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Abstract

In this note we investigate open-loop control of under-
actuated mechanical systems and draw connections be-
tween averaging and controllability theory. Two sets of
results are presented: averaging under high-amplitude
high-frequency forcing, and series expansions for the evo-
lution of a forced mechanical system starting at rest.
Keywords: mechanical control systems, averaging, con-
trollability theory

1 Introduction

Perturbation methods for mechanical systems are a clas-
sic topic at the center of the attention of numerous math-
ematicians as well as practitioners. This note reviews
two sets of results recently obtained on mechanical sys-
tems subject to time-varying forcing. The results build
on the contributions on vibrational stabilization via the
averaged potential in (Baillieul, 1993) and on configura-
tion controllability via the symmetric product operation
in (Lewis and Murray, 1997).

First, we study the behavior of mechanical systems
forced by high amplitude and highly oscillatory inputs.
The averaged system is shown to be again a mechanical
system subject to an appropriate forcing. By investi-
gating the class subclass of simple systems, i.e., systems
with “Hamiltonian equal to kinetic plus potential en-
ergy,” we precisely characterizes how the averaged po-
tential is related to the symmetric products of certain
vector fields. We refer to (Bullo, 1999b) for the applica-
tion of these results to vibrational stabilization problems.

Next, we present a series expansion that describes the
evolution of a mechanical system starting at rest and
subject to a time-varying external force. We provide a
first order description to the solutions of a second order
initial value problem. Simplified expressions can be writ-
ten for simple mechanical systems or systems defined on

Lie groups, see (Bullo, 1999a).

2 Modeling Mechanical Systems

via Affine Connections

The notion of affine connection provides a coordinate-
free mean of describing various types of mechanical sys-
tems, see (Lewis and Murray, 1997). We write the
Euler-Lagrange equations for a system subject to a time-
varying force as:

∇q̇ q̇ = Y (q, t). (1)

Alternatively, if m input forces, potential and damping
forces are present, we write

∇q̇ q̇ = Y0(q) − D(q)q̇ +

m
∑

a=1

Ya(q)ua(t). (2)

We assume q(0) = q0, and q̇(0) = v0. We assume the
affine connection, the input fields and the input forcing
are smooth functions of their respective arguments.

Affine connections are instrumental in defining a key
operation, the symmetric product of two vector fields,
that is: 〈Y1 : Y2〉 = ∇Y1

Y2 + ∇Y2
Y1.

3 Averaging under high ampli-

tude highly oscillatory forcing

Introduce an ε > 0, and let ua(t) = va(t/ε)/ε, where the
va are T -periodic functions that satisfy

∫ T

0

va(s1)ds1 = 0,

∫ T

0

∫ s1

0

va(s2)ds1ds2 = 0.

Let v(t) = [v1(t), . . . , vm(t)]′ and define the matrix V
according to:

V =
1

2T

∫ T

0

(
∫ s1

0

v(s2)ds2

) (
∫ s1

0

v(s2)ds2

)

′

ds1.
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Theorem 3.1. Consider the initial value problem

∇ṙ ṙ = Y0(r) − D(r)ṙ −
m

∑

a,b=1

Vab 〈Ya : Yb〉 (r),

with initial conditions r(0) = q0, and ṙ(0) = v0. Then

q(t) − r(t) = O(ε) as ε → 0 on the time scale 1, and

q(t) − r(t) = O(δ(ε)) as ε → 0 for all t, if (r, ṙ) = (0, 0)
is an asymptotically stable critical point.

Remark 3.2. Classic averaging in Hamiltonian sys-

tems typically relies on the assumption that the system

is integrable and that the force is of size ε. Here instead

it is the Hamiltonian dynamics that is negligible in the

first approximation.

Next, we focus on simple systems with integrable in-
puts, and to expedite the treatment, we assume the con-
figuration space to be R

n. Such systems are completely
characterized by their Hamiltonian:

H(q, p, u) = V (q) +
1

2
p′M(q)−1p −

m
∑

a=1

ϕa(q)ua,

where M is the inertia matrix, V the potential energy
and ϕa are m arbitrary smooth functions. Neglecting
the dissipation term, Hamilton’s equation are equivalent
to the formulation in equation (2).

Gradient vector fields play a natural key role in this
setting. Let ϕ1, ϕ2 be two functions and define a sym-
metric product between functions via

〈ϕi : ϕj〉 ,
∂ϕi

∂q
M−1 ∂ϕj

∂q
.

Remarkably, 〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉.

Theorem 3.3. Consider a simple mechanical control

system with Hamiltonian defined above. Then the av-

eraged system is a simple mechanical system subject to

no input forces and with Hamiltonian

Haveraged(q, p) = Vaveraged(q) +
1

2
p′M(q)−1p,

where the averaged potential is defined as

Vaveraged(q) , V (q) +

m
∑

a,b=1

Vab 〈ϕa : ϕb〉 (q).

4 A series expansion for the

forced evolution from rest

The procedure underlying the averaging results in the
previous section can be iterated. Assuming zero initial

velocity and dropping the damping force), the evolu-
tion of the second order initial value problem in equa-
tion (1) can be described via a first order differential
equation. Precise statements and proof are available
in (Bullo, 1999a).

Theorem 4.1. Define recursively the time-varying vec-

tor fields Vk:

V1(q, t) =

∫ t

0

Y (q, s)ds

Vk(q, t) = −
1

2

k−1
∑

j=1

∫ t

0

〈

Vj(q, s) : Vk−j(q, s)
〉

ds.

The solution t → q(t) to equation (1) satisfies

q̇(t) =

+∞
∑

k=1

Vk(q(t), t),

where the series (q, t) 7→
∑

∞

k=1 Vk(q, t) converges ab-

solutely and uniformly in a neighborhood of q0 and for

t ∈ [0, T ].

5 Conclusion

This brief note brings together a number of exciting re-
cent results. Point stabilization, analysis of locomotion
gaits, and motion planning for underactuated systems
will provide plenty of challenges.
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