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Abstract. This paper investigates averaging theory and oscillatory control for a large class of
mechanical systems. A link between averaging and controllability theory is presented by relating the
key concepts of averaged potential and symmetric product. Both analysis and synthesis results are
presented within a coordinate-free framework based on the theory of affine connections.

The analysis focuses on characterizing the behavior of mechanical systems forced by high ampli-
tude high frequency inputs. The averaged system is shown to be an affine connection system subject
to an appropriate forcing term. If the input codistribution is integrable, the subclass of systems
with Hamiltonian equal to “kinetic plus potential energy” is closed under the operation of averaging.
This result precisely characterizes when the notion of averaged potential arises and how it is related
to the symmetric product of control vector fields. Finally, a notion of vibrational stabilization for
mechanical systems is introduced and provide sufficient conditions are provided in the form of linear
matrix equality and inequality tests.
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1. Introduction. This paper investigates the open loop response of nonlinear
mechanical control systems. This topic is studied in different ways by the classic
disciplines of averaging and controllability. Relying on tools from both fields, this work
characterizes the response of a large class of mechanical systems to high amplitude
high frequency forcing. The class of mechanical control systems we consider includes
systems with integrable inputs (Hamiltonian systems with conservative forces), as well
as systems with more general types of forces and nonholonomic constraints.

Averaging and vibrational stabilization techniques find useful applications in vari-
ous areas. Within the context of mechanical systems much recent interest has focused
on the control of underactuated robotic manipulators and on the analysis and design
of robotic locomotion devices. Underactuated robotic manipulators have fewer control
inputs than their degrees of freedom due to either design or failure. In both cases the
objective is to control the system despite the lack of control authority. Examples of
works in this area are [37, 25], where the authors investigate the control via oscillatory
inputs for some two and three degrees of freedom planar manipulators.

Robotic locomotion studies the movement patterns that biological systems and
mechanical robots undergo during locomotion; see [24]. Typically, cyclic motion in
certain internal variables generates displacement in Euclidean space; consider the ex-
ample of how a snake changes its shape to locomote. Computing the feasible trajecto-
ries of a locomotion system is an analytically untractable problem for any nontrivial
example. Averaging provides a means of tackling such problems; see for example the
contributions on motion planning and trajectory generation documented in [17, 6]
and the references therein.

Finally, averaging analysis seems well suited to tackle novel applications in the
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field of micro-electro mechanical systems and vibrational control is being investigated
within the context of active control of fluids and separation control. Examples in-
clude [7] on the scale dependence in oscillatory control, and [43] on unsteady flow
control using oscillatory blowing. In these settings, vibrational stabilization schemes
appear advantageous since they require no expensive or complicated sensing.

Literature review. Averaging theory is discussed in a number of textbooks [13,
42, 19]. The control relevance of averaging ideas was underlined in the work on
vibrational control by Bentsman and co-workers [9, 10, 11]. These works introduce
vibrational stabilization techniques under various types of input forcing (e.g., vector
additive, linear and nonlinear multiplicative forcing). The later work by Baillieul [3,
4, 5, 6] extends these techniques to the context of mechanical systems described by
specific Lagrangian and Hamiltonian models. In particular, the work in [3] presents
two treatments to averaging for mechanical control systems. The first approach relies
on a coordinate transformation to bring the system to standard averaging form. The
second approach is based on directly averaging the Hamiltonian function and gives
rise to the notion of averaged potential. Some assumptions restrict how applicable
the latter approach is. For example, the control system is assumed to have a cyclic
variable and to be single-input with the control input applied to the cyclic variable.
Nonetheless, the notion of averaged potential has proven very successful in treating a
number of important cases, see for example [50, 51, 7].

Another set of relevant results includes the work on small-time local controllability
for mechanical systems. The main references are the original work in Lewis and Mur-
ray [32] and the advances in [31]. These works introduce the notion of configuration
and equilibrium controllability and provide sufficient conditions to characterize them.
The main technical tool is the notion of symmetric product as a way to represent
certain Lie brackets. Control algorithms that exploit motions along the “symmetric
product directions” are presented in [17].

Statement of contributions. This paper contains a number of novel results
both on averaging analysis as well as on control design. One key technical contribution
is the understanding of the relationship between the symmetric product [32] and the
averaged potential [3]. We describe the contributions in the next three paragraphs.

We start by studying the behavior of a large class of mechanical systems forced
by high amplitude high frequency inputs. We rely on the notion of system described
by an affine connection as a generalized way of describing mechanical control systems
with simple Hamiltonian, generic non-integrable (non-conservative) forces and non-
holonomic constraints. Under mild assumptions, we show how the averaged system
is again a system described by an affine connection and subject to an appropriate
forcing. Since this forcing term is a certain symmetric product, the result illustrates
an instructive connection between controllability and averaging. The averaging anal-
ysis relies on a careful application of the variation of constants formula and of the
homogeneity property of mechanical systems. The theorem statement and proof are
presented in a coordinate-free manner.

We then consider the set of simple mechanical systems, that is, systems with
Hamiltonian equal to “kinetic plus potential” and investigate when this subclass is
closed under the operation of averaging. A sufficient condition is that the input
codistribution be integrable, or in other words, that the control forces be described
by conservative fields. Under this assumption, the Hamiltonian function of the average
system includes a generalized averaged potential. This result shows how the notion
of averaged potential is applicable to a wider set of systems than those considered by
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Baillieul [3]. The proof relies on the observation that the averaged potential is related
to a certain symmetric product of functions; see [20].

Finally, we focus on the design of open and closed loop controllers based on
high amplitude high frequency forcing. We introduce an appropriate notion of vibra-
tional stabilization for mechanical systems, where only the configuration variables are
considered. We consider simple systems with integrable forces and assume that the
control system is underactuated (i.e., fewer control inputs are available than degrees
of freedom). We consider the point stabilization problem and design control Lyapunov
functions via the “potential shaping” technique, see the original [46] and a modern
account in [47]. Here the closed loop potential energy reflects the presence of both a
proportional action as well an oscillatory action. We provide sufficient conditions for
stabilizability in the form of a linear matrix equality and inequality test. We illustrate
the control design by applying it to an underactuated two-link manipulator.

Organization. The paper is organized as follows. We present a quick summary
of averaging and we introduce some tools from chronological calculus in Section 2.
In Section 3 we introduce a useful classification of mechanical systems and study
their common homogeneous structure. Section 4 contains the averaging analysis. In
Section 5 we present the vibrational stabilization results and work out the example.

2. Averaging and the variation of constants formula. In this section we
present some basic results on averaging theory and their coordinate-free interpre-
tation. The averaging results are taken from Sanders and Verhulst [42] and from
Guckenheimer and Holmes [22].

Let x, y, x0 belong to an open subset D ⊂ Rn, let t ∈ R+ = [0,∞), and let the
parameter ε vary in the range (0, ε0] with ε0 ¿ 1. Let f, g : R+×D → Rn be smooth
time-varying vector fields. Consider the initial value problem in standard form:

dx

dt
= εf(t, x), x(0) = x0. (2.1)

If f(t, x) is a T -periodic function in its first argument, we let the averaged system be
the initial value problem

dy

dt
= εf0(y), y(0) = x0, (2.2)

f0(y) =
1

T

∫ T

0

f(t, y)dt.

We say that an estimates is on the time scale δ−1(ε), if the estimate holds for all times
t such that 0 < δ(ε)t < L with L a constant independent of ε. From pages 39 and 71
in [42] and from page 168 in [22], we summarize:

Theorem 2.1 (First order periodic averaging). There exist a positive ε0, such
that for all 0 < ε ≤ ε0

(i) x(t)− y(t) = O(ε) as ε→ 0 on the time scale 1/ε, and
(ii) if the origin is a hyperbolically stable critical point for f 0, then x(t)− y(t) =

O(ε) as ε → 0 for all t ∈ R+ and the differential equation (2.1) possesses
a unique periodic orbit which is hyperbolically stable and belongs to an O(ε)
neighborhood of the origin.

Next, consider the initial value problem

dx

dt
= f (t/ε, x) , x(0) = x0, (2.3)
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where f(t, x) is a T -periodic function in its first argument. A time scaling argument
shows that the averaged version of this problem is the same as in equation (2.2).
Accordingly, Theorem 2.1 implies that x(t) − y(t) = O(ε) as ε → 0 only on the time
scale 1, unless y = 0 is an hyperbolically stable point of f 0.

2.1. Variation of constants formula in coordinate-free terms. The varia-
tion of constants formula is a means to bring various systems into the standard form
in equation (2.1). This tool originates back to Lagrange’s work, see [42, page 183],
and is presented here in a coordinate-free setting.

Given a diffeomorphism φ and a vector field g, the pull-back of g along φ, denoted
φ∗g, is the vector field

(φ∗g)(x) ,

(
∂φ−1

∂x
◦ g ◦ φ

)
(x),

where the order of composition of functions is (ϕ ◦ φ) (x) = ϕ(φ(x)). A useful diffeo-
morphism is the flow map y(t) = Φg

0,T (y0) describing the solution at time T to the
initial value problem

ẏ = g(t, y), y(0) = y0.

Next, consider the initial value problem

ẋ(t) = f(x, t) + g(x, t), x(0) = x0. (2.4)

We regard f as a perturbation to the vector field g, and we seek to characterize the
flow map of f + g in terms of the nominal flow map of g. The answer is provided by
the variation of constants formula:

Φf+g
0,t = Φg

0,t ◦ Φ
(Φg

0,t)
∗f

0,t . (2.5)

In other words, if z(t) is the solution to the initial value problem

ż(t) =
(
(Φg
0,t)

∗f
)
(z), z(0) = x0, (2.6)

the solution x(t) to the initial value problem (2.4) satisfies

ẋ(t) = g(t, x), x(0) = z(t). (2.7)

We illustrate the formula in Figure 2.1 and provide a self-contained proof in Ap-
pendix A.

2.2. Formal expansions for the pull-back of a flow map. Here we study in
more detail the differential geometry of the initial value problem (2.6). Such a system
is referred to as the “pulled back” or the “adjoint” system, e.g. see [23].

If f and g are time-invariant vector fields, the infinitesimal Campbell-Baker-
Hausdorff formula, see [26], provides a means of computing the pull-back

(Φg
0,t)

∗f(x) =

∞∑

k=0

adk
g f

tk

k!
,

where adg f(x) = [g, f ](x) is the Lie bracket between g and f , and adk
g f = adk−1

g adg f .
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x0 δx0

Φf+g
0,T (x0) = Φg

0,T (δx0)

flow along f + g

flow along g

Fig. 2.1. The flow along f + g with initial condition x0 equals the flow along g with initial
condition δx0. The variation δx0 is computed via the variation of constants formula as the flow
along (Φg

0,t)
∗f for time [0, T ] with initial condition x0.

If instead f is time-invariant vector field and g is time-varying vector vector
field, we invoke a result from the chronological calculus formalism by Agračhev and
Gamkrelidze [2]. It turns out that

((
Φg
0,t

)∗
f
)
(t, x) = f(x)

+

∞∑

k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk,x) . . . adg(s1,x) f(x)

)
dsk . . . ds1. (2.8)

The convergence properties for the series expansion in (2.8) are difficult to char-
acterize; see for example a related discussion in [49] on the Campbell-Baker-Hausdorff
formula. Nonetheless, sufficient conditions for local convergence are given in [2, Propo-
sition 2.1 and 3.1]. For our analysis, the following simple statement suffices: if the
terms adg(sk) . . . adg(s1) f vanish for all k greater than a given N , then the series in
equation (2.8) becomes a finite sum.

2.3. Averaging under high magnitude high frequency forcing. We re-
turn to the description of averaging results and we focus on a setting of interest in
vibrational stabilization problems [9, 10, 11]. Consider the initial value problem

dx

dt
= f(x) + (1/ε)g (t/ε , x) , x(0) = x0, (2.9)

where we assume that g(t, x) is a T -periodic function in its first argument. Let Φg
0,t

denote the flow map along g(t, x) and define

F (t, x) =
(
(Φg
0,t)

∗f
)
(x) (2.10)

F 0(x) =
1

T

∫ T

0

F (τ, x)dτ. (2.11)

Finally, let z and y be solutions to the initial value problems

ż = F (t/ε, z), z(0) = x0, (2.12)

ẏ = F 0(y), y(0) = x0. (2.13)

Lemma 2.2. Let F be a T -periodic function in its first argument. For t ∈ R+,
we have

x(t) = Φg
0,t/ε(z(t)).
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As ε→ 0 on the time scale 1, we have

z(t)− y(t) = O(ε)

If the origin is a hyperbolically stable critical point for F 0, then z(t)− y(t) = O(ε) as
ε → 0 for all t ∈ R+ and the differential equation (2.12) possesses a unique periodic
orbit which is hyperbolically stable and belongs to an O(ε) neighborhood of the origin.

Proof. As first step, we change time scale by setting τ = t/ε. Equation (2.9)
becomes

d

dτ
x = εf(x) + g(τ, x), x(0) = x0.

As second step, we apply the variation of constants formula

d

dτ
x = g(τ, x), x(0) = z(τ)

d

dτ
z = εF (τ, z), z(0) = x0,

where F is defined according to equation (2.10). As third step, we average the initial
value problem in z to obtain

d

dτ
y = εF 0(y), y(0) = x0,

where F 0 is defined according to equation (2.11) and F is assumed to be a T -periodic
function. The averaged curve y approximates z over the time scale τ = 1/ε and over
all time according to Theorem 2.1. As fourth step, we change time scale back to
t = ετ and compute

d

dt
x = (1/ε)g(t/ε, x), x(0) = z(t)

d

dt
z = F (t/ε, z), z(0) = x0,

d

dt
y = F 0(y), y(0) = x0.

These are the definitions of z and y in equations (2.12) and (2.13). Finally, the equality
in x(t) follows by noting that the flow along (1/ε)g (t/ε , x) for time 1 is equivalent to
the flow along g (t, x) for time 1/ε.

This concludes our geometric presentation of averaging in systems with high mag-
nitude high frequency inputs. These results on averaging and the variation of con-
stants formula are known, see [10, Section III], and they play a key role in the study of
vibrational stabilization problems, see also [9, 11]. Novel is the presentation of these
results in a coordinate-free fashion: for a large class of mechanical control systems an
explicit expression will be provided for the infinite series describing the variation of
constants formula.

3. Mechanical control systems and their homogeneous structure. In
this section we present three different types of mechanical systems and a geometric
formalism that leads to a unified modeling framework. Also we present some results
on the Lie algebraic structure common to these systems and to generic second order
control systems, where the input is an acceleration (alternatively a force). To present
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an accessible treatment, we assume the configuration space to be Q = Rn. However,
Remark 3.1 and Section 3.1 provide the key ideas necessary to develop a coordinate-
free treatment over manifolds.

Let q = (q1, . . . , qn) ∈ Rn be the configuration of the mechanical system. We
consider the following control system

q̈i + Γi
jk(q)q̇

j q̇k = Y i
0 (q) + Y i

a (q)u
a(t) +Ri

j(q)q̇
j , (3.1)

where the summation convention is in place here and in what follows, the indices j, k
run from 1 to n, the index a runs from 1 to m (the number of input fields) and where:

(i) the Γi
jk are n2(n+1)/2 arbitrary scalar functions on Rn called the Christoffel

symbols (they satisfy the symmetric relationship Γi
jk = Γi

kj),
(ii) q 7→ Ya(q) for a = 1, . . . ,m are vector fields characterizing configuration-

dependent forces applied to the system. Y0 for example might include the
effect of a conservative forces such as gravity.

(iii) the functions t 7→ ua(t) are integrable and describe the control magnitude
applied along the input Ya. The i

th component of Ya is Y i
a . We also let

Y (q, t) = Ya(q)u
a(t),

(iv) R(q)q̇ describes a generic force linearly proportional to velocity.
All quantities are assumed smooth functions of their arguments.

Equation (3.1) describes a large class of mechanical systems with Hamiltonian
equal to kinetic plus potential energy, with symmetries and with nonholonomic con-
straints. A slightly loose but instructive classification follows.
Simple systems with integrable forces These systems have Hamiltonian equal

to “kinetic plus potential energy” and are subject to integrable (conserva-
tive) input forces. For example, should the mechanical system be a robotic
manipulator with motors at joints, then the appropriate Christoffel symbols
are computed via a well-known combination of partial derivatives of the iner-
tia tensor, see the definition of Coriolis matrix in [36] for example. Only for
this kind of systems can one write a Hamiltonian function that includes the
effect of forces; the treatment in Chapter 14 of [38] relies on this assumption.

Simple systems with non-integrable forces This class is a superset of the previ-
ous, where however non-integrable input forces are allowed. For example, the
force applied by a thruster of a satellite, hovercraft or underwater vehicle is in
general a non-integrable force. Simplified equations of motion can be written
if the system has symmetries, i.e, if the system’s configuration belongs to the
group of rigid displacements (or one of its subgroups) and its Hamiltonian is
independent of the configuration.

Systems with nonholonomic constraints This set includes systems from the pre-
vious two subclasses and additionally subject to nonholonomic constraints.
Two very interesting locomotion devices called snakeboard and roller racer are
described in recent papers [40] and [29]. Two methodology to write the equa-
tions of motions for these systems into form (3.1) are discussed in [30, 31, 12].
While the the description “nonholonomic” is commonly used to refer to
wheeled robots and while such systems are usually driftless1, we consider
here nonholonomic systems with drift.

1Driftless control systems have the characterizing property that ui = 0 implies ẋ = 0, where x is
the state and ui are the inputs.
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Three remarks are appropriate. First, the model relies on no specific structure on
the Γi

jk functions. In the classic Hamiltonian system case, these functions are readily
computed from the inertia matrix. By leaving these functions unspecified our analysis
includes systems with nonholonomic constraints. We refer to [12, 31] for a through
treatment of this point.

Second, the distinctions between these three sets of mechanical systems have
various instructive implications. For example, the notion of “actuated degree of free-
dom” is well defined only in systems subject to integrable forces. This simple fact is
neglected even in recent literature on mechanical control systems.

Third, a more complete definitions of the various quantities above should include
transformation rules under changes of coordinates. For example, the Christoffel sym-
bols {Γi

jk, i, j, k = 1, . . . , n} obey relatively surprising transformation rules, if the

correct equations of motion are to be computed. If q = (q1, . . . , qn) ∈ Rn are the
transformed coordinates, the transformation rule for the Γi

jk is:

Γ
k

ij =
∂qp

∂qi
∂qm

∂qj
∂qk

∂qr
Γr
pm +

∂qk

∂ql
∂2ql

∂qi∂qj
. (3.2)

We refer to [35, Section 7.5] for a more complete discussion.

3.1. Control systems described by an affine connection. Equations (3.1)
are the Euler-Lagrange equations for a simple mechanical system. Numerous method-
ologies are available to write these equations in vector or in abstract formats. The the-
ory of affine connections is a convenient formalism that formalizes the Euler-Lagrange
equations as well as more general second order control systems (including systems with
nonholonomic constraints).

An easily accessible treatment to the theory of affine connections is given by
Do Carmo [21]. Early references on mechanical control systems on Riemannian man-
ifolds is the work by Crouch [20]. The use of Riemannian concepts is encountering in-
creasing success as testified by the contributions on modeling [12], decompositions [33],
controllability [32], stabilization [28], tracking [18], interpolation [39] and (static and
dynamic) feedback linearization [8, 41].

A smooth affine connection ∇ is a collection of n3 smooth functions Γi
jk that

satisfy the transformation rule in equation (3.2). An affine connection induces an
operation between vector fields as follows. Let the vector fields X and Y have com-
ponents

X(q) = Xi(q)
∂

∂qi
, and Y (q) = Y i(q)

∂

∂qi
.

The covariant derivative of Y along X is the vector field ∇XY defined by

∇XY =

(
∂Y i

∂qj
Xj + Γi

jkX
jY k

)
∂

∂qi
.

Similarly, an affine connection induces an operation between a curve γ : [0, 1] 7→ Rn

and a vector field Y . The covariant derivative of Y along γ is a vector field along γ
defined by

∇γ̇Y =

(
dY i(γ(t))

dt
+ Γi

jkγ̇
jY k

)
∂

∂qi
.
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Whenever the reference curve is uniquely determined, we let ∇γ̇Y =
DY

dt
. The two

definitions of covariant derivative have similarities, however
DY

dt
is not a vector field

over Rn, but it is only defined on the trajectory γ : [0, 1] 7→ Rn. We refer to [21] for
a more complete treatment of affine connections and of manifolds.

We are finally ready to rewrite equation (3.1) in a coordinate-free fashion. Ac-
cording to the definition of covariant derivative along a curve, the generalized Euler-
Lagrange equations are

D q̇

dt
= Y0(q) +R(q)q̇ + Ya(q)u

a(t), (3.3)

where the covariant derivative of q̇ is computed along the curve q(t), i.e., Dq̇/dt = ∇q̇ q̇.

3.2. Lie algebraic structure. The fundamental structure of the control sys-
tem in equation (3.1) (and accordingly (3.3)) is the polynomial dependence of the
various vector fields on the velocity variable q̇. This structure affects the Lie brackets
computations involving input and drift vector fields, see related ideas in [32, 45]. We
start by rewriting the system (3.1) as a first order differential equation. We write

d

dt

[
q
q̇

]
=

[
q̇

−Γ(q, q̇) + Y0(q) +R(q)q̇

]
+

[
0
Ya

]
ua(t)

where Γ(q, q̇) is the vector with ith component Γi
jk(q)q̇

j q̇k. Also, we let x = (q, q̇),

Zg(x) =

[
q̇

−Γ(q, q̇)

]
, Y lifta (x) ,

[
0

Ya(q)

]
, and Rlift(x) ,

[
0

R(q)q̇

]
,

so that the control system is rewritten as

ẋ = Zg(x) + Y lift0 (x) +Rlift(x) + Y lifta (x)ua(t).

Let hi(q, q̇) be the set of scalar functions on R2n, which are arbitrary functions
of q and homogeneous polynomials in {q̇1, . . . , . . . qn} of degree i. Let Pi be the set
of vector fields on R2n whose first n components belong to hi and whose second n
components belong to hi+1. It is easily seen that

Zg ∈ P1, Rlift ∈ P0, and Y lifta ∈ P−1.

Direct computations show that the sets {Pi} have the following properties:
(i) [Pi,Pj ] ⊂ Pi+j , i.e., the Lie bracket between a vector field in Pi and a vector

field in Pj belongs to Pi+j .
(ii) Pk = {0} for all k ≤ −2,
(iii) if k ≥ 1, then X(q, 0) = 0 for all X(q, q̇) ∈ Pk.

Given these properties, we investigate the Lie brackets between the vector fields Zg

and Y lifta . A few useful brackets are:

[Zg, Y
lift
a ] ∈ P0, [Y lifta , Y liftb ] = 0,

[Y liftb , [Zg, Y
lift
a ]] ∈ P−1.

Of particular interest is the Lie bracket [Y liftb , [Zg, Y
lift
a ]]. Since this vector field belongs

to P−1, there must exist a vector field on Rn, which we denote 〈Ya : Yb〉, such that

〈Ya : Yb〉lift = [Y liftb , [Zg, Y
lift
a ]].
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We call this vector field the symmetric product between Yb and Ya. Some straightfor-
ward computations in coordinates show that 〈Ya : Yb〉 = 〈Yb : Ya〉 and that

〈Yb : Ya〉i =
∂Y i

a

∂qj
Y j
b +

∂Y i
b

∂qj
Y j
a + Γi

jk

(
Y j
a Y

k
b + Y k

a Y
j
b

)

〈Yb : Ya〉 = ∇Ya
Yb +∇Yb

Ya.

Remark 3.1. While the results in this sections are presented in coordinates, it
is possible to turn them into coordinate-free statements on manifolds. The enabling
concepts are the operation of vertical lift and symmetric product between vector fields,
see [32]; the notion of geometric homogeneity, see [27]; and the intrinsic definition of
the Liouville vector field; see [34, page 64].

4. Averaging for mechanical systems under high amplitude high fre-

quency forcing. This section contains the main result of the paper. We consider
systems described by an affine connection and subject to high amplitude high fre-
quency forcing. We show how the average system is again described by the same
affine connection subject to an appropriate forcing term. Additionally, we show how
the subclass of systems subject to integrable forces and without nonholonomic con-
straints is also closed under the operation of averaging.

The approach we take differs substantially from the classic averaging of Hamil-
tonian systems; see Chapter 4 in [22]. In that setting, the Hamiltonian system is
integrable, and the variation of constants formula is applied by treating the ε size
forcing as perturbation. In our setting, it is the Hamiltonian dynamics that plays
the role of the perturbation to the dominant high amplitude high frequency forcing.
Finally, it is important to note that while the accelerations driving the systems are
high amplitude, the generated displacements are typically small in magnitude.

4.1. Systems described by affine connections. Consider a control system
described by an affine connection as in equation (3.3)

D q̇

dt
= Y0(q) +R(q)q̇ + Ya(q)(1/ε)v

a(t/ε)

q(0) = q0, q̇(0) = v0,
(4.1)

where ua(t) = va(t/ε)/ε, and {v1, . . . , vm} are T -periodic functions that satisfy

∫ T

0

va(s1)ds1 = 0, (4.2)

∫ T

0

∫ s2

0

va(s1)ds1ds2 = 0. (4.3)

Also, let v(t) = [v1(t), . . . , vm(t)]′ and define the matrix Λ according to:

Λ =
1

2T

∫ T

0

(∫ s1

0

v(s2)ds2

)(∫ s1

0

v(s2)ds2

)′

ds1. (4.4)

Finally, define the time-varying vector field

Ξ(t, q) =

(∫ t

0

va(s)ds

)
Ya(q),
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and the curve

z(t) =
(
q(t), q̇(t)− Ξ

(
t/ε, q(t)

))
. (4.5)

Theorem 4.1. Let q(t) be the solution to the initial value problem in equa-
tion (4.1) and let r(t) be the solution to

D ṙ

dt
= Y0(r) +R(r)ṙ −

m∑

a,b=1

Λab 〈Ya : Yb〉 (r)

r(0) = q0, ṙ(0) = v0.

(4.6)

There exist a positive ε0, such that for all 0 < ε ≤ ε0

q(t) = r(t) +O(ε)

q̇(t) = ṙ(t) + Ξ(t/ε, q(t)) +O(ε)
(4.7)

as ε→ 0 on the time scale 1.

Furthermore, let (r, ṙ) = (q1, 0) be a hyperbolically stable critical point for (4.6),
and let its region of attraction contain the initial condition (q0, v0). Then the ap-
proximations in (4.7) are valid for all t ∈ R+, and the curve z(t) is the solution to
an initial value problem which possesses a unique, hyperbolically stable, periodic orbit
belonging to an O(ε) neighborhood of (q1, 0).

Justified by the approximations in (4.7), we call the initial value problem in
equation (4.6) the averaged mechanical system of the initial value problem in equa-
tion (4.1).

Proof. The proof brings together the analysis in Subsection 2.3 and in Subsec-
tion 3.2. As first step, we translate the second order equation (4.1) into the first order
format in equation (2.9). We let x = (q, q̇) and

f(x) = Zg(x) + Y lift0 (x) +Rlift(x),

g(t, x) =
m∑

a=1

Y lifta (x)va(t).

Next, we compute the vector field F according to equation (2.10)

F (t, y) =
(
(Φg
0,t)

∗f
)
(y) =

(
Φ

∑
Y lift

a (y)va(t)
0,t

)∗
(Zg(y) + Y lift0 (y) +Rlift(y)).

and we study its expression according to the series expansion in Section 2.2

(Φg
0,t)

∗f = f +

∞∑

k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk) . . . adg(s1) f

)
dsk . . . ds1.

The Lie algebraic structure unveiled in Section 3.2 leads to remarkable simplifications:

adk
Y lift

a
(Zg(y) + Y lift0 (y) +Rlift(y)) = 0, ∀k ≥ 3,

adY lift
b

adY lift
a

(Zg(y) + Y lift0 (y) +Rlift(y)) = −〈Ya : Yb〉lift .
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With a little book-keeping we exploit these equalities and compute

(
Φ

∑
Y lift

a (y)va(t)
0,t

)∗ (
Zg(y) + Y lift0 (y) +Rlift(y)

)

=
(
Zg + Y lift0 +Rlift

)
+

m∑

a=1

(∫ t

0

va(s1)ds1

)
[Y lifta ,

(
Zg + Y lift0 +Rlift

)
]

+

m∑

a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
[Y liftb , [Y lifta ,

(
Zg + Y lift0 +Rlift

)
]]

=
(
Zg + Y lift0 +Rlift

)
+

m∑

a=1

(∫ t

0

va(s1)ds1

)
[Y lifta ,

(
Zg +Rlift

)
]

−
m∑

a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉lift .

An integration by parts and the symmetry of the symmetric product lead to

m∑

a,b=1

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉

=
1

2

m∑

a,b=1

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉 ,

so that we have

F (t, y) =
(
Zg + Y lift0 +Rlift

)
+

m∑

a=1

(∫ t

0

va(s1)ds1

)
[Y lifta ,

(
Zg +Rlift

)
]

− 1

2

m∑

a,b=1

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉lift .

(4.8)

Assumption (4.2) implies that the function F is T -periodic, so that we can com-
pute its average F 0 according to equation (2.11). Given the assumption on va in
equation (4.3) and the definition of Λ in equation (4.4), we have

F 0(y) =
(
Zg + Y lift0 +Rlift

)
−

m∑

a,b=1

Λab 〈Ya : Yb〉lift .

This is precisely the vector field that describes the evolution of (r, ṙ). This proves
that y = (r, ṙ). Let ẑ = (p, ṗ) be the flow of the vector field F starting from (q0, v0).
Lemma 2.2 implies that over the appropriate time scale

x(t) = Φg
0,t/ε(ẑ(t))

ẑ(t) = y(t) +O(ε),

and that, should (q1, 0) be a hyperbolically stable critical point for F 0, the vector field
F possesses a unique, hyperbolically stable, periodic orbit in an O(ε) neighborhood
of (q1, 0).
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Finally, we verify that the curve ẑ defined via the equality x(t) = Φg
0,t/ε(ẑ(t)) is

equal to the curve z defined in equation (4.5). In coordinates we have

d

ds

[
q(s)
q̇(s)

]
=

[
0

Ya(q(s))v
a(s)

]
,

(
q(0), q̇(0)

)
= Φg

0,t/ε

(
p(t), ṗ(t)

)
,

so that at final time s = t/ε we compute q(t) = q(0) = p(t) and

q̇(t) = Ya(q(0))

∫ t/ε

0

va(s)ds+ q̇(0) = Ξ(t/ε, q(t)) + ṗ(t).

The coordinate-free treatment and the use of the Lie algebraic structure underline
the connection between these results on averaging and the treatment on controllability
in [32] and on motion planning in [17]. To quickly recall the first of these references,
consider the control system in equation (3.3) where Y0 = R = 0. If the family of
vector fields {Ya, 〈Ya : Yb〉 , a, b = 1, . . . ,m} is full rank in a neighborhood of q0, then
the control system (3.3) is small-time locally accessible from (q0, 0). Similar in these
works is the key observation that a mechanical control system subject to a force Y
approximately moves in the direction spanned by 〈Y : Y 〉.

The novel proof methodology should facilitate further research into higher order
averaging. Indeed, the work in [16] indicates that the exact solution of a mechanical
control system can be written as a series expansion with terms including iterated
symmetric products and time integrals.

4.2. Averaged potential for simple systems with integrable inputs. The
textbook [22] presents the classic result that “the average of a Hamiltonian system
forced by a bounded high frequency perturbation can be computed by averaging its
Hamiltonian.” For the case of high magnitude high frequency forces, the various
insightful works by Baillieul [3, 4, 6] introduce the notion of averaged potential 2 as a
means to characterize the average behavior.

In this section we assume that the original forced system is “simple,” i.e, no non-
holonomic constraints are present, and we answer the questions “when is the averaged
system again simple?” and “what assumptions lead to the definition of an averaged
potential?” Incidentally, the answer to these questions involves the relationships be-
tween various definitions of symmetric product that go back to the early treatment
by Crouch [20].

We quickly review some basic concepts in simple mechanical control systems and
refer to the textbooks [21, 35] for a more detailed presentation. In a mechanical
system without constraints, the total energy is defined as sum of potential V (q) and
kinetic 1

2 〈〈q̇ , q̇〉〉 = 1
2 q̇

TM(q)q̇, where we denote with both 〈〈· , ·〉〉 and M the metric
associated with the kinetic energy. The tensor R is weakly dissipative if 〈〈q̇ , Rq̇〉〉 ≤ 0;
it is strictly quadratically dissipative if there exists a positive constant β such that

〈〈q̇ , Rq̇〉〉 ≤ −β〈〈q̇ , q̇〉〉. (4.9)

If integrable forces are present, they are written as Ya(q) = gradϕa(q) for a =

2More precisely, in Baillieul’s work the inputs are assumed to be high frequency bounded mag-
nitude velocities. It is therefore very similar to our setting with high magnitude high frequency
accelerations.
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1, . . . ,m, where a gradient vector field reads in coordinates:

(gradϕa)
i =M ij ∂ϕa

∂qj
.

According to the treatment in [38, Chapter 12], the controlled Hamiltonian is

H(q, p, u) = V (q) +
1

2
p′M(q)−1p−

m∑

a=1

ϕa(q)u
a, (4.10)

where the momentum p =M(q)q̇. The affine connection is the Levi-Civita connection
of the metric M . The Christoffel symbols are computed according to the usual

Γk
ij =

1

2
Mmk

(
∂Mmj

∂qi
+
∂Mmi

∂qj
− ∂Mij

∂qm

)
.

The equations of motion (4.6) take the specific form

D q̇

dt
= − gradV (q) +R(q)q̇ + gradϕa(q)u

a(t). (4.11)

Next we present a useful result on the symmetric product of gradient vector fields:
Lemma 4.2 (Symmetric products of functions). Let ϕ1, ϕ2 be two smooth scalar

functions. The symmetric product 〈gradϕ1 : gradϕ2〉 is again a gradient vector field.
Additionally, if one defines a symmetric product of functions according to

〈ϕi : ϕj〉 ,
∂ϕi

∂q
M−1 ∂ϕj

∂q
= 〈〈gradϕi , gradϕj〉〉, (4.12)

then

〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉 .
This result was originally proven by Crouch in [20], where this symmetric product of
functions was presented under the name of Beltrami bracket. It is interesting to note
how, in contrast to the treatment in [20], this symmetric operation is here relevant in
a Hamiltonian system context.

Finally, we are ready to apply Theorem 4.1 to the setting of simple systems.
Theorem 4.3. Consider the simple mechanical control system in equation (4.11)

with Hamiltonian in equation (4.10). Let ua(t) = va(t/ε)/ε and let the functions va

satisfy the condition in equation (4.3). It follows that the averaged system is a simple
mechanical system subject to no force and with Hamiltonian

Haveraged(q, p) = Vaveraged(q) +
1

2
p′M(q)−1p,

where the averaged potential is defined as

Vaveraged(q) , V (q) +

m∑

a,b=1

Λab 〈ϕa : ϕb〉 (q). (4.13)

Accordingly, the equations of motions for the averaged system are

D q̇

dt
= − grad (Vaveraged) +R(q)q̇.

The result follows directly from Lemma 4.2 and Theorem 4.1. Theorem 4.3 can be
used as follows. In order to stabilize a mechanical control system we design oscillatory
inputs that render Vaveraged positive definite about the desired equilibrium point. The
next section presents this idea in detail.
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5. Vibrational stabilization of mechanical systems. In this section we ap-
ply the averaging results to stabilization problems. We focus on simple mechanical
systems, consider the point stabilization problem via oscillatory inputs, and rely on
the averaged Hamiltonian as candidate control Lyapunov function; see [44].

We start by presenting the notion of vibrational stabilization according to the
treatments in [9, 10, 11]. Consider the control system

dx

dt
= f(x) + ga(x)u

a(t). (5.1)

A critical point x1 of f is said to be vibrationally stabilizable3 if for any δ > 0 there
exist almost-periodic zero-average inputs ua(t) such that the system in equation (5.1)
has an asymptotically stable almost periodic solution x∗(t) characterized by

‖x∗ − x1‖ ≤ δ, x∗ = lim
T→∞

1

T

∫ T

0

x∗(s)ds.

Remark 5.1. We refer to [9, 10, 11] for the vibrational stabilization theory
for systems controlled by vector additive, linear and nonlinear multiplicative forcing.
Adopting these definitions, the vibrational stabilization problem we consider corre-
sponds to a nonlinear multiplicative setting; see [11]. In that paper, the ith component
of the vibrational forcing depends only on the ith state variable. This requirement is
removed here and the structure of the nonlinearities we consider is more general.

5.1. Stabilization in systems with integrable inputs. Once more, consider
the control system in equation (4.11):

D q̇

dt
= − gradV (q) +R(q)q̇ + gradϕa(q)u

a(t). (5.2)

We present a notion of vibrational stabilization tailored to mechanical systems. A
configuration q1 is said to be vibrationally stabilizable if for any δ > 0 there exist
almost-periodic zero-average inputs ua(t) such that the system in equation (5.2) has
an asymptotically stable almost periodic solution q∗(t) characterized by

‖q∗ − q1‖ ≤ δ, q∗ = lim
T→∞

1

T

∫ T

0

q∗(s)ds. (5.3)

This definition is weaker than the general one above since no requirement is imposed
on the behavior of the velocity variables q̇.

Next, we design vibrationally stabilizing control laws. The following useful lemma
focuses on “inverting” the definition of Λ = Λ(v1, . . . , vm) in equation (4.4).

Lemma 5.2 (Design of vibrations). Let t ∈ [0, T ] and define a vector-valued
function of time v(t) = [v1(t), . . . , vm(t)]′ that satisfies equations (4.2) and (4.3). Any
matrix Λ computed according to equation (4.4) is symmetric and positive semidefinite.
Vice versa, given any symmetric positive semidefinite matrix Λ, there exists a vector-
valued function of time v that satisfies equations (4.2), (4.3), and (4.4).

Proof. Obviously Λ is symmetric, and for any vector x ∈ Rm, one has

x′Λx =

∫ T

0

(∫ s1

0

(
x′v(s2)

)
ds2

)2
ds1 ≥ 0.

3Baillieul and Lehman [6] assume both the inputs and the asymptotically stable solution x∗ to
be T -periodic.
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Given any symmetric positive semidefinite Λ, we design inputs that satisfy equa-
tions (4.2), (4.3) and (4.4). First, we introduce the T -periodic base functions

ψi(t) =
4πi

T
cos

(
2π i

T
t

)
, i ∈ N.

Any linear combination of the {ψi} satisfies equations (4.2), (4.3) and

1

2T

∫ T

0

(∫ s1

0

ψi(s2)ds2

)(∫ s1

0

ψj(s2)ds2

)
ds1 = δij ,

where δij is the Kronecker delta. Next, we diagonalize Λ via an orthogonal similarity
transformation W . Assuming the rank of Λ is p ≤ m, we have

Λ =W diag([λ1, . . . , λp, 0, . . . , 0])W
′ =

p∑

i=1

(
√
λiWei)(

√
λiWei)

′,

where diag([λ1, . . . , λp, 0, . . . , 0]) is the diagonal matrix with non-vanishing elements
{λ1, . . . , λp}, and where {ei, . . . , en} is the usual basis for Rn. Since the vectors
(
√
λiWei) are uniquely determined by Λ, we define

w(t,Λ) =

p∑

i=1

(
√
λiWei) ψi(t). (5.4)

By construction, v(t) = w(t,Λ) satisfies equations (4.2), (4.3) and (4.4).

Introduce the control gains k1 ∈ Rm, K2,K3 ∈ Rm×m, subject to K2 = K ′
2 ≥ 0

and K3 = K ′
3 ≥ 0. To simplify notation, let ϕ = [ϕ1, . . . , ϕm] and let the m × m

matrix 〈ϕ : ϕ〉 (q) have (a, b) component 〈ϕa : ϕb〉 (q). Let the control input be the
sum of open (feedforward) and closed loop (feedback) terms

u(t, ε) = −k1 −K2ϕ+ (1/ε)w(t/ε,K3), (5.5)

where w is defined in equation (5.4). According to Theorem 4.3 and to the lemma
above, the averaged controlled system is Hamiltonian with potential energy given by

Vcontrol(q) = V (q) + k′1ϕ(q) +
1

2
ϕ(q)′K2ϕ(q) + Trace

(
K3 〈ϕ : ϕ〉

)
, (5.6)

where the Trace operation is equivalent to the summation in equation (4.13). It is
useful to note that Vcontrol depends linearly on the control gains k1,K2,K3.

Existence and stability of equilibrium points are analyzed according to the classic
potential energy criterion. The configuration q1 is an equilibrium point if it is a critical
point for the averaged controlled potential energy Vcontrol; it is locally/globally stable
if Vcontrol has a local/global minimum at q1. Of course, the point is stable only in the
average approximation. We make this point precise in the following theorem.

Theorem 5.3 (Vibrational stabilization of configurations). Consider the control
system in equation (5.2), assume the tensor R is strictly quadratically dissipative. Let
q1 ∈ Rn and consider the following set of linear matrix equality and inequalities in
the free variables k1,K2,K3:

K2 = K ′
2 ≥ 0, K3 = K ′

3 ≥ 0

∂Vcontrol
∂q

(q1) = 0,
∂2Vcontrol
∂q2

(q1) > 0.
(5.7)
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If the convex problem (5.7) is feasible, the configuration q1 is vibrationally stabiliz-
able and there exists an ε0 > 0 such that stabilizing controls are computed according
to equation (5.5), with 0 < ε ≤ ε0 and with k1,K2,K3 solutions to the system of
equations (5.7).

Proof. As first step, we prove that (q1, 0) is a locally exponentially stable point
for the averaged controlled system. We follow a well-known procedure, see [47], and
rely on Theorem 4.3 and Lemma 5.2. At q = q1, the function Vcontrol in equa-
tion (5.6) and its gradient vanish, while its Hessian is positive definite. The total
energy Hcontrol(q, q̇) , Vcontrol(q) +

1
2 q̇

′Mq̇ is therefore positive definite about (q1, 0).
Because R is strictly quadratically dissipative, there exists a β > 0 such that along
the solutions of the averaged controlled system

Ḣcontrol = −β〈〈q̇ , q̇〉〉.

The function Hcontrol is a Lyapunov function for the averaged controlled system and
(q1, 0) is a stable equilibrium point. Asymptotic stability follows from an application
of LaSalle’s lemma; exponential stability follows from a linearization argument.

As second step, we prove that the controlled system has a unique periodic expo-
nentially stable solution q(t) in a neighborhood of q1. We follow a well-know proce-
dure, see [10], and rely on Theorem 4.1. Since the averaged system has an exponen-
tially stable point, the curve z(t) is a solution to a differential equation which possess
a unique periodic orbit, say z?(t) which is exponentially stable and belongs to an O(ε)
neighborhood of (q1, 0). The same statement can be made for the first component
of z(t), that is, the curve q(t). We call this perioc orbit q?(t), and its average q?, as
defined in equation (5.3). Since q?(t) lives in a O(ε) neighborhood of q1, so does q?.
Therefore there must exist ε0 such that ‖q∗ − q1‖ ≤ δ, for any δ > 0.

The stability result relies on the open-loop system having full rank dissipation,
i.e., the tensor R is required to be strictly quadratically dissipative. This requirement
can be weakened by augmenting the control input with a “derivative action” (a term
negatively proportional to the velocity). Asymptotic stability is then guaranteed
under a linear controllability like condition; see [47, 15].

The location of the poles of the linearized model about q1 affects the behavior of
the controlled system. Given that a large oscillatory signal is superimposed, better
performance is achieved when these poles are far to the left of the imaginary axis.
This and related performance requirements can be addressed within the linear matrix
equality and inequality formulation; see the surveys in [48, 14].

5.2. Vibrational stabilization of an underactuated two-link manipula-

tor. We present a simple example of vibrational stabilization. We consider a planar
two-link manipulator as depicted in Figure 5.1: no potential energy is present. We
assume the manipulator is subject to damping forces at both angles.

The configuration of the system is described by the pair (θ1, θ2), where θ1 is
the angle between the first link and the horizontal axis, and θ2 is the relative angle
between the two links. Both angles are measured counterclockwise. The links’ physical
parameters are: length `, mass m and moment of inertia I. We let `1 = 3, `2 = 4 and
m1 = I1 = `21 and m2 = I2 = `22. A known procedure provides the inertia matrix:

M(q) =

[
1013
4 + 192 cos(θ2) 16(5 + 6 cos(θ2))
16(5 + 6 cos(θ2)) 80

]
.

We assume the system is subject to the damping force (−.2θ̇1,−.2θ̇2), and to a single
control input, i.e., a torque τ applied at the first joint. Accordingly, the force can
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Fig. 5.1. Two-link manipulator: θ1 and θ2 are measured counterclockwise. In the right figure,
the gray line is θ1, the black line is θ2. Despite the superimposed oscillatory behavior the variables
(θ1, θ2) converge to the global minimum of the averaged controlled potential energy.

be described by the function ϕ(q) = θ1. The symmetric product is easily computed
according to Lemma 4.2:

〈ϕ : ϕ〉 (q) = 20

2313− 1152 cos(2θ2)
.

We adopt the control law in equation (5.5) and compute the averaged controlled
potential according to equation (5.6):

Vcontrol(q) = k1θ1 +
1

2
k2θ

2
1 + k3

20

2313− 1152 cos(2θ2)
.

At k1 = 0 and for any positive k2 and k3, the function Vcontrol has two global minima
at (θ1, θ2) = (0,±π/2).

We run the simulation as follows. We design the control law parameters as ε = .5,
T = 1 , k2 = 15, and k3 = 150. At initial time, the manipulator is at rest with angles
(θ1(0), θ2(0)) = (0, π/16). This initial condition is in the domain of attraction of
the minimum (θ1, θ2) = (0, π/2). The differential equation solver NDSolve within
Mathematica generated the simulation results reported in Figure 5.1.

We conclude the example with a final remark. The stabilization result is not
surprising and it intuitively agrees with the classic example in [6], where the controlled
variable is the speed of the joint connected to the second link, and where the joint
itself is constrained to move vertically.

6. Conclusions. This paper provides a systematic study of high magnitude high
frequency averaging for mechanical systems. The averaging extends the results of ear-
lier works in two directions. First, the analysis applies to the multi-input setting where
controls are not necessarily applied to cyclic variables. Instead, forces are described
as generic one-forms. Additionally, our analysis applies to the case of mechanical sys-
tems with nonholonomic constraints. From a control design viewpoint, the improved
analysis leads to sufficient tests for an appropriate notion of vibrational stabilization.

At the heart of the proposed approach is a detailed analysis of the Lie algebraic
structure of mechanical systems (with or without constraints, with or without non-
integrable forces). It is this structure that enables closed form expressions for the
averaging analysis. Furthermore, it is this same structure that underlies the control-
lability analysis in [32]. Our analysis provides a missing link between the notions of
averaged potential [3] and symmetric product [32].
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Numerous extensions appear promising. First, one could pursue generalizations
to high order averaging and applications in the field of robotic motion planning;
see [17, 16]. Second, the setting of distributed parameter systems with Lagrangian
structure might provide a number of interesting applications and further theoretical
challenges. Finally, the tools developed here might be shed new light on the problem of
existence and stability of limit cycles in the study of animal and robotics locomotion.
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Appendix A. The variations of constants formula in geometric terms.

Lemma A.1. Let f, g be smooth time-varying vector fields on Rn. Let x0 ∈ Rn,
and let T ∈ Rn be small enough so that the flow map Φg

0,T is a local diffeomorphism
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in a neighborhood of x0. The final value x(T ) = Φf+g
0,T (x0) can be written as

x(T ) = Φg
0,T (z(T )), (A.1)

ż(t) =
((

Φg
0,t

)∗
f
)
(z), z(0) = x0. (A.2)

Additionally, we have the formal equality

((
Φg
0,t

)∗
f
)
(t, x) = f(x)

+
∞∑

k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk,x) . . . adg(s1,x) f(x)

)
dsk . . . ds1. (A.3)

Proof. Let x(T ) = Φf+g
0,T (x0) and let y(T ) = Φg

0,T (z(T )), where z(t) is computed
via equation (A.2). We compute

ż =
(
(Φg
0,t)

∗f
)
(z) =

(
Tz

(
Φg
0,t

)−1 ◦ f ◦ Φg
0,t

)
(z)

=
(
TzΦ

g
0,t

)−1 ◦ f(y(t), t),

so that

ẏ(t) =
d

dt

(
Φg
0,t(z(t))

)
= g

(
Φg
0,t(z(t)), t

)
+
(
TzΦ

g
0,t(z(t))

)
ż

= g (y(t), t) +
(
TzΦ

g
0,t(z(t))

)
ż = g (y(t), t) + f(y(t), t).

Therefore, y(t) obeys the same differential equation as x(t). Since it is also clear that
x(0) = y(0), the curves x and y must be equal.

Next, we investigate the pull-back of f along the flow of g. We assume f to be
time-invariant and g time-varying. The following statement is proved in [1, Theo-
rem 4.2.31] and in [2, equation 3.3]:

d

dt

((
Φg
0,t

)∗
f
)
(t, x) =

(
Φg
0,t

)∗
[g(t, x), f(x)],

where the Lie bracket between g and f is computed at t fixed. At fixed x ∈ Rn, we
integrate the previous equation from time 0 to t to obtain

((
Φg
0,t

)∗
f
)
(t, x) = f(x) +

∫ t

0

(Φg
0,s)

∗[g(s, x), f(x)]ds.

The formal expansion in equation (A.3) follows from iteratively applying the previous
equality.


