Let us denote with B = {b1, . . . , bm} the family2 of input vectors. Recall that the involutive closure
of B, denoted by Lie(B), is the set of vectors obtained by taking iterated Lie brackets of the vectors
{b1, . . . , bm}. Additionally, we define the symmetric closure of B, denoted by Sym(B), as the set
of vectors obtained by taking iterated symmetric products of the vectors {b1, . . . , bm}.

Proposition 3.2. Consider the system (2)–(3) and let B = {b1, . . . , bm} be the family of input
vectors.

1. The system is locally accessible at zero velocity if and only if the subspace defined by Sym(B)
has full rank.

2. The system is locally configuration accessible if and only if the subspace defined by Lie(Sym(B))
has full rank.

These results are a direct consequence of the accessibility computations in [19]. The local
accessibility result is related to the presentations in [1, 7, 22].

3.1.2 Controllability and configuration controllability

Next we present two corresponding notions of controllability: the “classic” small-time local con-
trollability and a weaker version called small-time local configuration controllability.

Definition 3.3. The system (2)–(3) is small-time locally controllable at g0 and at zero velocity if
RW

G×g
(g0,≤ T ) contains a non-empty open subset of G× g for all T > 0 and for all neighborhoods

W of (g0, 0g), and (g0, 0g) belongs to the interior of this subset. If this holds for any g0 ∈ G, then
the system is called small-time locally controllable at zero velocity (STLC at zero velocity).

The system (2)–(3) is small-time locally configuration controllable at g0 if RV
G(g0,≤ T ) contains

a non-empty open subset of G for all T > 0 and for all neighborhoods V of g0, and g0 belongs
to the interior of this subset. If this holds for each g0 ∈ G, then the system is called small-time
locally configuration controllable (STLCC).

To establish controllability tests, we need to introduce the notions of good and bad symmet-
ric products and order of a symmetric product. Here we do this in a somewhat simplified way
to avoid introducing too much mathematical machinery (i.e., the notion of free Lie algebras of
indeterminates).

2Equivalently, we can think of B as a linear subspace of g or a left-invariant distribution on G.
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The order of an iterated symmetric product of factors from Sym(B) is the total number of fac-
tors. We say that a symmetric product from Sym(B) is bad if it contains an even number of each of
the vectors in B. Otherwise, we say that the symmetric product is good. For example, the symmet-
ric product 〈〈b1 : b2〉 : b1〉 has order three and it is good, the symmetric product 〈〈〈b1 : b2〉 : b2〉 : b1〉
has order four and it is bad. More instances of good and bad symmetric products can be found in
the next section.

Proposition 3.4. Consider the system (2)–(3) and let B = {b1, . . . , bm} be the family of input
vectors.

1. The system is STLC at zero velocity if the subspace defined by Sym(B) has full rank and
every bad symmetric product is a linear combination of lower-order good symmetric products.

2. The system is STLCC if the subspace defined by Lie(Sym(B)) has full rank and every bad
symmetric product is a linear combination of lower-order good symmetric products.

These results are a direct consequence of the results in [34] and [19]. We note that symmetric
and involutive closures are simple algebraic operations that characterize controllability for the
(strongly) nonlinear system (2)–(3), independent of the base point g0 ∈ G. These tests have a
simple interpretation; symmetric products of input vectors identify which velocities are reachable,
whereas Lie brackets of reachable velocities identify which configurations are reachable. The only
restriction we impose is the requirement that the system be initially at rest.

Note that the distinction between good and bad symmetric products is analogous to, and
indeed derived from, the notion of good and bad Lie brackets in [34]. Similar characterizations are
usually introduced when dealing with controllability properties for systems with drift. In the next
section we present some approximate solutions that give some insight into the requirement that
“bad products are spanned by lower-order good products.”

Single-input systems (n > m = 1) always fail the sufficient condition for both controllability
notions; if only one input vector is available, the only possible nontrivial second-order symmetric
product is bad. It can further be proven that single-input systems are neither STLC at zero
velocity nor STLCC, see [17].

3.2 Applications to the examples

We investigate the controllability properties of the systems introduced in Section 2.3. Our examples
are selected to be instructive.

Planar rigid body

Consider the planar rigid body described in Section 2.3 with input vectors b1 = 1
me2 and b2 =

−h
J e1 + 1

me3. The relevant symmetric products are computed as follows:

〈b1 : b1〉 = 0, 〈b1 : b2〉 =
−h

Jm
e3, 〈b2 : b2〉 =

2h

Jm
e2, and 〈b2 : 〈b2 : b2〉〉 =

−2h

J2m
e3.

We distinguish the following cases which depend on the availability of the two input vectors:

[PRB1] B = {b1}: the system is neither accessible at zero velocity nor configuration accessible,
as all symmetric products and Lie brackets vanish. An interpretation of this result is that,
for all possible inputs, the body is only allowed to translate parallel to the body fixed x-axis.

[PRB2] B = {b2}: the system is (small-time locally) accessible at zero velocity since the subspace
generated by the vectors {b2, 〈b2 : b2〉 , 〈b2 : 〈b2 : b2〉〉} has full rank. However, the sufficient
condition for controllability fails to hold, as 〈b2 : b2〉 is a bad symmetric product and it is
not a multiple of any lower-order symmetric product (b2 is the only one). Additionally, as
mentioned above, the results in [17] show that the system is neither STLC at zero velocity
nor STLCC.
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[PRB3] B = {b1, b2}: the system is STLC at zero velocity since the subspace generated by the
vectors {b1, b2, 〈b1 : b2〉} has full rank and the bad symmetric product 〈b2 : b2〉 is a linear
combination of lower-order good symmetric products: 〈b2 : b2〉 = 2h

J b1.

Satellite with thrusters

Consider the satellite with thrusters described in Section 2.3. Input vectors are b1 = 1
J1

e1 and

b2 = 1
J2

e2. The relevant symmetric products and Lie brackets are computed as

〈b1 : b1〉 = 〈b2 : b2〉 = 0, 〈b1 : b2〉 =
J2−J1

J1J2J3

e3, and [b1, b2] =
1

J1J2

e3.

The controllability properties are as follows:

[ST] B = {b1, b2} and J1 6= J2: if the satellite is not axisymmetric3, then the rank of {b1, b2, 〈b1 : b2〉}
is full and there are no bad symmetric products. Therefore, the system is STLC at zero ve-
locity.

Satellite with rotors

Consider the satellite with rotors introduced in Section 2.3. For b1 and b2 defined in Section 2.3,
we compute symmetric products and Lie brackets as

〈b1 : b1〉 = 〈b2 : b2〉 = 〈b1 : b2〉 = 0,

and

[b1, b2] =
1

(Jrot1−J1)(Jrot2−J2)
e3,

[[b1, b2] , b1] =
1

(Jrot1−J1)
2(J2−Jrot2)

e2,

[[b1, b2] , b2] =
1

(Jrot1−J1)(Jrot2−J2)
2
e1.

[SR] B = {b1, b2}: the system is not accessible at zero velocity (every symmetric product vanishes)
and hence not STLC, but it is STLCC since the involutive closure has full rank.

This result was partly expected but not trivial. Since the satellite–rotors system is not subject to
any external force, its total angular momentum is conserved. Therefore, it is intuitively clear that
the system cannot be accessible in both configurations and velocities. However, the less trivial fact
is that the system is STLCC. In other words, despite the conservation law, any configuration in
a neighborhood of the initial can be reached, that is, any orientation R together with any rotor
angles (θ1, θ2).

Underwater vehicle in ideal fluid

Consider the underwater vehicle introduced in Section 2.3, with the input forces depicted in Fig-
ure 2. We compute some good symmetric products as

〈b1 : b2〉 =
m2−m1

J3m1m2

e3 −
h

J3m2

e5,

〈b1 : b3〉 =
m1−m3

J2m1m3

e2 −
h

J2m3

e6,

〈b2 : b3〉 =
1

J1

(
h2

J3

− h2

J2

− 1

m3

+
1

m2

)
e1

3If the satellite is axisymmetric, i.e., J1 = J2, then a simple analysis shows that the system is STLCC.
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and some bad ones as

〈b1 : b1〉 = 0, 〈b2 : b2〉 =
2h

I3m1

e4, 〈b3 : b3〉 =
2h

I2m1

e4.

[UV] B = {b1, b2, b3}: Consider the 6 × 6 matrix defined by the good symmetric products of
order one and two, that is {b1, b2, b3, 〈b1 : b2〉 , 〈b1 : b3〉 , 〈b2 : b3〉}. This matrix is generically
nonsingular.4 Hence, the system is small-time locally accessible at zero velocity. Additionally,
since the bad second-order symmetric products are proportional to b1, they are spanned by
good lower-order symmetric products (b1 is a good symmetric product of order 1). Therefore,
the system is generically STLC at zero velocity.

4 Approximate Solutions under Small-amplitude Forcing

In this section we investigate the behavior of system (2)–(3) under small-amplitude forcing. The
key analysis tool is the standard perturbation method as described in [11]. Assuming a small-
amplitude input (say of order ε, for 0 < ε � 1), this method provides us with a solution to
system (2)–(3) in the form of a Taylor series in ε. Since the computation of only a few terms in the
series is tractable, we obtain an approximate expansion. However, this estimate illustrates the role
of symmetric products and Lie brackets in determining the solution of the forced system (2)–(3).
Therefore, this estimate provides insight into the controllability tests introduced above and, as we
shall see, it is instrumental in designing the motion algorithms of the next section.

4.1 Notation and results

We introduce the following notation. Given a possibly vector-valued function h(t) with t ∈ R+,
define its first integral function h(t) with t ∈ R+, as the finite integral from 0 to t

h(t) ,

∫ t

0

h(τ)dτ.

Higher-order integrals, as for example h(t), are defined recursively. In the following, we consider
inputs of the form

ui(t, ε) = εu1
i (t) + ε2u2

i (t)

where 0 < ε� 1 and where u1
i , u

2
i are O(1). Accordingly, we write the resultant forcing

∑
i biui(t, ε)

as the sum of two terms of different order in ε

m∑

i=1

biui(t, ε) =

m∑

i=1

bi
(
εu1

i (t) + ε2u2
i (t)

)

= ε b1(t) + ε2 b2(t), (6)

where we define b1(t) =
∑m

i=1 biu
1
i (t) and b2(t) =

∑m
i=1 biu

2
i (t). In the following, given any quantity

y(ε), we let yk denote the kth term in the Taylor expansion of y(ε) about ε = 0; for example, we will
write ξ(t, ε) = εξ1(t) + ε2ξ2(t) +O(ε3). The following proposition describes the system’s behavior
when forced by small (order ε and order ε2) amplitude inputs as defined in equation (6).

Proposition 4.1 (Approximate evolution). For 0 < ε� 1 and for inputs of the form in equa-
tion (6), let (g(t), ξ(t)) be the solutions of system (2)–(3). Let x(t) be the exponential coordinates
of g(t) about the initial condition g(0) = Id. Also, assume that the initial velocity is O(ε), and
write it as ξ(0) = εξ10 + ε2ξ20 where ξ10 and ξ20 are O(1).

4The matrix is singular when h2m1m2 + J3(m1 − m2) = 0 or when h2m1m3 + J2(m1 − m3) = 0 or
when h2(1/J3 − 1/J2) = 1/m3 − 1/m2.
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Then for t ∈ [0, 2π] it holds that ξ(t, ε) = εξ1(t) + ε2ξ2(t) + ε3ξ3(t) +O(ε4), with

ξ1(t) = ξ10 + b1(t),

ξ2(t) = ξ20 −
〈
ξ10 : ξ10

〉 t
2
−

〈
ξ10 : b1(t)

〉
+

(
b2 − 1

2

〈
b1 : b1

〉)
(t),

ξ3(t) = −
〈
ξ10 : ξ20

〉
t+

〈
ξ10 :

〈
ξ10 : ξ10

〉〉 t2

4
+

〈
ξ10 :

〈
ξ10 : b1(t)

〉〉
−

〈
ξ10 :

(
b2 − 1

2

〈
b1 : b1

〉)
(t)

〉

−
〈
b1(t) : ξ20

〉
+ 1

2

〈
〈ξ10 : ξ10〉 t : b1(t)

〉
+

〈
b1 :

〈
ξ10 : b1

〉〉
(t) −

〈
b1 :

(
b2 − 1

2

〈
b1 : b1

〉)〉
(t),

and x(t, ε) = εx1(t) + ε2x2(t) +O(ε3), with

x1(t) = ξ10t+ b1(t),

x2(t) = ξ20t−
〈
ξ10 : ξ10

〉 t2

4
+

(
b2 − 1

2

〈
b1 : b1

〉)
(t) −

〈
ξ10 : b1(t)

〉
− 1

2

[
ξ10 + b1, ξ10t+ b1

]
(t).

The proof is based on the standard perturbation method as described in [11] and on the
approximate solutions for the kinematic system obtained in [8]; see Appendix A.1 for a detailed
account. Note that both symmetric products and Lie brackets show up in the Taylor expansions
and this agrees with the controllability tests presented above. Also, note that the approximations
in Proposition 4.1 hold only over a finite period of time and particular care is needed in order to
compute approximations valid over a time interval of order 1/ε.

4.2 Application to the examples

We now relate the approximations above to the controllability tests of the previous section. To
simplify the expansions above and to investigate the nonlinear second-order effects of the inputs, we

let the initial velocity vanish, ξ(0) = 0g, and the first order input b1(t) verify b1(2π) = b1(2π) = 0g.
It holds that

ξ(2π) ≈ ε2
(
b2 − 1

2

〈
b1 : b1

〉)
(2π), and x(2π) ≈ ε2

(
b2 − 1

2

〈
b1 : b1

〉
− 1

2

[
b1, b1

])
(2π), (7)

where, for the remainder of this section, the symbol ≈ denotes an equality up to a third order
error in ε. Also, if we set b2(t) = 0g, it holds that

ξ(2π) ≈ − 1

2
ε2

〈
b1 : b1

〉
(2π), and x(2π) ≈ − 1

2
ε2

(〈
b1 : b1

〉
+

[
b1, b1

])
(2π). (8)

Up to a higher-order error in ε, the final velocity ξ(2π) is determined by certain symmetric products
and the final configuration variable x(2π) is determined by certain symmetric products and Lie
brackets. Next, we study in more detail these remaining terms to gain some insight into what
terms are “good,” what are “bad” and which ones we can exploit to design motion algorithms.

Single-input systems: relative equilibria and bad symmetric products

Both examples of planar rigid bodies, [PRB1] and [PRB2], are single-input systems. Recall that
[PRB1] denotes the system with a single force b1 with the line of action through the center of
mass, and [PRB2] denotes the system with the single force b2 applied at a point a distance h from
the center of mass and perpendicular to b1, as shown in Figure 3.

Let bsi denote the single input vector, e.g., bsi = b1 in [PRB1] and bsi = b2 in [PRB2]. If the
symmetric product 〈bsi : bsi〉 vanishes, see the [PRB1] example, the system is neither accessible nor
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Figure 3: Planar rigid bodies with single input: [PRB1] and [PRB2].
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Figure 4: Planar rigid body with single forcing [PRB2]. With a resultant external force
±ε(sin t−2 sin 2t) and after a period 2π, the approximate final reconfiguration is log(g(0)−1g(2π)) =
−2πε2 h

Jme2 and the approximate final velocity is ξ(2π) = −2π2ε2 h
Jme2.

configuration accessibility, and the final state (x, ξ)(2π) vanishes. Recall from Section 2, that for
any vector η such that 〈η : η〉 ≡ ad∗

η Iη = 0, the curve t ∈ R 7→ (exp(tη), η) is a relative equilibria,
i.e., a motion corresponding to constant body-fixed velocity. Thus, an actuator bsi aligned with a
relative equilibria has vanishing bad symmetric product 〈bsi : bsi〉.

Also instructive is the case in which the bad symmetric product 〈bsi : bsi〉 does not vanish, e.g.,

the [PRB2] system. Assuming b1(t) = bsiφ(t) and φ(2π) = φ(2π) = 0, equations (8) lead to

ξ(2π) ≈ − 1

2
ε2

∫ 2π

0

φ
2
dt 〈bsi : bsi〉 , and x(2π) ≈ − 1

2
ε2

∫ 2π

0

∫ s

0

φ
2
dsdt 〈bsi : bsi〉 . (9)

As already mentioned, configuration and velocity change an amount proportional to ε2 along the
direction 〈bsi : bsi〉. Additionally, notice that it is impossible to change the sign of the motion, which
will always be along −〈bsi : bsi〉. For example the [PRB2] system with forcing amplitude ±ε(sin t−
2 sin 2t), always moves in the direction −e2, i.e., to the left (see Figure 4). This phenomenon
suggests that the system is not locally controllable, as certain configurations appear to be not
reachable. However, equation (9) does not prove this claim as it only specifies the final value
x(2π). The sharper analysis in [17] is needed to show that single-input systems are neither STLC
at zero velocity nor STLCC.

Multi-input systems with no bad symmetric products

Next we examine systems with (at least) two input forces. We focus on an example with two input
vectors b1 and b2 that have vanishing bad symmetric products 〈b1 : b1〉 = 〈b2 : b2〉 = 0 and either
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non-zero good symmetric product 〈b1 : b2〉 6= 0 or non-zero Lie bracket [b1, b2] 6= 0. The satellite
with two thrusters [ST] and the satellite with two rotors [SR] are such examples. Plugging
b1(t) = b1u1(t) + b2u2(t) into equations (8), we have

ξ(2π) ≈ − 1

2
ε2

〈
u1b1 + u2b2 : u1b1 + u2b2

〉
(2π)

= −ε2 〈b1 : b2〉u1 u2(2π)

and

x(2π) ≈ − 1

2
ε2

(〈
b1 : b1

〉
+

[
b1, b1

])
(2π)

= −ε2 〈b1 : b2〉u1 u2(2π) − ε2 [b1, b2]u1 u2 − u1 u2(2π).

We interpret the operations performed on the input signals u1(t) and u2(t) as follows: u1 u2(2π) is

the inner product in the L2[0, 2π] function space between u1(t) and u2(t), whereas u1 u2 − u1 u2(2π)
is the area enclosed by the plot of signals u1(t) versus u2(t). We distinguish two cases:

• Out-of-phase sinusoidal inputs generate motion along Lie brackets: First, consider the satel-
lite with rotors [SR] example that is STLCC but not STLC at zero velocity. The symmetric
product 〈b1 : b2〉 vanishes, so that we have from equation (8)

ξ(2π) ≈ 0 and x(2π) ≈ −ε2 [b1, b2]u1 u2 − u1 u2(2π).

If we want to steer the configuration x(2π) in the direction [b1, b2], sinusoidal signals at the
same frequency and out-of-phase are a simple standard choice. This is one of the basic ideas
behind the algorithms presented in [16] and other literature on motion planning for driftless
control systems.

• In-phase sinusoidal inputs generate motion along good symmetric products: Second, consider
the satellite with thrusters example [ST] that is STLC at zero velocity since the symmetric
product 〈b1 : b2〉 6= 0. If we pick sinusoidal inputs at the same frequency and in-phase, e.g.,
u1(t) = u2(t) = cos(t), the contribution proportional to the Lie bracket [b1, b2] vanishes, since
the area included by two identical signals is zero. Further, it holds that

ξ(2π) ≈ −ε2 〈b1 : b2〉 (u1)2(2π) and x(2π) ≈ −ε2 〈b1 : b2〉 (u1)2(2π),

and both velocity and configuration variables vary along −〈b1 : b2〉.5 Motion in the symmet-
ric product direction is generated with sinusoidal inputs at the same frequency and in-phase.
This is in contrast with the previous case and it is reminiscent of some results on gait selection
for locomotion systems with drift, see the 1:1 gait in [27].

Multi-input systems with bad symmetric products

Finally, we examine systems with non-vanishing bad symmetric products. We focus on the planar
rigid body with two forces applied at a point distant from the center of mass [PRB3]. Recall
that this system is STLC at zero velocity since the subspace {b1, b2, 〈b1 : b2〉} has full rank and
since the good/bad products condition is verified by the equality 〈b2 : b2〉 = 2h

J b1. Setting b1 =
b1u1(t) + b2u2(t) as above, the existence of a non-vanishing bad symmetric product causes

− 1

2
ε2

〈
b1 : b1

〉
(2π) = −ε2 〈b1 : b2〉u1 u2(2π) − 1

2
ε2 〈b2 : b2〉u2

2(2π),

5Also, the velocity change is maximal in the sense that on the L2[0, 2π] function space the Cauchy-Schwartz
inequality on the inner product of u1(t) and u2(t) holds with equality if u1(t) = u2(t).
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where the sign of the second term is independent of u2(t). However, motion in the 〈b2 : b2〉 direction
can be affected by a second-order input along b1. In particular by setting

b2(t) =
h

2πJ
u2

2(2π)b1,

we obtain from equation (7)
ξ(2π) ≈ −ε2 〈b1 : b2〉u1 u2(2π),

recovering this way the result for the case without bad symmetric products. In other words, the
“bad” contribution due to 〈b2 : b2〉 is “annihilated” by means of the second-order input b2(t), and
this is possible only because the good/bad products condition is verified.

4.3 Inversion algorithm for systems controllable with second-order sym-

metric products

Motivated by the heuristic analysis in the last two examples, we introduce an additional definition.
A system is STLC at zero velocity with second-order symmetric products if it satisfies the following
property:

(A2) The subspace span{bi, 〈bj : bk〉 , 1 ≤ i ≤ m, 1 ≤ j < k ≤ m} has full rank and each bad sym-
metric product 〈bi : bi〉 is a linear combination of the vectors {b1, . . . , bm}.

The planar rigid body with two forces [PRB3], the satellite with two thrusters [ST] and the
underwater vehicle [UV] satisfy this controllability condition. On the basis of this assumption,
we design inputs

(
b1(t), b2(t)

)
, that allow us to simplify the approximations in Proposition 4.1 and

steer the velocity of the system to an arbitrary value.

Lemma 4.2 (Inversion Algorithm). Let the assumption (A2) hold and let η be an arbitrary
element in g. Define the input functions

(
b1(t), b2(t)

)
as follows:

1. Set N = m(m − 1)/2 and let P denote the set of ordered pairs {(j, k) | 1 ≤ j < k ≤ m}.
Identify the elements in P with the set of integers 1, . . . , N , and let a(j, k) be the integer
associated with the pair (j, k). In other words, a : P 7→ {1, . . . , N} is a enumeration of P .
For α = 1, . . . , N , define the scalar functions

ψα(t) = 1√
2π

(
α sin(αt) − (α+N) sin

(
(α+N)t

))
.

2. Given the assumption (A2), the matrix with columns bi, 1 ≤ i ≤ m, and 〈bj : bk〉 , 1 ≤ j <
k ≤ m, has full rank. By means of its pseudo-inverse, compute (m+N) real numbers zi and
zjk such that

η =
∑

1≤i≤m

zibi +
∑

1≤j<k≤m

zjk 〈bj : bk〉 .

3. Finally, set

b1(t) =
∑

1≤j<k≤m

√
|zjk|

(
bj − sign (zjk)bk

)
ψa(j,k)(t), (10)

b2(t) ≡ b2 =
1

2π

∑

1≤i≤m

zibi +
1

4π

∑

1≤j<k≤m

|zjk|
(
〈bj : bj〉 + 〈bk : bk〉

)
. (11)

The input functions (b1(t), b2(t)) designed in equation (10) and (11) verify

(
b2 − 1

2
〈b1 : b1〉

)
(2π) = η. (12)
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Appendix A.2 contains the lemma’s proof. In what follows, we denote the procedure described
in the inversion algorithm with the notation:

(
b1(t), b2(t)

)
= Inverse(η) .

A direct manipulation of equation (10) and of b1(t) =
∑m

i=1 biu
1
i (t) leads to the equivalent

statement

u1
i (t) = −

i−1∑

j=1

√
|zji| sign(zji)ψa(j,i)(t) +

m∑

j=i+1

√
|zij |ψa(i,j)(t).

Note that motion along the good symmetric product direction 〈bi : bj〉 (for i < j) is generated

by the term
√
|zij |ψa(i,j)(t) in u1

i (t) and the term −
√
|zij | sign(zij)ψa(i,j)(t) in u1

j (t). Hence the

inputs u1
i (t) and u1

j (t) have the common factor ψa(i,j). The other terms in the definition of u1
k(t)

for all k, are at different frequencies. Therefore, they are orthogonal to ψa(i,j) in the inner product
space L2[0, 2π], and so do not generate motion in any other symmetric product direction. The
second term in the second order input b2 compensates for the motion excited along bad symmetric
product directions. Its presence is a key difference with respect to the algorithms in [16] for driftless
systems.

One of the drawbacks of the previous algorithm is that the input functions contain relatively
high frequencies, e.g., in an m = 3 input system, the input functions contain sinusoids with
frequency from 1 to m(m − 1) = 6. This can be mitigated by optimizing the design of the
coefficients {zi, zjk} and the numbering of the set P . For example, the design of the coefficients
can be optimized by employing a weighted pseudo-inverse.

5 Control Algorithms from Motion Primitives

In this section we design motion control algorithms based on the approximations in Proposition 4.1
and the inversion algorithm in Lemma 4.2. Condition (A1) on the group G, and condition (A2)
on the controllability of the system are assumed. We start by designing two primitive motion
patterns, Maintain-Velocity and Change-Velocity, that provide the system with some basic
motion capabilities. We then focus on more complex control algorithms to solve the point-to-point
reconfiguration problem, the local exponential stabilization problem and the static interpolation
problem.

5.1 Primitives of motion

We describe two basic maneuvers that each last 2π units of time. The parameter σ � 1 is a
small positive constant. To maintain a velocity of order O(σ), an input of order O(σ) suffices,
while to obtain a change in velocity of order O(σ), we employ a control input of order O(

√
σ).

Each primitive is described in terms of initial configuration and velocity, input design, and final
configuration and velocity.

Maintain-Velocity(σ, ξref): keeps the body velocity ξ(t) close to a reference value σξref.

Initial state:
g(0) = g0,
ξ(0) = σξref + σ2ξerror,

Input:
ε= σ,

(b1, b2) = Inverse(π 〈ξref : ξref〉 − ξerror),

Final state:
log(g−1

0 g(2π)) = 2πσξref + πσ2ξerror +O(σ3),
ξ(2π) = σξref +O(σ3).
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Change-Velocity(σ, ξfinal): steer the body velocity ξ(t) to a final value σξfinal.

Initial state:
g(0) = g0,
ξ(0) = σξ0,

Input
ε=

√
σ,

(b1, b2) = Inverse(ξfinal − ξ0),

Final state:
log(g−1

0 g(2π)) = πσ(ξ0 + ξfinal) +O(σ3/2),
ξ(2π) = σξfinal +O(σ2).

The statements on the final configuration and velocity of the primitives are proved in Appendix A.3.
Note that the magnitude of control input is

‖π 〈ξref : ξref〉 − ξerror‖O(σ), during a Maintain-Velocity(σ, ξref) primitive,

‖ξfinal − ξ0‖O(
√
σ), during a Change-Velocity(σ, ξfinal) primitive.

We conclude this section by showing how to compute estimates of final configurations after
multiple periods of control. The following result is a direct consequence of the Campbell–Baker–
Hausdorff formula, see for example [31].

Lemma 5.1. Let σ � 1 be a positive constant and let g0, g1 be group elements. Define the
exponential coordinates y0 = log(g0) ∈ g and y1 = log(g1) ∈ g. If the vector [y0, y1] is higher order
in σ than (y0 + y1), then it holds

log(g0g1) = y0 + y1 +O([y0, y1]).

5.2 Control algorithms

We present three algorithms to solve various motion control problems. These algorithms combine
the two motion primitives with a discrete-time feedback. This makes the approximations hold over
multiple time intervals; for example, over a time interval of order 1/σ.

Point-to-point reconfiguration problem

This motion task reconfigures the system, i.e., changes its position and orientation, starting and
ending at zero velocity. We assume that the initial state is (g(0), ξ(0)) = (g0, 0g) and the final
desired state is (g1, 0g). For simplicity, we require log(g−1

0 g1) to be well defined, even though this
assumption can be removed. For example, on SO(3) the logarithm is well defined whenever the
change in attitude is less that π.

The algorithm consists of three steps. Over the first time interval, we change the velocity to
an appropriate reference value. We then maintain the velocity close to this constant reference
value for an appropriate number of periods. Finally, we stop the system when close to the desired
configuration. The details are described in Table 1 and the proof of the following lemma can be
found in Appendix A.4. An alternative algorithm which uses a constant acceleration followed by
a constant deceleration to achieve the same point-to-point reconfiguration is described in [3].

Lemma 5.2 (Constant Velocity Algorithm). Let σ be a sufficiently small positive constant
and let (g(0), ξ(0)) = (g0, O(σ2)) and let g1 be a group element such that log(g−1

0 g1) is well defined.
Let N ∈ N and the inputs (b1, b2)(t) for t ∈ [0, 2(N +1)π] be determined according to the algorithm
in Table 1. At final time it holds

log
(
g(2(N + 1)π)−1g1

)
= O(σ3/2),

ξ
(
2(N + 1)π

)
= O(σ2).
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Goal: drive system from (g0, 0g) to (g1, 0g).
Arguments: (g0, g1, σ).
Require: log(g−1

0 g1) well defined.

1: N ⇐ Floor(‖ log(g−1
0 g1)‖/(2πσ)) {Floor(x) is the greatest integer less than or equal to x.}

2: ξnom ⇐ log(g−1
0 g1)/(2πσN)

3: Change-Velocity(σ, ξnom) {start maneuver}
4: for k = 1 to (N − 1) do
5: Maintain-Velocity(σ, ξnom)
6: end for
7: Change-Velocity(σ, 0g) {stop maneuver}

Table 1: Constant Velocity Algorithm for point-to-point reconfiguration.

Goal: drive system to the state (Id, 0g) exponentially as t→ ∞.
Arguments: σ.
Require: ‖(log(g(0)), ξ(0))‖ ≤ σ.

1: for k = 1 to +∞ do
2: tk ⇐ 4kπ {tk is the current time}
3: σk ⇐ ‖(log(g(tk), ξ(tk)))‖
4: Change-Velocity

(
σk,−

(
log(g(tk)) + πξ(tk)

)
/(2πσk)

)

5: Change-Velocity(σk, 0g)
6: end for

Table 2: Local Exponential Stabilization Algorithm.

The final state is not exactly as desired, instead there are errors of order O(σ3/2) and O(σ2).
This undesirable feature can be compensated for by solving the next motion problem, the point
stabilization problem.

Point stabilization problem

This motion task asymptotically stabilizes the configuration g(t) to a desired value that we assume
without loss of generality to be the identity. Convergence is ensured as long as the initial condition
satisfies

‖(log(g(0)), ξ(0))‖ ≤ σ, (13)

where σ is a sufficiently small positive constant. Should equation (13) not hold, then the previous
algorithm can be employed to steer the state to an admissible value.

The key idea of the algorithm is to iterate the following procedure: measure the state at
time tk and design control inputs that try to steer the state to the desired value (Id, 0g) at time
tk+1 = tk + 4π. Since we impose two requirements, one on the final configuration and one on the
final velocity, two calls to the Change-Velocity primitive are needed. The idea of iterating an
approximate stabilization step for fast convergence can be found, for example, in [12]. The details
are described in Table 2 and the proof of the following lemma is in Appendix A.5.

Lemma 5.3 (Local Exponential Stabilization Algorithm). Let σ be a sufficiently small pos-
itive constant and assume the initial condition satisfies equation (13). Let the inputs (b1(t), b2(t))
be determined according to the algorithm in Table 2 and let tk = 4kπ. Then there exists a λ > 0
such that ∥∥(

log(g(tk)), ξ(tk)
)∥∥ ≤

∥∥(
log(g(0)), ξ(0)

)∥∥ e−λtk , ∀ k ∈ N.

Additionally, for t ∈ [4kπ, 4(k + 1)π] it holds that
∥∥(

log(g(t), ξ(t)
)∥∥ = O(e−λk/2).
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Goal: drive system through points {g0, g1, . . . , gM}.
Arguments: (g0, g1, . . . , gM , σ).
Require: (g(0), ξ(0)) = (g0, 0g) and log(g−1

i gi) well defined for all 0 ≤ i ≤M .

1: for j = 1 to M do
2: gtmp,j ⇐ g(t) exp(πξ(t)) {t is the current time}
3: Nj ⇐ Floor(‖ log(g−1

tmp,jgj)‖/(2πσ))

4: ξnom,j ⇐ log(g−1
tmp,jgj)/(2πσNj)

5: Change-Velocity(σ, ξnom,j)
6: for k = 1 to (Nj − 1) do
7: Maintain-Velocity(σ, ξnom,j)
8: end for
9: end for

10: Change-Velocity(σ, 0g)

Table 3: Static Interpolation Algorithm.

Static interpolation problem

This motion task steers the system’s configuration along a path connecting the set of the ordered
points {g0, g1, . . . , gM}. As above, we require log(g−1

k−1gk) to be well defined for 1 ≤ k ≤ M . The
algorithm consists of M repeated constant velocity (point-to-point) maneuvers (Table 1), with
the only difference being that when the configuration reaches the the kth desired value gk, the
velocity gets changed directly to the reference value for the next interval, i.e., without stopping.
The details are described in Table 3. It can be shown that the configuration g(t) follows a path
passing through the points {g0, g1, . . . , gM} with an error of order σ. We do not include a full
proof of convergence as it is very similar to the one for Lemma 5.2.

Remark 5.4 (Interpolating sequences of relative equilibria versus constant velocity motions). The
Constant Velocity and the Static Interpolation Algorithms provide two different solutions to the
reconfiguration problem. These two algorithms can be compared on the basis of an input cost of
the form

‖u‖[0,T ] =

∫ T

0

L(u(t))dt,

where T = T (σ) is the time required to complete the maneuver and L : Um 7→ R is a cost on
the space of input functions. In the following we let gi and gf denote initial and final (desired)
configurations and we let P = {g0 = gi, g1, . . . , gM = gf} be a sequence of configurations such that
log(g−1

j−1gj) is a relative equilibrium vector for all j = 1, . . . ,M . Recall that η ∈ g is a relative
equilibrium vector if 〈η : η〉 vanishes.

1. The Constant Velocity Algorithm to go from g0 to gf involves 2 calls to the Change-Velocity
primitive and (N−1) calls to the Maintain-Velocity primitive. Using notation from Table 1
and some of the details in Appendix A.4, the cost of the complete maneuver can be computed
as

‖u‖[0,T ] = 2O(
√
σ) + (N − 1)‖ 〈ξnom : ξnom〉 ‖O(σ) = O(1),

since ‖ 〈ξnom : ξnom〉 ‖ is of order 1 and N is of order 1/σ.

2. The Static Interpolation Algorithm applied to the set of configurations P involves (M + 2)

calls to the Change-Velocity primitive and (
∑M

j=1Nj) calls to the Maintain-Velocity

primitive. With the notation in Table 3, a little algebra shows that

‖u‖[0,T ] = (M + 2)O(
√
σ) + (

∑
jNj)‖ 〈ξnom,j : ξnom,j〉 ‖O(σ).
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Figure 5: Constant Velocity Algorithm. The bullet-shaped objects drawn in the left picture
represent the location of the planar body. Darker objects correspond to the location of the body
at the beginning and end of a primitive. The plots on the right display the time-evolution of
variables (u1, u2, ω, v1, v2).

Since the configuration g(t) follows the path determined by the set P with an error of order σ,
and since log(g−1

j−1gj) is a relative equilibrium vector, it can be shown that 〈ξnom,j : ξnom,j〉 =
O(σ). Summarizing, the total cost is

‖u‖[0,T ] = (M + 2)O(
√
σ) + (

∑
jNj)O(σ2) = O(

√
σ).

We conclude that for small σ (or equivalently, for long final times T = O(1/σ)), moving along
a set of relative equilibria is a more efficient strategy than the Constant Velocity Algorithm. In
other words, planning a path along relative equilibria takes into proper account the full system’s
dynamics and leads to some notion of optimality.

5.3 Numerical simulations

The three algorithms introduced above have been implemented on a planar rigid body with two
forces a distance h from the center of mass and with two different masses along the body-fixed axes
(to account for added mass when the body is in a fluid). This example is very similar to [PRB3]
of Section 2.3. The parameter values in normalized units were chosen to be J = 1,m1 = .6,m2 =
1, h = 2. For both the Constant Velocity Algorithm and the Static Interpolation Algorithm, we let
the initial configuration be the identity and the final (desired) configuration consist of a rotation
of π and a translation of 2 units along the y-axis, i.e., ginitial = (0, 0, 0) and gfinal = (π, 0, 2). We
set σ = .1. For all three algorithms, the numerical results were in agreement with the theoretical
analysis presented above.

Constant Velocity, Table 1: Figure 5 illustrates how the velocity variables have a constant
average value plus an oscillatory component. Despite the oscillations (see the light gray
configurations in Figure 5), the configuration variables evolve along a screw motion toward
the desired configuration.

Static Interpolation, Table 3: For comparison, we next present the numerical results of the
Static Interpolation Algorithm. The initial and final (desired) configurations are the same as
in the previous run. The set of ordered configuration points is {(0, 0, 0), (0, 0, 2), (π, 0, 2)}. In
Figure 6 one can notice the path in the x, y plane (consisting of a straight line and a rotation)
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Figure 6: Static Interpolation Algorithm. See the figure above for an explanation of pictures.
The planar body moves first along the y-axis (from (0, 0, 0) to (0, 0, 2)) and then rotates to the
desired final configuration (π, 0, 2). The large oscillation at the beginning of the maneuver is due
to the initial Change-Velocity primitive. According to the analysis in Remark 5.4, subsequent
Maintain-Velocity primitives magnitude enjoy a smaller input magnitude and lead to smaller
oscillation.

and the various calls to the Change-Velocity and Maintain-Velocity primitives. For
example, the time history of u1, u2(t) shows peaks whenever a Change-Velocity maneuver
occurs (recall that the magnitude of control input during a Change-Velocity primitive is
lower order that that of a Maintain-Velocity).

Local Exponential Stabilization, Table 2: Finally, we present the stabilization algorithm. Us-
ing the final errror of the Constant Velocity Algorithm as initial conditions, we applied the
local stabilization algorithm to steer the system exactly to the origin. Figure 7 illustrates
how the convergence is exponential.

6 Conclusions

In this paper, we study motion planning and control of underactuated mechanical systems with a
focus on underactuated vehicles. We propose a geometric framework encompassing analysis and
synthesis tools and show its application to numerous examples. First, we characterize the control-
lability properties of these systems and investigate their behavior under small-amplitude forcing.
Next, we design two motion primitives which we use in higher-level motion control algorithms to
steer the vehicle from point to point, to move the vehicle between points in configuration space
without stopping, and to provide exponential stabilization of the vehicle to a desired configuration.
Exponential stabilization is achieved using time-varying, continuous feedback control. The results
in this paper complement the controllability analysis of [19] and the averaging techniques of [16].
Given the results in this paper, numerous avenues of future development are possible. We mention
a few in the following paragraphs.

An important limitation of this paper is the restriction to systems with controllability rank
condition satisfied at low order. Even though many interesting examples satisfy this condition,
it would be interesting to design motion primitives and control algorithms in the more general
setting. Loosely speaking, more oscillatory controls will be necessary for this task. Additionally,
it would be interesting to relate our results to the treatment in [36, 35].

Another restriction of the treatment in this paper is that we only consider Lagrangian systems
on Lie groups. It would be interesting to extend the treatment, i.e., writing expansions and motion
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Figure 7: Local Stabilization algorithm. We show only the configuration variables θ (with a solid
line), x (with a dashed line) and y (with a light gray line). The initial condition of the simulation
is the final error from the simulation of the Constant Velocity algorithm.

primitives, to more general mechanical systems with less structure and with more general force
fields. Some initial results in this direction include [15], which presents algorithms for systems with
dissipation, and [2], which discusses an expansion for systems on generic configuration manifolds.

Finally, the most ambitious research goal would be to overcome the assumption of small-
amplitude forcing and design computable and global motion planning algorithms.
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A Proofs

A.1 Proposition 4.1

Proof. We start by proving the validity of the expansion in ξ(t, ε) by means of the standard
perturbation method, as presented, for example, in [11]. Consider the ordinary differential equation

ẋ = f(x) + g(t, ε)

and let x(t, ε) denote the solution from initial condition x0(ε). At ε = 0, suppose that f(x0(0)) =
g(t, 0) = 0, so that x(t, 0) = x0(0) is a constant solution. We now expand x(t, ε) and g(t, ε) in a
Taylor series about the value ε = 0 and write

x(t, ε) =

∞∑

i=0

εixi(t) and g(t, ε) =

∞∑

i=0

εigi(t).

As shown in [11], the components in the expansion of x satisfy the following differential equations

ẋn(t) =
1

n!

∂n

∂εn

∣∣∣
ε=0

f(x(t, ε)) + gn(t),
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with initial condition xn(0) = 1
n!

∂n

∂εn

∣∣∣
ε=0

x0(ε).

The differential equation of interest in our case is equation (4):

ξ̇ = −1

2
〈ξ : ξ〉 + εb1(t) + ε2b2(t),

and the initial condition is ξ(0, ε) = εξ10 + ε2ξ20 . The constant solution we expand about is ξ(t, 0) =
ξ0(t) = 0.

Differentiating the function f(ξ(ε)) = − 1
2 〈ξ : ξ〉, we have

∂f

∂ε
= −

〈
ξ :

∂ξ

∂ε

〉

∂2f

∂ε2
= −

〈
∂ξ

∂ε
:
∂ξ

∂ε

〉
−

〈
ξ :

∂2ξ

∂ε2

〉

∂3f

∂ε3
= −3

〈
∂ξ

∂ε
:
∂2ξ

∂ε2

〉
−

〈
ξ :

∂3ξ

∂ε3

〉
,

and noting that ∂n

∂εn

∣∣∣
ε=0

ξ = n!ξn, we have

∂f

∂ε

∣∣∣
ε=0

= −
〈
ξ0 : ξ1

〉

∂2f

∂ε2

∣∣∣
ε=0

= −
〈
ξ1 : ξ1

〉
− 2

〈
ξ0 : ξ2

〉

∂3f

∂ε3

∣∣∣
ε=0

= −6
〈
ξ1 : ξ2

〉
− 6

〈
ξ0 : ξ3

〉
.

Next, we write the differential equations as described above. Recalling that ξ0(t) = 0 we have

ξ̇1 = b1

ξ̇2 = −1

2

〈
ξ1 : ξ1

〉
+ b2

ξ̇3 = −
〈
ξ1 : ξ2

〉
.

Initial conditions are ξ1(0) = ξ10 , ξ2(0) = ξ20 , ξ3(0) = 0. Finally, we employ the notation introduced
in Section 5 to integrate the three ordinary differential equations,

ξ1(t) = ξ10 + b1(t)

ξ2(t) = ξ20 − 1

2

〈
ξ10 + b1(t) : ξ10 + b1(t)

〉
+ b2(t)

ξ3(t) = −
〈
ξ10 + b1(t) : ξ20 − 1

2

〈
ξ10 + b1(t) : ξ10 + b1(t)

〉
+ b2(t)

〉
.

Expanding the terms on the right hand side, one recovers all of the terms in the expansions of
ξ(t, ε) in Proposition 4.1.

In the second part of the proof we prove the validity of the expansion of x(t, ε) by means of the
approximate solutions for kinematic systems obtained in [8] and used in [16]. From these references
we know that, if ξ(t, ε) = O(ε), then

x(t, ε) = ξ(t) − 1

2

[
ξ, ξ

]
(t) +O(ε3).

Substituting ξ(t, ε) = εξ1(t) + ε2ξ2(t) +O(ε3), we have:

x(t, ε) = εξ1(t) + ε2ξ2(t) − 1

2
ε2

[
ξ1, ξ1

]
(t) +O(ε3).
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And substituting the values for ξ1(t) and ξ2(t), and writing x(t, ε) = εx1(t) + ε2x2(t) +O(ε3), we
have

x1(t) = ξ10 + b1(t)

x2(t) =

(
ξ20t−

〈
ξ10 : ξ10

〉 t2

4
−

〈
ξ10 : b1

〉
(t) +

(
b2 − 1

2

〈
b1 : b1

〉)
(t)

)
− 1

2

[
ξ10 + b1, ξ10 + b1

]
(t).

Expanding the terms on the right hand side, one recovers all of the terms in the expansions of
x(t, ε) in Proposition 4.1.

A.2 Lemma 4.2

Here, we prove the claim (12) in Lemma 4.2.

Proof. We start by studying the properties of the functions ψa(t). A direct computation shows
that for all a, b, c

ψa(2π) = ψa(2π) = ψa(2π) = 0 (14)

ψa ψb(t) =
δab

2π
t+ rab(t), where rab(2π) = rab(2π) = 0, (15)

ψa t (2π) = ψa ψb(2π) = ψa rbc(2π) = 0, (16)

where δab is the Kronecker delta function. The proof of these properties are straightforward and
tedious.

Next, we prove the claim (12) in Lemma 4.2. Given the definition in equation (10) and the

property(15) of the functions ψa(t), we compute the quantity
〈
b1 : b1

〉
(2π) as

〈
b1 : b1

〉
(2π) =

∑

1≤j<k≤m

∑

1≤p<q≤m

√
|zjkzpq|

〈(
bj − sign(zjk)bk

)
:
(
bp − sign(zpq)bq

)〉
ψa(j,k) ψa(p,q)(2π)

=
∑

1≤j<k≤m

|zjk|
〈(
bj − sign(zjk)bk

)
:
(
bj − sign(zjk)bk

)〉

=
∑

1≤j<k≤m

|zjk|
(
〈bj : bj〉 − 2 sign(zjk) 〈bj : bk〉 + 〈bk : bk〉

)

= −2
∑

1≤j<k≤m

zjk 〈bj : bk〉 +
∑

1≤j<k≤m

|zjk|
(
〈bj : bj〉 + 〈bk : bk〉

)
.

Summing up with b2(2π) = 2πb2, we have
(
b2 − 1

2
〈b1 : b1〉

)
(2π) =

∑

1≤i≤m

zibi +
∑

1≤j<k≤m

zjk 〈bj : bk〉 ,

which proves equation (12).

A.3 Primitives of Motion

The statements in the description of both primitives are direct consequences of the following result.

Proposition A.1. Let the assumptions of Proposition 4.1 hold and let
(
b1(t), b2(t)

)
= Inverse(η).

If ξ(0) = εξ10 + ε2ξ20 , we have

ξ(2π) = εξ10 + ε2
(
ξ20 − π

〈
ξ10 : ξ10

〉
+ η

)
+ ε3π

(
π

〈
ξ10 :

〈
ξ10 : ξ10

〉〉
− 2

〈
ξ10 : ξ20

〉
−

〈
ξ10 : η

〉 )
+O(ε4)

(17)

x(2π) = ε2πξ10 + ε2π
(
2ξ20 − π

〈
ξ10 : ξ10

〉
+ η

)
+O(ε3). (18)
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Proof. Note that property (14) implies directly that b1(2π) = b1(2π) = b1(2π) = 0, so that the
terms in the Taylor expansion in Proposition 4.1 simplify to

ξ1(2π) = ξ10

ξ2(2π) = ξ20 − π
〈
ξ10 : ξ10

〉
+

(
b2 − 1

2

〈
b1 : b1

〉)
(2π),

ξ3(2π) = −2π
〈
ξ10 : ξ20

〉
+ π2

〈
ξ10 :

〈
ξ10 : ξ10

〉〉
−

〈
ξ10 :

(
b2 − 1

2

〈
b1 : b1

〉)
(2π)

〉

+
〈
〈ξ10 : ξ10〉 : b1

〉 t

2
(2π) +

〈
b1 :

〈
ξ10 : b1

〉〉
(2π) −

〈
b1 :

(
b2 − 1

2

〈
b1 : b1

〉)〉
(2π),

x1(2π) = 2πξ10 ,

x2(2π) = 2πξ20 − π2
〈
ξ10 : ξ10

〉
+

(
b2 − 1

2

〈
b1 : b1

〉)
(2π) − 1

2

[
ξ10 + b1, ξ10t+ b1

]
(2π).

Hence, ξ1(2π) and x1(2π) are as computed above. We employ Lemma 4.2 and property (15) to
simplify the remaining terms into

ξ2(2π) = ξ20 − π
〈
ξ10 : ξ10

〉
+ η,

ξ3(2π) = −2π
〈
ξ10 : ξ20

〉
+ π2

〈
ξ10 :

〈
ξ10 : ξ10

〉〉
− π

〈
ξ10 : η

〉

+
〈
〈ξ10 : ξ10〉 : b1

〉 t

2
(2π) +

〈
b1 :

〈
ξ10 : b1

〉〉
(2π) −

〈
b1 :

(
b2 − 1

2

〈
b1 : b1

〉)〉
(2π),

x2(2π) = 2πξ20 − π2
〈
ξ10 : ξ10

〉
+ πη − 1

2

[
ξ10 + b1, ξ10t+ b1

]
(2π).

Regarding the term ξ3(t), the claim is proven if

〈
〈ξ10 : ξ10〉 : b1

〉 t

2
(2π) =

〈
b1 :

〈
ξ10 : b1

〉〉
(2π) =

〈
b1 :

(
b2 − 1

2

〈
b1 : b1

〉)〉
(2π) = 0.

However, since b1(t) is linear combination of the functions ψa(t), the latter relations correspond
equality sign by equality sign to the properties in equation (16). Regarding the term x2(t), it holds
that

[
ξ10 + b1, ξ10t+ b1

]
(2π) = 2π2

[
ξ10 , ξ

1
0

]
+

[
ξ10 , b

1(2π)

]
+

[
b1, ξ10t

]
(2π) +

[
b1, b1

]
(2π) = 0,

as all terms in the middle expression vanish.

A.4 Lemma 5.2

Proof. Given the descriptions of the primitives Change-Velocity and Maintain-Velocity, we
compute the evolution of ξ(t) as follows. Starting from ξ(0) = O(σ2), we have:
after first Change-Velocity(σ, ξnom) : ξ(2π) = σξnom +O(σ2),
after first Maintain-Velocity(σ, ξnom) : ξ(4π) = σξnom +O(σ3),
after kth step in the for loop : ξ(2(k + 1)π) = σξnom +O(σ3),
after the final Change-Velocity(σ, 0) : ξ(2(N + 1)π) = O(σ2).

The final value of ξ is therefore as in the claim. Similarly, we can compute the change in configu-
ration during each interval:
after first Change-Velocity(σ, ξnom) : log

(
g(0)−1g(2π)

)
= πσξnom +O(σ3/2),

after first Maintain-Velocity(σ, ξnom) : log
(
g(2π)−1g(4π)

)
= 2πσξnom +O(σ2),

after kth step in the for loop : log
(
g(2kπ)−1g(2(k + 1)π)

)
= 2πσξnom +O(σ3),

after final Change-Velocity(σ, 0) : log
(
g(2Nπ)−1g(2(N + 1)π)

)
= πσξnom +O(σ3/2).
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We now need to sum the changes in configuration due to each interval by means of the approx-
imation in Lemma 5.1. Combining the contributions during the first two intervals, and recalling
that [ξnom, ξnom] vanishes, we have

log
(
g−1
0 g(4π)

)
= 3πσξnom +O(σ3/2) =: 3πσξnom + σ3/2η1, (19)

where η1 = O(1) is an appropriate vector in g. Next, we claim that for all k = 1, . . . , N − 1, it
holds

log
(
g−1
0 g(2(k + 1)π)

)
= akξnom + σ3/2ηk,

where the scalar ak and the vector ηk are of order at most 1. We prove the claim by induction.
At k = 1, we recover equation (19), with a1 = 3πσ. Next, we assume that the claim holds at k,
and we prove it for k+1. As dictated by Lemma 5.1, we compute the bracket between the current
value akξnom +σ3/2ηk and the contribution 2πσξnom +O(σ3) =: 2πσξnom +σ3ζk, where ζk = O(1)
is an appropriate vector in g. We have:

[akξnom + σ3/2ηk , 2πσξnom + σ3ζk] = O(σ5/2),

so that

log
(
g−1
0 g(2(k + 2)π)

)
=

(
akξnom + σ3/2ηk

)
+

(
2πσξnom + σ3ζk

)
+O(σ5/2)

=
(
ak + 2πσ

)
ξnom + σ3/2

(
ηk + σ3/2ζk + σνk

)
,

where νk = O(1) is an appropriate vector in g. Hence, the claim holds at k+1, with ak+1 = ak+2πσ
and ηk+1 = ηk + σ3/2ζk + σνk. At the end of the for loop, as k = N − 1, we have

log
(
g−1
0 g(2Nπ)

)
= aN−1ξnom + σ3/2ηN−1,

where we can compute the coefficients as

aN−1 = a1 +

N−1∑

k=2

2πσ = (2N − 1)πσ and ηN−1 = η1 +

N−1∑

k=2

(
σ3/2ζk + σνk

)
= O(1).

The contribution of the last interval is σπξnom plus some higher-order terms, so that

log
(
g−1
0 g(2(N + 1)π)

)
= 2Nπσξnom +O(σ3/2).

Finally, we apply the approximation in Lemma 5.1 for a last time to obtain

log(g(2(N + 1)π)−1g1) = log
((
g−1
0 g(2(N + 1)π)

)−1(
g−1
0 g1

))
= O(σ3/2),

where we recall that log(g−1
0 g1) = 2Nπσξnom and log(h−1) = − log(h).

A.5 Lemma 5.3

Proof. We start by investigating the two Change-Velocity primitives described inside the while
statement in Algorithm 2. Assuming that at time tk it holds

∥∥(
log(g(tk)), ξ(tk)

)∥∥ = σk � 1,

we claim that ∥∥(
log(g(tk+1)), ξ(tk+1)

)∥∥ = O(σ
3/2
k ). (20)

This can be seen as follows. By assumption there exist two vectors xerr and ξerr of order O(1) such
that

log(g(tk)) = σkxerr

ξ(tk) = σkξerr.
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With this notation, we have −
(
log(g(tk))+πξ(tk)

)
/(2πσk) = −

(
xerr +πξerr

)
/(2π). Next we apply

the approximation in Lemma 5.1. After the primitive Change-Velocity(σk,−
(
xerr +πξerr

)
/(2π)),

we compute

log(g(tk + 2π)) = 1

2
σk(xerr + πξerr) +O(σ

3/2
k )

ξ(tk + 2π) = −σk

(
xerr + πξerr

)
/(2π) +O(σ2

k),

and after the final Change-Velocity(σk, 0), we have

log(g(tk + 4π)) = O(σ
3/2
k ),

ξ(tk + 4π) = O(σ2
k).

As tk+1 = tk + 4π, this proves equation (20). The latter equations are equivalent to

∥∥(
log(g(tk+1)), ξ(tk+1)

)∥∥ ≤Mkσ
3/2
k , (21)

where the positive scalar Mk depends continuously on initial state and parameters of the system of
ordinary differential equations (2) and (3). The parameters are σk and the coefficients in the design
of (b1(t), b2(t)), for tk < t < tk+1. By looking at the details of the inversion algorithm in Lemma 4.2,
these parameters are seen to be continuous function of the initial conditions

(
log(g(tk), ξ(tk))

)
.

Hence, we know that Mk(g(tk), ξ(tk)) is a continuous function of its arguments and it is therefore
bounded in a neighborhood of the point (g(tk), ξ(tk)) = (Id, 0). In other words, there exist positive
constants B1, B2 such that

∥∥(
log(g(tk)), ξ(tk)

)∥∥ < B1 =⇒ Mk(g(tk), ξ(tk)) < B2.

Finally, for some α < 1, we set σ = αmin
(
B1, 1/B

2
2

)
and we prove by induction that σk < σ

and Mkσ
1/2
k ≤ α. At k = 0, we have by assumption

σ0 = ‖(log(g(0)), ξ(0))‖ ≤ σ < B1,

so that M0 < B2 and
M0σ

1/2
0 < B2σ

1/2 < α < 1.

Therefore, the claim holds at k = 0. Next, we assume it at k, and prove it for k + 1. We rewrite
equation (21) as

σk+1 =
∥∥(

log(g(tk+1), ξ(tk+1)
)∥∥ ≤

(
Mkσ

1/2
k

)
σk ≤ ασ < B1.

Hence, Mk+1 is also bounded by B2 and we have

σ
1/2
k+1Mk+1 ≤ σ1/2B2 < α.

This proves that Mkσ
1/2
k ≤ α for all k. In other words, we have that the sequence {σk, k ≥ 0}

satisfies σk+1 ≤ ασk with α < 1, or equivalently σk ≤ αkσ0. Therefore, for λ = − lnα > 0,
∥∥(

log(g(tk)), ξ(tk)
)∥∥ ≤

∥∥(
log(g(0)), ξ(0)

)∥∥ e−λk.

Finally we prove the last statement in Lemma 5.3. From time tk to tk+1, the system undergoes
two Change-Velocity primitives and evolves starting from a state of order O(σk) = O(e−λk)
to a final state of higher order. During the two Change-Velocity primitives, the input is of
order

√
σk = e−λk/2 (with the notation in Section 5.1 and in Proposition 4.1, it holds ε =

√
σ).

Therefore, the expansions in Proposition 4.1 show that the state is of order
√
σk = e−λk/2 from

time tk to tk+1.
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