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Miloš Žefran
Electrical, Computer, and

Systems Engineering
Rensselaer Polytechnic Inst.

Troy, NY 12180

Francesco Bullo
General Engineering and
Coordinated Science Lab.

University of Illinois
Urbana, IL 61801

Jim Radford
Mechanical Engineering

Mail Stop 104-44
Caltech

Pasadena, CA 91125

Abstract

We analyze a class of mechanisms that locomote by
switching between constraints. Because of the hybrid
nature of such systems, most of the existing analysis
tools, developed primarily for smooth systems, can not
be directly applied. Our aim is to exploit the special
structure provided by Lagrangian mechanics to study
the controllability of this class of mechanisms. We base
the analysis on a series representation of the evolu-
tion of the system. Our main result is a description
of trajectories involving switches between constraints
at nonzero velocity (impacts) in the presence of large
inertial forces (drift). The analysis provides a basis
for local motion planning. The results are applied to
an example of a two-link planar mechanism that can
locomote by clamping one of the links.

Keywords: mechanical control systems, hybrid sys-
tems, controllability, series expansions

1 Introduction

Locomotion devices belong to the class of mechanical
control systems (Lagrangian systems) and have a spe-
cial structure that can be fruitfully exploited for con-
trol. Advances in the control of Lagrangian systems
have led to several important results when the mechan-
ics of locomotion is smooth [1, 2, 3]. On the other hand,
several locomotion modalities, including legged loco-
motion involve impacts and switches in the dynamic
behavior and are therefore inherently non-smooth.

The focus of this paper is on the reachability analysis
of non-smooth locomotion devices. Such analysis is in-
strumental for design of motion planning and control
algorithms. We limit our study to a class of systems
that can locomote by switching between constraints.
An example is a planar linkage sliding on a friction-
less surface that can arbitrarily clamp a subset of its
links to the surface. While the systems considered in
this paper are simpler than legged devices, we hope
that such structured examples can provide insight into
more general problems.

The underlying mathematical framework of this pa-
per is Riemannian geometry as it applies to mechan-
ical control systems [4]. Modeling and controllability

results for smooth mechanical systems are discussed
in [5]. Of special importance in the controllability
analysis are series describing the evolution of the sys-
tem [6, 7]. Such series are also a basis of several motion
planning algorithms [8, 9, 10].

Non-smooth locomotion systems belong to the class
of hybrid systems. While a number of approaches to
modeling and control of hybrid systems exist [11, 12],
these works are in general not applicable to locomotion.
Some exceptions are [13] which provides a quasi-static
controllability analysis of locomotion devices, and [14]
where a method for stabilizing systems with changing
dynamics is described.

The paper is organized as follows. We start with a
review of Lagrangian dynamics in the Riemannian set-
ting. Then we formally define hybrid mechanical con-
trol systems. In the following section we describe a
series for the evolution of a control system. We spe-
cialize the series to mechanical systems and show how
a sufficient condition for controllability of hybrid me-
chanical control systems can be obtained. Finally, we
apply the results to a simple two-link device and show
that it can locomote by clamping one of the links.

2 Mechanical control systems

Let Q be the configuration manifold of the system with
coordinates q = (q1, . . . , qn). At every q ∈ Q, the ki-
netic energy of the system defines a Riemannian metric,
Mq. Hamilton’s principle states that unforced motions
of the system correspond to geodesics with respect to
the metric M1 and are thus given by the geodesic equa-
tion:

∇q̇ q̇ = 0 (1)

where ∇ is the Levi-Civita connection corresponding
to M [15]. In coordinates (we use the summation con-
vention throughout the paper), an affine connection is
given by:

∇XY =

(
∂Y i

∂qj
Xj + Γi

jkXjY k

)
∂

∂qi
(2)

1The controllability analysis is simpler if the potential forces

are present so we will neglect them in this work.



where the coefficients Γi
jk are known as Christoffel sym-

bols.

When an external force (a one-form) F acts on the
system, the dynamic equations take the form:

∇q̇ q̇ = Y (3)

where Y (q) = M−1
q F (q) is now a vector field. Written

in coordinates, these forced Euler-Lagrange equations
take the familiar form:

q̈ + M−1
q C(q, q̇) = M−1

q F (4)

where Mq is the inertia matrix and C(q, q̇) are the
Coriolis and centrifugal forces. Formally a mechanical
control system can be defined as a tuple (Q,M,F, U),
where Q is an n-dimensional configuration manifold,
M is a Riemannian metric on Q (the kinetic energy),
F = span{F 1, . . . , Fm} is the input co-distribution (in-
put forces), and U ⊂ IR

m is the set of inputs. Later in
the paper we will also need the notion of input distri-
bution, Y = span{M−1F i}.

2.1 Constraints

From the control point of view, constraints on a me-
chanical system limit the set of directions in which the
system can move. Therefore, an intrinsic description of
a constraint is a distribution on Q, describing at each
point the set of feasible velocities. Such description ap-
plies both to holonomic and nonholonomic constraints.

A mechanical control system together with a con-
strained distribution will be called a constrained me-
chanical control system, Σ = (Q,M,F,D, U). It was
shown in [16] that the dynamic equations for such a
system can be also written using an affine connection:

∇̃q̇ q̇ = ukPD(Y k), (5)

where PD : TQ → TQ is the orthogonal projection to
D (with respect to the metric M) and ∇̃ is given by

∇̃XY = ∇XY + (∇X(I − P )) (Y ), ∀X,Y.

Since equation (5) is formally identical to equation (3),
such description provides a unified treatment of both
constrained and unconstrained mechanical control sys-
tems, see [16].

2.2 Hybrid mechanical control systems

A hybrid mechanical control system consists of a me-
chanical control system (Q,M,F, U) together with
a given set of constraint distributions Di, where i
belongs to an index set I. Each constraint Di

yields a constrained mechanical control system Σi =
(Q,M,F, U,Di), with associated affine connection ∇i

and input distribution Yi = span{PDi
M−1F}. For-

mally, the hybrid mechanical control system is there-
fore a tuple (I,Q,M,F, U, {Di}i∈I). Slightly more gen-
eral definition can be found in [17].

The evolution of a hybrid mechanical control system
can be described as follows. The system starts in a
state ((q, q̇), i) ∈ TQ × I and it evolves according to
the dynamics given by ∇i and the chosen set of con-
trols. At any point, we can choose to switch to any
other discrete state. Whenever the system switches
between two discrete states i and j (constraint distri-
butions Di and Dj) it undergoes impact. The velocity
after the impact is the orthogonal projection onto Dj

of the velocity before the impact:

q̇(t+) = PDj
q̇(t−) (6)

3 Series for evolution of a control system

In this section we give an overview of two series de-
scribing the evolution of a control system. The main
references are [6] and [18]. Note that these results are
not limited to mechanical control systems.

Consider a control system evolving on a manifold M :

ẋ(t) = f0(x) +
m∑

i=1

uifi(x) (7)

where fi are vector fields on M and u = (u1, . . . , um) is
an integrable function u : [0, T ] → IR

m. Let x(t, u;x0)
be a solution of (7) for the initial condition x(0) = x0.
Our purpose is to characterize x(t, u;x0). For what
follows, it is important to remember that a vector field
represents a differentiable operator on the set of smooth
functions C∞(M) of M to IR. For a multi-index I =
(i1, . . . , ir), where 0 ≤ ij ≤ m, we can therefore define
an operator fI = fi1 ◦ fi2 ◦ · · · ◦ fir

(for simplicity we
will omit the symbol ◦ in the rest of the paper). For a
multi-index I we can also define:

∫ t

0

uI =

∫ t

0

uir
(tr)

∫ tr

0

· · ·

∫ t2

0

ui1(t1)dt1dt2 · · · dtr

Now consider a formal series:

Serf (T, u) =
∑

I

(∫ T

0

uI

)
fI , (8)

where the summation is over all possible multi-indices
I (including the zero-length index e with fe = Id).
This formal series is known as Chen-Fliess series. It
was shown in [7] that if the vector fields fi are analytic
and Serf (T, u) is applied to an analytic function Φ ∈
C∞(M), then there exists T > 0 such that for every
t < T :

Serf(t, u)Φ|x0
= Φ(x(t, u;x0)) (9)

The problem with the Chen-Fliess series is that it is
difficult to identify operators of a certain order that
get applied to Φ. In analogy with the Taylor series, we
would like to be able to say what is the term in the



series of order 0, 1, and so on. The problem becomes
apparent if we consider second-order operators fi1fi2

and fi2fi1 : their linear combination fi1fi2 − fi2fi1 =
[fi1 , fi2 ] is a first-order operator.

In [6] a series is described that avoids this problem.
Define the operator exponential:

exp(f) =
∞∑

i=0

f i

i!
(10)

and let [fI ]
def
=
[
fi1 ,

[
fi2 , · · · ,

[
fir−1

, fir

]
· · ·
]]

. Let |I|
denote the length of the multi-index I. Then it can be
shown that:

Serf (T, u) = exp (Zf (T, u)) (11)

where

Zf (T, u) =
∞∑

n=1

∑

Ii 6=e

CI1···In
[fI1···In

] (12)

and the coefficient CI1···In
is given by:

CI1···In
=

(−1)n

n (|I1| + · · · + |In|)
(

∫ T

0

uI1) · · · (

∫ T

0

uIn
).

Since there is exactly one operator of every order in
the exponential series (10) and since all the terms in
the series (12) are first-order, the series (11) clearly
has the property we were looking for. This series plays
an important role in the controllability analysis, as was
shown in [7].

3.1 Evolution of a mechanical control system

In this section we examine the brackets that appear
in Zf (T, u) for a mechanical control system. To this
end, we will exploit the structure of the equations (5).
To use the series (11) we have to rewrite the second-
order equations (5) in the configuration variables q as
a system of first-order equations in the variables q ∈ Q

and v ∈ TqQ. At a point (q, v) ∈ TTQ, we define two
operations Vv,Hv : TqQ → T(q,v)TQ as follows:

Vv

(
Xi ∂

∂qi

)
= Xi ∂

∂vi
(13)

Hv

(
Xi ∂

∂qi

)
= Xi

(
∂

∂qi
−

1

2
(Γk

ij + Γk
ji)v

j ∂

∂vk

)

Although they are written in coordinates, it can be
shown that the definitions are intrinsic in the sense
that they only depend on the affine connection, not
the choice of coordinates.

To study the evolution of the system in the configu-
ration variables, we will also make use of the natu-
ral projection τQ : TQ → Q, which is in coordinates
τQ((q, v)) = q. By taking the tangent map TτQ, we
can then project vectors from T(q,v)TQ to TqQ. It is

not difficult to see that the operators Hv(v) and Vv(Yi)
satisfy:

TτQ Hv(Y ) = Y,

T τQ Vv(Y ) = 0.

Using these definitions we rewrite the equations of mo-
tion

∇vv = uiYi

into the form:

d

dt

[
q
v

]
= Hv(v) + ui Vv(Yi) . (14)

For the latter control system we compute the Lie brack-
ets of order up to three. By direct computation we
can verify that in the “configuration component” the
only non-vanishing terms for the second and third order
brackets are:

TτQ [Hv(v) ,Vv(Y )] = −Y,

T τQ[Vv(Yi) , [Hv(v) ,Vv(Yj)]] = 0, (15)

TτQ[Hv(v) , [Hv(v) ,Vv(Yi)]] = −2∇vYi.

4 Equilibrium controllability

In the case of mechanical control systems two control-
lability questions can be asked: (a) what points in the
phase space (i.e., configuration and velocity) can be
reached; and (b) what configurations can be reached.
The first question can be addressed using standard non-
linear controllability methods. We will show that in the
case of hybrid mechanical control systems, the second
question is particularly interesting. For smooth sys-
tems, the question was posed and answered in [5] and
we briefly review this work here.

Consider a system described by (5). Let q0 be a point
in Q and let W be a neighborhood of q0. The reachable
set of q0 within W is

RW
Q (q0,≤ T ) = ∪τ≤T {x ∈ Q | ∃ a solution q(t) to

(5) s.t. q̇(0) = 0, q(t) ∈ W for t ∈ [0, τ ], q(τ) = x}.

Note that the definition of RW
Q (q0,≤ T ) only involves

the configurations, not the velocities. This set is there-
fore different from a reachable set for the system (14)
(which is a subset of TQ, not Q). The system (5) is
locally configuration controllable at q0 if there exists
a time T such that RW

Q (q0,≤ T ) contains a neigh-
borhood of q0 for any neighborhood W of q0, and
equilibrium controllable on W ⊂ Q, if for any two
equilibrium points q1, q2 ∈ W , there exists an input
{uk(t), t ∈ [0, T ]} and a solution {q(t), t ∈ [0, T ]} such
that q(0) = q1, q(T ) = q2, q(t) ∈ W for all t ∈ [0, T ],
and q̇(0) = 0, q̇(T ) = 0.



To characterize the configuration controllability, we in-
troduce the following operations. As in [5], we define
the symmetric product of two vector fields as:

〈X : Y 〉 = ∇XY + ∇Y X.

Let X = {X1, . . . , Xm} be a family of vector fields.
We define Lie(X) to be the closure of X under the Lie
bracket operation (the involutive closure), and we let
Sym(X) be the closure of X under the symmetric prod-
uct operation. Within the set Sym(X), we define the
order of a symmetric product to be the number of vec-
tor fields Xj present in it. We say that a symmetric
product is bad if it contains an even number of each
Xi. Otherwise the product is said to be good. The
controllability tests are then:

Theorem 4.1 ([5]) The system is configuration con-
trollable at q0 if:

(i) the rank of Lie(Sym(Y)) is full;

(ii) at q0, every bad symmetric product is a linear com-
bination of lower order good symmetric products.

If these conditions are verified at every q ∈ W , then
the system is equilibrium controllable on W .

4.1 Hybrid mechanical control systems

In [17] we studied configuration and equilibrium con-
trollability for hybrid mechanical control systems.
Since the analysis above requires computation of the
brackets at zero velocity, we had to restrict our anal-
ysis to the case when the switches between different
regimes occur at zero velocity. We showed:

Proposition 4.2 ([17]) A hybrid mechanical control
system is equilibrium controllable on an open set W if
the following two conditions hold:

(i) in each discrete state i, every bad symmetric prod-
uct is a linear combination of lower order good
symmetric products

(ii) the rank of Lie(
∑

i∈I Symi(Yi))(q) is full for all
q ∈ W .

Restricting a hybrid mechanical control system to
switches at zero velocity seems overly restrictive. In
the rest of the section we therefore generalize the above
result to switches at nonzero velocity. The key observa-
tion is that if in some regime i the system can generate
a nonzero velocity at q0 (by making a small loop in
the configuration space), then we can use this nonzero
velocity to exploit directions generated by the brack-
ets that would otherwise vanish. These directions are
given precisely by the terms in equation (15).

The details of the computations are not as important
as the fact that these additional terms can give us di-
rections that can not be generated by starting at zero
velocity and that curvature plays a role in computing
these directions. Note that the above terms must be
evaluated only for those values of v that can be gener-
ated by making small loops from q0. These directions
are characterized by Sym(Y), see [5].

By using brackets of higher order, we can generate more
and more terms, but to simplify the presentation, we
will not consider these here. For simplicity we will also
assume that the system only has two regimes. Assume
therefore a mechanical control system (Q,M,F, U) and
a constrained distribution D, forming a hybrid mechan-
ical control system Σ = ({1, 2}, Q,M,F, U, {TQ,D})
(the system can switch between free motion and mo-
tion in directions D).

Proposition 4.3 The system Σ is equilibrium control-
lable on some neighborhood W of q0 if the following
conditions hold:

(i) For k = 1, 2, Sym({Y 1
i })∪Sym({Y 2

i })∪D⊥ = TQ,
where Y 1

i = Yi and Y 2
i = PDY 1

i .

(ii) For k = 1, 2, the bad symmetric products〈
Y k

i : Y k
i

〉
are spanned by the vector fields Y k

i .

(iii) For every q ∈ W :

TQ = span
{

D ∪ {Y k
i , [Y k

i , Y l
j ]}

∪{∇vY k
i ,∇2Y k

i (v, v) + R(v, Y k
i )v}v∈Sym({Y l

i
})

}

where k and l must be different regimes.

Proof: Condition (ii) corresponds to condition (i) in
Proposition 4.2, while condition (iii) is similar to condi-
tion (ii) there, with added terms that can be generated
by switches at nonzero velocity. These terms are eval-
uated on the set of velocities that can be generated in
regime 2. Also, in the brackets from which these terms
arise, each vector field Y 1

i only appears once, so the
sign of the term CI in the series (12) can be changed
by using −u instead of u.

Conditions (ii) and (iii) imply only local configuration
controllability, which means that we would not neces-
sarily be able to stop after we moved to the desired con-
figuration. However, if condition (i) holds, we can bring
the velocity to zero at the final position by performing
loops there. First, we bring to 0 those directions that
are in Sym({Y 1

i }), then we switch to regime 2 and thus
annihilate the directions in D⊥ through impact, and we
finally perform a loop in regime 2 that brings to zero
the velocity in directions Sym({Y 2

i }).
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Figure 1: Sliding and clamping mechanism with two links.

One of the links can be clamped to the floor so

that it is completely immobilized.

5 Example: Sliding and clamping mechanism

In this section we apply our analysis to a two-link
mechanism sliding without friction on a plane. The
mechanism consists of two homogeneous bars of unit
density and lengths (l1, l2), connected by an actuated
rotational joint (Figure 1). In the figure, CM denotes
the center of mass of the two body system. The coordi-
nates of the center of mass of the link j are (xj , yj , θj),
while (xCM, yCM) are the coordinates of CM. One of the
links can be instantaneously clamped to the ground
(anywhere on the plane) so that it gets completely im-
mobilized. When the link is clamped, the number of
degrees of freedom of the system decreases from 4 to 1.
The clamping constraint is described by the function
ϕ1(q) = (x1, y1, θ1).

The configuration manifold of the two body system is
Q = SE(2) × S1. We will describe the configuration
with the coordinates q = (xCM, yCM, θ, φ), where θ = θ1

and φ = θ2 − θ1.

When the first link is clamped, the system is con-
fined to the submanifold R1(q0) = {q ∈ Q | ϕ1(q) =
(x0, y0, θ0)}. This holonomic constraint induces the
constraint distribution:

D2(q) = span

{
−2l22 sin(φ + θ)

∂

∂xCM

+2l22 cos(φ + θ)
∂

∂yCM

+ 4(l1 + l2)
∂

∂φ

}

If we set D1(q) = TqQ, we thus have a hybrid mechan-
ical control system Σ = ({1, 2}, Q,M,F, U, {D1,D2}).
The input vector field is:

Y0 = l22
(
l2(5l1 + 2l2) + 3l21 cos(φ)

) ∂

∂θ

−
(
2l41 + 5l31l2 + 5l1l

3
2 + 2l42 + 6l21l

2
2 cos(φ)

) ∂

∂φ

The input vector field on the constrained regime is
obtained by projecting Y0 onto the constraint dis-
tribution. Since the constrained distribution is one-

dimensional, the constrained input spans exactly the
same direction as the constrained distribution.

We now have all the necessary tools to check for equi-
librium controllability. Notice that in the regime 2 the
system is fully controllable, Sym({Y 2

i }) = D, so the
condition (i) is trivially satisfied. We can also show
that 〈Y0 : Y0〉 = ζY0 for some scalar function ζ, so that
condition (ii) is satisfied. Finally, we can check that

rank {Y0, Y1, [Y0, Y1],

T τQ[Hv(v) , [Hv(v) , [Hv(v) ,Vv(Y0)]]]} (q) = 4

in a neighborhood of the point (xCM, yCM, θ, φ) =
(0, 0, 0, 0). Therefore, the hybrid mechanical control
system Σ is equilibrium controllable.

It turns out that we could replace the last vec-
tor with the bracket [Y0, [Y1, Y0]] and still span
the whole space. This means that the system
is equilibrium controllable even if we only allow
switches at zero velocity, as was shown in [17].
However, this bracket is really [Y0, [Y1, Y0]] =
TτQ[[Hv(v) ,Vv(Y0)], [[Hv(v) ,Vv(Y1)], [Hv(v) ,Vv(Y0)]]],
which is of higher order than the bracket generated
by the switches at nonzero velocity. Therefore, even if
switching at nonzero velocity does not contribute any
new controllable directions, it allows us to move in
certain directions much more efficiently.

Figure 2 shows a motion in the ∂
∂xCM

and ∂
∂yCM

direc-
tions generated by switching at nonzero velocity. The
mechanism is initially clamped. It then swings the un-
clamped link to build the velocity, after which it re-
leases the constraint and starts drifting. At the end, a
maneuver is performed that stops the mechanism.

6 Conclusions

We investigated a class of mechanisms that can lo-
comote by switching between constraints. The non-
smooth nature of such systems due to changes in the
dynamic equations and impacts prevents the applica-
tion of conventional tools for motion planning and con-
trol. However, we showed that the evolution of such
systems can be studied using an operator series. By ex-
ploiting the special Lagrangian structure, we were able
to characterize the terms in this series and relate them
to the controllability of the system. In particular, we
characterized the terms when the system switches be-
tween constraints at nonzero velocity. We showed that
switches at nonzero velocity can provide new control-
lable directions. Furthermore, they can generate mo-
tions in certain directions more efficiently than gaits
provided by the zero velocity analysis. The two cru-
cial aspects of our analysis are that the systems we
study contain drift and that we study their evolution
at nonzero velocity.

This work opens several possible directions for future
work. Most importantly, we plan to develop motion



Figure 2: Motion generated by switch at nonzero velocity. The mechanism performs a maneuver at the beginning to build

the velocity, then drifts, and at the end performs a maneuver to stop.

planning methods based on methods developed for
smooth systems in [10, 9, 8]. Further, our characteri-
zation of the evolution of a mechanical control system
at nonzero velocity could be useful in the controllabil-
ity analysis for relative equilibria of underwater and
aerospace vehicles. Finally, the present analysis moti-
vates the investigation of optimal trajectories for the
class of systems described in this paper.
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