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Abstract

This paper describes a systematic procedure to exponentially stabilize relative equi-

libria of mechanical systems. We review the notion of relative equilibria and their

stability in a Riemannian geometry context. Potential shaping and damping control

are employed to obtain full exponential stabilization of the desired trajectory. Two

necessary conditions are that the effective potential be positive definite over a spec-

ified subspace and that the system be linearly controllable. Relevant applications to

underwater and aerospace vehicle control are described.
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1 Introduction

Control of underactuated mechanical systems is a challenging research area of increasing
interest. On the theoretical side, control problems for mechanical systems benefit from the
wealth of geometric mechanics tools available. On the other hand, strong motivation for
these problems comes from applications to autonomous vehicles design and control.

In this paper, we investigate stabilization techniques for the steady motions called relative
equilibria. This family of trajectories is of great interest in theory and applications as they
provide a rich family of motions with the simplifying property of having constant body-
fixed velocity. Relative equilibria for systems in three dimensional Euclidean space include
straight lines, circles, and generic helices.

A wide variety of control techniques have been employed to tackle the kind of stabi-
lization problems of interest in this work. Typically, gain scheduling approaches have been
widely employed in applications. These methods include works that rely on linear parameter
varying systems; see Wu et al. [44], or that explicitly focus on rigid bidy dynamics; see for
example Kaminer et al. [18]. Recently, attention has recently focused on the notion of dif-
ferential flatness for the purpose of trajectory generation and tracking; see [10, 31]. Related
results in this direction include work on flatness for mechanical systems; see [33, 38], and
on approximate linearization; see [2, 30].

Stabilization via backstepping and forwarding have encountered success in various non-
linear control fields, see [21, 39], and various applications to ship control are described in
the work of Fossen and co-workers [11, 12, 13]. The difficulty in applying these techniques
to underactuated mechanical systems is that these systems are typically not in strict feed-
back form and that the presence of un-stable zero dynamics renders the design of control
Lyapunov functions difficult; for various attempts to study this problem see [14, 15]. Nev-
ertheless, Pettersen and Nijmeijer [36, 37] have recently overcome these limitations for a
model of underactuated ship and provided a full state tracking controller.

A line of research that has been parallel to the efforts described so far is that on geo-
metric control for mechanical systems. Stabilization of underactuated Hamiltonian systems
was originally investigated by van der Schaft [42]; see [34] for a standard treatment. Re-
cently, the emphasis has been on models of vehicles, i.e., on the class of mechanical systems
with symmetries. Stability of underwater vehicles is studied in Leonard [24] where sym-
metry breaking potentials are employed to shape the energy of the closed loop system.
Jalnapurkar and Marsden [16] present a framework for the design of dissipative controllers
for underactuated mechanical systems. In these treatments the family of input forces is
assumed momentum preserving and stability in the reduced space is characterized via the
Energy-Momentum method. Finally, recent works have extended the kind of feedback trans-
formations that retain the mechanical structure of the system and extended the applicability
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Figure 1: Planar vehicle with two body-fixed forces {F 1, F 2} a distance h from the center
of mass CM.

of these geometric stabilization methods; see [4, 5].
Within the context of the geometric stabilization techniques, this work focuses on vehicles

with generic body forces, including both internal (e.g, momentum wheels and sliding masses)
and external ones (e.g., propellers). Typically, these systems move on trajectories that do
not belong to a constant momentum level set. A simple idealized example is a planar body,
depicted in Figure 1. This model is reminiscent of the V/STOL aircraft studied by Hauser
et al. [15], of the surface vessel studied by Pettersen and Nijmeijer [36], and of the underwater
submersible studied by Leonard and Woolsey [24, 26]. This particular systems is proven to
be differentially flat by Martin et al. [31] when no hydrodynamic forces are present. The
investigation by Rathinam and Murray [38] indicates how differential flatness might not be
applicable to the class of systems of interest here.

This paper focuses on the exponential stabilization problem (as opposed to Lyapunov or
asymptotic stabilization) on the full phase space (as opposed to stabilization on a reduced
space). As compared to [16, 24, 42], we investigate potential shaping and damping control
in this more general context and present a Riemannian geometry formulation that allows for
more general control forces. We require certain stability properties of the unforced system
and strengthen these stability properties via feedback.

The main contribution of this paper is the design of a Lyapunov function and of a
corresponding controller that stabilize all of the variable of interest, that is, all of the velocity
variables and the internal configuration variables. We refer to this notion as stabilization on
the full phase space, as opposed to stabilization for only the internal variables or stabilization
on a momentum surface. In other words, the stabilization result in this paper focuses on
full state tracking control instead of output tracking. The Lyapunov function is designed by
taking advantage of the constants of motion of the Lagrangian system and of some concepts
from geometric mechanics. The key observation is that the so-called effective Hamiltonian
is a positive definite function with respect not only to internal configurations, see [16], but
also to all of the velocity variables.

A second theme is the emphasis on exponential as opposed to asymptotic convergence.
We bring to bear the full power of dissipation-based stabilization techniques, and in partic-
ular we exploit the fact that a dissipative system has exponential convergence rates under
the assumption of linear controllability and the existence of a quadratic Lyapunov func-
tion. While this fact is known within the nonlinear stabilization literature, see for exam-
ple [17, 22, 39], it has not been fully exploited within the context of mechanical systems.
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We present a brief self-contained treatment of the needed results.
Finally, a third feature of our approach is that we employ a novel Riemannian geometry

formalism in describing relative equilibria and their stabilization. One important advantage
of this approach is that it is capable of dealing with general (but velocity independent)
control forces and this is a useful feature when dealing with models of vehicles such as that
in Figure 1; see the following section for a more precise statement. This approach leads
to a self contained treatment, all the way from the definition of relative equilibrium to
sufficient conditions for stability and stabilization. Lastly, a third motivation for employing
this description of Lagrangian systems is the recent increasing success of this approach as
testified by the contributions on modeling [3], stabilization [20], controllability [27, 28],
interpolation [35, 43] and dynamic feedback linearization [38].

The paper is organized as follows. We present a preliminary and summary description
of the content of this paper in the following Section 1.1. This section is written with the
intent of being largely accessible. In Section 2 we review some stabilization techniques
for nonlinear control systems based on Lyapunov functions. Section 3 introduces formally
the notion of mechanical system with symmetry and of relative equilibrium. Here we also
make the fundamental observation that the effective Hamiltonian is well suited to play the
role of positive definite Lyapunov function on the entire phase space. In Section 4 we
extend the notion of proportional derivative control to the current setting. This entails
an understanding of potential shaping and of dissipative forces (damping control) along
relative equilibria. Section 5 contains an underwater and an aerospace example of the
design procedure.

1.1 Preliminary example and summary of results

We briefly present the key steps of our design procedure by applying it to the planar vehicle
in Figure 1. More specifically, we attempt to design some feedback controls that stabilize a
trajectory consisting of a steady motion along a straight line, e.g., the x axis of an inertial
reference frame. This motion is called a relative equilibrium; we refer to Section 3 for a
precise definition.

Stability of an equilibrium point

We start by reviewing some classic results on stability of mechanical systems about a point.
Let q = [q1, . . . , qn]T be the configuration of the systems and let the Hamiltonian be

H(q, q̇) = V (q) +
1

2
q̇T M(q)q̇ =: V (q) +

1

2
‖q̇‖2

M . (1)

The equations of motion are

M(q)q̈ + C(q, q̇)q̇ = −
∂V

∂q
+ F, (2)

where C(q, q̇) is the Coriolis matrix and where the resultant force F = F (q, u) can be written
as linear combination of m independent control forces Fi:

F (q, u) =

m∑

i=1

Fi(q)ui. (3)
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Figure 2: Planar underwater ellipsoids with two body-fixed forces {F 1, F 2}. The body
inertia and the effect of the surrounding fluid are modeled via added masses mx and my,
with mx < my in the left system and mx > my in the right system.

As mentioned in the Introduction, the m input vectors Fi(q) are arbitrary functions of q,
but velocity independent. It is of interest to consider the situation where m is strictly less
than the degrees of freedom: such systems are called underactuated.

Recall that q0 is a stable equilibrium point if the first variation of V vanishes and if the
second variation is positive definite at q0, that is, if

∂V

∂q
(q0) = 0, and

∂2V

∂q∂q
(q0) > 0.

Steady translations of the planar vehicle

Next, we examine the planar vehicle in Figure 1 with the purpose of stabilizing not a point,
but a trajectory described by a straight line. Let q = [θ, x, y]T ∈ R

3 denote the position of
the vehicle. Assuming that gravity plays no role, the Hamiltonian is

H(q, q̇) =
1

2
q̇T



I 0 0
0 mx(cos θ)2 + my(sin θ)2 (mx − my) cos θ sin θ
0 (mx − my) cos θ sin θ my(cos θ)2 + mx(sin θ)2


 q̇, (4)

where q̇ = [θ̇, ẋ, ẏ]T is the velocity of the body and where I, mx, my are inertial parameters
that include the influence of the fluid surrounding the vehicle (e.g., they include the so-called
added masses); see [23]. Let vre ∈ R

3 denote the velocity of the desired steady motion; e.g.,
we set vre = [0, 1, 0]T to require the vehicle to move at unit speed along the x axis of a
reference frame.

The relative magnitude of the added masses along the x and y body fixed axis (i.e.,
mx versus my) plays an important role in stability analysis. As later computations will
show, motion along the body-fixed x axis enjoys certain stability properties if mx > my.
Accordingly, it is simpler to design stabilizing controllers for translations along the short
axis (system on the right of Figure 2) as opposed to the long axis (system on the left).

Notice that the Hamiltonian does not depend on the variable x, that is ∂H/∂x = 0. As
it is known in mechanics, this independence implies that the momentum in the direction vre

is a conserved quantity along the solution of the unforced equations of motion. The latter
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quantity is defined as

Jre(q, q̇) = q̇T M(q)vre

=
(
mx(cos θ)2 + my(sin θ)2

)
ẋ +

(
(mx − my) sin θ cos θ

)
ẏ.

Beside Hamiltonian and momentum, an additional (but not independent) conserved quantity
is computed via some algebraic manipulation (“summing the square”) as follows:

Hre(q, q̇) := H − Jre

=
1

2
‖q̇ − vre + vre‖

2
M − q̇T M(q)vre

= −
1

2
‖vre‖

2
M +

1

2
‖q̇ − vre‖

2
M .

We call Hre the effective Hamiltonian, and accordingly we define the effective potential as

Vre(q) = −
1

2
‖vre‖

2
M

= −
1

2

(
mx(cos θ)2 + my(sin θ)2

)
.

The concepts of effective Hamiltonian and potential lead to an elegant parallel between
the treatment on stability of an equilibrium point and stability of a steady motion. For
example, Hre has a “kinetic energy” component proportional to the velocity error (q̇ − vre),
as opposed to the usual kinetic energy being proportional to the velocity q̇. Additionally,
we will show the following results. The steady motion vre through the point q0 is a solution
to the equations of motion if the first variation of Vre vanishes at q0,

∂Vre

∂q
(q0) = 0,

and it is a stable motion if the second variation of Vre restricted to the subspace perpendicular
to vre is positive definite:

∂2Vre

∂q∂q
(q0) > 0, restricted to v⊥

re.

Notice how Vre(q) is independent from x and therefore its second variation cannot be positive
definite as a 2 form on R

3. In the planar body example, steady translation along the x axis
is a solution whenever sin 2θ = 0. However, this analysis1 tells us nothing about the stability
of this motion since Vre(q) is independent of y and hence its second variation is not positive
definite when restricted to v⊥

re.

Proportional derivative control for steady translations

A control technique that improves the stability properties of an equilibrium point is pro-
portional and derivative control. A proportional action FP is a control force proportional
to the first variation of a function f :

FP = −
∂f(q)

∂q
.

1The analysis in [25] would provide us with more information on the stability of the unforced system.
This is not of interest today as the use of feedback will be employed to obtain strong stability properties.
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Figure 3: The function (y − h sin θ) is constant along a steady translation aligned with vre

and its first variation lies in the span of the input force span{F 1, F 2}.

Under such a feedback, the closed loop system satisfies an equation of motion of the form (2),
where the closed loop potential energy equals (V + f) and the stability of the equilibrium
point q0 depends on whether the second variation of this new potential is positive definite.
A dissipative, or damping, action FD is usually defined as a control force proportional to
the velocity, and it is employed to turn a stable equilibrium point into an asymptotically
stable one. In particular, for an underactuated system (2) one would set:

FD =

m∑

i=1

Fi (−FT
i q̇).

To render the steady translations of the planar vehicle first stable and then asymptoti-
cally stable, we adapt proportional derivative control to the current setting. In particular,
we have two fundamental constraints in the design of the proportional action. The pro-
portional control must preserve the existence of the steady solution, that is the closed loop
Hamiltonian must remain independent of x, and must lie in the span of the available forces
{F 1, F 2}; see Figure 1. In other words, we employ a feedback ∂f/∂q where the function f
is required to satisfy ∂f/∂x = 0 and ∂f/∂q ∈ span{F 1, F 2}.

In Section 4.1 we provide a methodology to design such functions. Within the present
context, it suffices to note that in the planar vehicle example f(q) = (y − h sin θ)2 satisfies
these constraints. Additionally, under the simplifying assumption mx > my the second
variation of

(Vre + f) = −
1

2

(
mx(cos θ)2 + my(sin θ)2

)
+ (y − h sin θ)2

is positive definite when restricted to v⊥
re. The steady translation vre through (θ0, x0, y0) =

(0, 0, 0) is therefore stabilized by the proportional feedback −∂f/∂q.
Finally, we employ dissipation (damping control) to render the steady translation expo-

nentially stable. Since the nominal velocity is q̇ = vre, we expect the correction should be
proportional to the velocity error q̇ − vre. In fact, in Section 4.2, we show how the feedback
controls

ui = −FT
i (q̇ − vre).

lead the desired exponential convergence rates (under appropriate assumptions). The sta-
bilization will be obtained on the full space modulo R, i.e., the converge will be in terms of
q̇ 7→ vre and (θ, y) 7→ (0, 0).
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Notice how this stabilization result relies on the mx > my assumptions, i.e., it holds for
the planar ellipsoid on the right of Figure 2 and not the one on the left. Therefore motion
along the body-fixed x axis was already somehow stable - now however we specify what axis
and we render the convergence exponential

2 Stabilization techniques for nonlinear systems

Before focusing on mechanical control systems and relative equilibria, we review some sta-
bilization results for general nonlinear systems. Let M be a smooth n dimensional manifold
and consider the control system

ẋ = f(x) +

m∑

i=1

gi(x)ui, (5)

where f, gi are smooth vector fields and ui(t) are bounded measurable functions. Let x0 be
an equilibrium point for f , and let V : M → R≥0 be a smooth function such that V (x0) = 0
and that

V (x) > 0, ∀x ∈ B(x0) − {x0}, (6)

where B(x0) is a neighborhood of x0. Additionally, we require V to be proper at x0, i.e.,
the set {x ∈ B(x0)| V (x) ≤ ε} is a compact subset of B(x0) for each ε small enough.

Lemma 2.1. Let f, gi, V be as described in equations (5) and (6). The following stability
results hold for x ∈ B(x0).

(i) If the Lyapunov function is a first integral of f , and ui are dissipative inputs, that is,
if

0 = LfV (x),

ui(x) = −Lgi
V (x),

then the point x0 is Lyapunov stable in the sense that V (x(t)) ≤ V (x(0)). If the system
satisfies the linear controllability rank condition at all x ∈ B(x0), i.e., if

rank{gi, adf gi, . . . , adn
f gi, ∀i}(x) = n, (7)

then the point x0 is asymptotically stable in the sense that limt→∞ x(t) = x0.

(ii) In addition, if the second variation of V at x = 0 is positive definite, i.e., if

δ2V (x0) > 0,

then the point x0 is exponentially stable in the sense that V (x(t)) ≤ cV (x(0))e−λt, for
some positive c and λ.

Proof. The results in (i) are well known, beginning with the original contributions in [17, 22].
Exponential convergence is proven by noting two facts: first, the results in (i) apply to the
linearized closed loop system with δ2V (x0) as Lyapunov function, and second, asymptotic
stability of the linearized system implies exponential of the nonlinear system. We refer
to [39, pp. 212-213 (Corollary 5.30)] for a similar discussion. Furthermore, while exponential
convergence of x(t) to x0 is a notion that requires a choice of a coordinate system, exponential
convergence of the function V (x(t)) is an intrinsic fact.
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These results can be extended to the stabilization problem for 1 dimensional sub-
manifolds of M . The definition of Lyapunov function is generalized by requiring V (x)
to be positive whenever x does not belong to the sub-manifold (in other words, V (x) is
now invariant under motions on the sub-manifold). It then remains true that, if the system
satisfies the linear controllability condition (7) in a neighborhood of the submanifold, then
damping controls defined as in (i) lead to asymptotic stability. By the way, notice that
the linear controllability rank condition can be checked at any arbitrary point. Finally,
consider the second variation of V restricted to the subspace complementary to the one
dimensional sub-manifold. If it is positive definite at each point on the sub-manifold, then
V (x(t)) converges to zero exponentially fast.

Remark 2.2. One remarkable aspect of the results in Lemma 2.1 is that they are coordinate-
free statements on manifolds. This is in apparent disagreement with the discussion in [41] on
how the notion of exponential converge is not invariant under coordinate changes. However,
our stability definitions explicitly depend on the existence of a Lyapunov function V . The
existence of a Lyapunov function with a positive definite second variation is a very natural
assumption in the context of mechanical systems where the Hamiltonian is a natural integral
of motion.

3 Mechanical systems with symmetries

We present a coordinate free definition of mechanical control systems based on geometric
ideas. We divide the treatment in three parts. First we review some necessary machinery
from Riemannian geometry, then we define mechanical systems and finally we treat sym-
metries and introduce the effective Hamiltonian. We refer to Appendix A for coordinate
expressions for all important quantities.

3.1 Natural objects and operations on Riemannian manifolds

We review some useful definitions in order to fix some notation; see [9, 19] for a comprehen-
sive treatment. Let Q be a smooth manifold, q be a point on it, vq be a point on TQ, I ⊂ R

be a real interval and γ : I → Q be a curve on Q. On the manifold Q, we can define smooth
functions q 7→ f(q) ∈ R, vector fields q 7→ Xq ∈ TqQ, and more general (r, s) tensors fields,
that is, real valued multi-linear maps on (TqQ

∗)r × (TqQ)s. We let C(Q) and X(Q) denote
the set of functions and vector fields on Q. We refer to Appendix A for coordinated based
expression of these quantities and of the following ones.

A Riemannian metric on a manifold Q is a (0, 2) symmetric, positive definite tensor field,
that is a map that associates to each q ∈ Q an inner product 〈〈· , ·〉〉q on TqQ. A manifold
endowed with a Riemannian metric is said to be a Riemannian manifold. Lie derivatives of
functions and Lie brackets between vector fields are denoted by

LXf, and LXY = [X, Y ].

An affine connection on Q is a smooth map that assigns to a pair of vector fields X, Y a
vector field ∇XY such that for all f ∈ C(Q) and for all X, Y, Z ∈ X(Q):

(i) ∇fX+Y Z = f∇XZ + ∇Y Z,

(ii) ∇X(fY + Z) = (LXf)Y + f∇XY + ∇XZ.

9



We also say that ∇XY is the covariant derivative of Y with respect to X . Given a Rie-
mannian metric on Q, there exist a unique affine connection ∇, called the Riemannian (or
Levi-Civita) connection, such that for all X, Y, Z on Q,

[X, Y ] = ∇XY − ∇Y X, (8)

LX〈〈Y , Z〉〉 = 〈〈∇XY , Z〉〉 + 〈〈Y , ∇XZ〉〉. (9)

Interestingly, the second equality is the equivalent in this geometric setting of the classic
“Ṁ − 2C is skew symmetric” fact.

Next, we introduce the notion of covariant derivative along a curve. This concepts will
be instrumental in writing the Euler-Lagrange equations in the next section. Consider a
smooth curve γ = {γ(t) ∈ Q, t ∈ [0, 1]}, and a vector field {v(t) ∈ Tγ(t)Q, t ∈ [0, 1]} defined
along γ. Let V ∈ X(Q) satisfy V (γ(t)) = v(t). The covariant derivative of the vector field
v along γ is defined by

∇γ̇(t)v(t) = ∇γ̇(t)V (q)
∣∣
q=γ(t)

.

In what follows, we let
D

dt
denote the covariant derivative along a curve ∇γ̇ .

We conclude this section with the notion of first and second variation of a function.
Given a function f ∈ C(Q), its gradient grad f is the vector field defined by

LXf = 〈〈grad f , X〉〉,

and its Hessian Hess f is the (0, 2) symmetric tensor field defined by

Hess f(X, Y ) = (LY LX − L∇Y X)f, for all X, Y ∈ X(Q). (10)

Notice that Hess f maps TqQ × TqQ to the real line and it is therefore a two form; we will
often investigate whether this two form is positive definite over certain sub-bundles of TqQ.

3.2 Mechanical control systems

We present a geometric notion of mechanical control systems based on the concepts intro-
duced in the previous section. This Lagrangian approach to modeling of vehicles and robotic
manipulators is common to a number of recent works; see [3, 20, 28, 38].

A mechanical control system is defined by the following objects:

(i) an n-dimensional configuration manifold Q, with local coordinates {q1, . . . , qn},

(ii) a Riemannian metric Mq on Q (the kinetic energy), alternatively denoted by 〈〈· , ·〉〉,

(iii) a function V on Q describing the potential energy, and

(iv) an m-dimensional codistribution F = spanC(Q){F 1, . . . , Fm} defining the input forces.

Let q ∈ Q be the configuration of the system and vq ∈ TqQ its velocity. The total energy,
or Hamiltonian H : TQ → R is

H(vq) =
1

2
〈〈vq , vq〉〉 + V (q) =

1

2
‖vq‖

2 + V (q).
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Mechanical systems of this kind are sometimes called “simple,” see the references above, or
“natural,” see [1], because their Hamiltonians are of the form “kinetic + potential.”

Let the input vector fields be Yi = M−1
q F i, and let Y = spanC(Q){Y1, . . . , Ym} be

the input distribution. The Euler-Lagrange equations for the system can be written in a
coordinate independent form relying on the Riemannian connection of the metric Mq:

D vq

dt
= − gradV + Yiu

i, (11)

where the input functions {ui(t), t ∈ R
+} are bounded measurable and where the summation

convention is enforced here and in what follows. A quick application of equation (9) shows
how the Hamiltonian is a conserved quantity along the unforced equations of motion.

Remark 3.1. This definition of mechanical control systems differs in two points from the
classic one of “affine Hamiltonian system” presented in Nijmeijer and van der Schaft [34,
page 353]. First of all, we explicitly assume that the Hamiltonian is of the form “kinetic
plus potential energy.” Additionally, our definition does not impose the requirement that
the input forces be Hamiltonian vector fields. This is relevant in aerospace and underwater
dynamics, because body-fixed forces are generally not exact one-forms, and therefore not
representable by Hamiltonian vector fields. Nevertheless, one important limitation of the
previous setting is that viscous forces, lift in particular, are not accounted for.

3.3 Symmetries and the effective potential

In this section we present the notion of (infinitesimal) symmetries. We present concepts
both from classical Hamiltonian reduction theory, see [29], and from Riemannian geometry,
see [9, 19].

Given a metric tensor M on the manifold Q, a vector field X is said to be an infinitesimal
isometry if2 the tensor field ∇X : Y → ∇Y X is skew symmetric with respect to the metric
tensor M , that is,

〈〈Y , ∇ZX〉〉 + 〈〈Z , ∇Y X〉〉 = 0. (12)

We call X an infinitesimal symmetry for the mechanical control system (Q, M, V, F), if it
is an infinitesimal isometry and if it satisfies LXV = 0 and LXYi = 0 for all i = 1, . . . , m.

Typically we focus on isometries that arise from group actions. In other words, we
assume that the manifold Q can be written at least locally as Q = N × R, so that the
configuration is q = (r, x) ∈ N × R with N being a smaller dimensional manifold. We then
say that the mechanical system (Q, M, V, F) has a R symmetry, if the metric tensor, the
potential energy and the forces are invariant under the action of R, e.g., if ∂V/∂x = 0. The
vector field X = ∂/∂x is the infinitesimal symmetry.

An infinitesimal isometry gives rise to a conserved quantity. The momentum JX : TQ →
C(Q) is defined by

JX(Y ) = 〈〈X , Y 〉〉, Y ∈ X(Q).

The well-known Noether theorem states that the momentum of vq, that is, JX(vq) is constant
along the solutions to the un-forced mechanical system.

2Equivalently, for all t, the metric tensor is invariant under the time-t flow map of the vector field X,
i.e., LXM = 0. We refer to [19] for the definition of Lie derivative of a tensor field.
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Proposition 3.2. Let (Q, M, V, F) be a mechanical control system with equations of mo-
tion (11), and let X be an infinitesimal symmetry. Along the un-forced solutions, that is,
at ui = 0, we have

D

dt
JX(vq) = 0. (13)

Proof. Using tools from equations (9) and (12), we compute:

D

dt
JX(vq) =

D

dt
〈〈vq , X〉〉 = 〈〈

D

dt
vq , X〉〉 + 〈〈vq ,

D

dt
X〉〉

= 〈〈− gradV (q) , X〉〉 + 〈〈vq , ∇vqX〉〉.

The result follows from LXV = 0 and from the skew symmetry of ∇X .

Last, we present a useful way of devising an integral of motion by combining Hamiltonian
and momentum. We shall call effective Hamiltonian the map HX : TQ → R defined by

HX(vq) = H(vq) − JX(vq). (14)

We recall from [29] the famous “summing the square” computation:

HX(vq) = V (q) +
1

2
‖vq‖

2 − 〈〈vq , X〉〉

= V (q) −
1

2
‖X‖2 +

1

2
‖X‖2 +

1

2
‖vq‖

2 − 〈〈vq , X〉〉

=

(
V −

1

2
‖X‖2

)
(q) +

1

2
‖vq − X‖2.

Correspondingly, we call effective potential the map VX : Q → R defined by

VX(q) = V (q) −
1

2
‖X‖2(q).

The effective Hamiltonian is sum of two terms a potential energy like term and a kinetic
energy like term. The latter term is a modified kinetic energy where the argument is a
“velocity error” (vq −X). The effective Hamiltonian is therefore a positive definite function
in the velocity error (vq −X). This is a key requirement for a candidate Lyapunov function
that will be used to analyze stability of a relative equilibrium with infinitesimal symmetry
X . A related notion of velocity error is discussed in detail in [8].

3.4 Relative equilibria and their stability

We present a quick review of various definitions and results; see [29] for a more extensive
treatment. The effective potential plays a crucial role in characterizing relative equilibria
and their stability.

A curve γ : I ⊂ R → Q is called relative equilibrium if is a solution to the equations of
motion (11) and if it is an integral curve of the infinitesimal isometry X , that is,

d

dt
γ(t) = X(γ(t)). (15)

In the next two propositions we characterize the existence and stability of relative equilibria.
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Proposition 3.3 (Existence of relative equilibria). Let (Q, M, V, F) be a mechanical
control system and let X be an infinitesimal symmetry. An integral curve γ : I → Q of the
vector field X is a relative equilibrium, that is it satisfies the equations of motion (11), if
γ(0) = q0 is a critical point for the effective potential, that is, if

gradVX(q0) = 0. (16)

Proof. Along the curve γ(t), the Euler-Lagrange equation (11) are satisfied since

0 = ∇γ̇ γ̇ + gradV = ∇XX + gradV = grad
(

− 1

2
‖X‖2 + V

)
,

where the equality

∇XX = −
1

2
grad ‖X‖2, (17)

follows from the skew symmetry of ∇X :

〈〈Z , ∇XX〉〉 = −〈〈X , ∇ZX〉〉 = −
1

2
LZ‖X‖2 = −

1

2
〈〈Z , grad‖X‖2〉〉.

Proposition 3.4 (Stability of relative equilibria). Let (Q, M, V, F) be a mechanical con-
trol system and let X be an infinitesimal symmetry. The relative equilibrium γ : I → Q,
γ(0) = q0, is Lyapunov stable if the Hessian of the effective potential is positive definite over
variations perpendicular to X, that is, if

HessVX(Y, Y )(q0) > 0, (18)

for all Y ∈ Tq0
Q such that 〈〈Y , X〉〉 = 0.

Proof. If the effective potential VX has positive definite second variation over all variations
perpendicular to X , then HX is a Lyapunov function for the sub-manifold {γ̇(t), t ∈ I} ⊂
TQ.

The fundamental fact in the last proposition is that the effective Hamiltonian HX is
a map TQ → R that has positive definite Hessian in all but one directions on the phase
space TQ. This observation is key to later developments, where HX will be the candidate
Lyapunov function for the stabilization problem.

Remark 3.5 (Comparison with the Energy-Momentum method). The stability test
in equation (18) in the previous proposition is only sufficient. The Energy–Momentum
method in [29, 40] provides a sharper, more detailed analysis. In fact, it is not necessary
to ask for the second variation of VX to be positive definite in every direction, since not
every direction on the tangent space to TQ is compatible with the momentum constraint.
The more detailed analysis investigates this aspect. However, within the context of the fol-
lowing sections we will explicitly require the effective potential VX to be positive definite in
all directions and therefore we consider the Energy-Momentum test not appropriate. This
latter statement is justified since a (fully) positive definite Lyapunov function is required in
order to use the nonlinear stabilization concepts described in Section 2.
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4 Stabilization of relative equilibria on the phase space

In what follows, we design controllers that stabilize relative equilibria of a mechanical control
system with a symmetry. The goal is to achieve exponential convergence rates in all error
variables. As described in the Introduction, this is to be contrasted to the situation where the
forces are momentum-preserving as in the case of internally actuated vehicles and therefore
the value of the momentum remains unchanged in the closed loop. The treatment relies on
certain stability properties of the open loop system that are formalized in Proposition 4.4.

4.1 Potential shaping along a relative equilibrium

Numerous works have studied the application of a so-called proportional feedback action;
see [16, 20, 24, 34]. The effect of such controls is described in terms of a potential energy
“shaping” of the closed loop. This freedom in designing the potential energy of the closed
loop is then used to advantage in stabilization problems. We illustrate this phenomena in
the following lemma.

Lemma 4.1. Given the mechanical control system (Q, M, V, F) with equations of motion

D vq

dt
= − gradV + Yiu

i. (19)

Assume there exists a function φ : Q → R such that

gradφ =
m∑

i=1

ci(q)Yi,

and set the inputs
ui = −ci(q)φ + vi.

Then the closed loop system is the mechanical control system (Q, M, (V + 1
2φ2), F).

Proof. Simple manipulations shows that

D vq

dt
= − gradV + Yi(−ci(q)φ + vi)

= − gradV − φ gradφ + Yiv
i = − grad

(
V +

1

2
φ2

)
+ Yiv

i.

We apply this idea to the present context: we attempt to “shape” the effective potential
VX while preserving the existence of the relative equilibrium through the point q0. In
equivalent words, we ask for the existence of a function φ : Q → R with φ(q0) = 0 and such
that

(i) LXφ = 0, and

(ii) gradφ ∈ Y,
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where we recall that Y = spanC(Q){Y1, . . . , Ym} is the input distribution. Before proceed-

ing, we introduce the following notation. Given the distribution Y, we let Y⊥ denote its
orthogonal complement, i.e.,

Y⊥ = {Z ∈ X(Q)| 〈〈Z , Yi〉〉 = 0, i = 1, . . . , m},

and we let Lie(Y⊥) denote its involutive closure.3 The following result characterizes the set
of functions φ that satisfy the requirements (i) and (ii).

Proposition 4.2. Let X be an infinitesimal isometry on the Riemannian manifold Q. Let
Y be an m dimensional distribution invariant under the action of X. The distribution
Lie(Y⊥) + spanC(Q){X} is involutive, has dimension (n − p) ≥ (n − m), and its p integral
functions φ1, . . . , φp satisfy

LXφj = 0, and gradφj ∈ Y, ∀j = 1, . . . , p.

Finally, given any q0 ∈ Q these p functions can be chosen so that φj(q0) = 0 for all j.

Proof. We start from the definition of gradient and we note the basic equivalence:

LZφj = 0 ⇐⇒ gradφj ∈ span{Z}⊥.

Next, we consider the requirement (i): from gradφ ∈ Y we have gradφ ⊥ Y⊥ and
therefore LZφ = 0 for all Z ∈ Y⊥. From requirement (ii) we have LXφ = 0, and therefore
LZφ = 0 for all Z ∈ Y⊥ + span{X}. But then φ must be invariant under the involutive
closure of the sum of these two distributions: LZφ = 0 for all Z ∈ Lie

(
{X} + Y⊥

)
.

Next, we invoke Frobenius Theorem to assert that if the dimension of the distribution
Lie

(
{X} + Y⊥

)
is (n−p), then there exist p integral functions φj such that LZφj = 0 for all

Z in this distribution. Additionally, notice that Lie
(
Y⊥ + span{X}

)
= Lie

(
Y⊥

)
+span{X},

because of the invariance properties of Y and M . The last statement in the lemma follows
immediately.

Given4 these p functions φj , we can now employ the potential shaping technique and
provide sufficient conditions for stabilization of relative equilibria. Let k1, . . . , kp be positive
scalars and apply the feedback controls ui(q) defined implicitly via

m∑

i=1

Yi(q)u
i(q) = −

p∑

j=1

kjφj gradφj . (20)

As described in Lemma 4.1, the closed loop system is still mechanical. Additionally, the
closed loop system posses the same infinitesimal symmetry X as the system before feedback.
Accordingly, we define the effective Hamiltonian for the closed loop as

ĤX(vq) = H(vq) +
1

2

p∑

j=1

kjφ
2
j − 〈〈X , vq〉〉

=


VX +

1

2

p∑

j=1

kjφ
2
j


 +

1

2
‖vq − X‖2,

3The perpendicular distribution to {M−1F 1, . . . , M−1F m} can be computed as the annihilator of the
co-distribution {F 1, . . . , F m}.

4Computing integral functions for involutive distribution of arbitrary dimension and codimension is
generally as difficult a providing explicit solutions to a set of ordinary differential equations.
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and the effective potential for the closed loop as

V̂X = VX +
1

2

p∑

j=1

kjφ
2
j .

Recall from Proposition 3.4, that stability of a relative equilibrium depends from the positive
definiteness of the Hessian of VX . The following lemma will be instrumental in describing
when it is possible to render V̂X positive definite via the potential shaping feedback.

Lemma 4.3. Let P be an n × n symmetric matrix and let C be a surjective p × n matrix.
There exist p positive constants kj such that P + CT diag{k1, . . . , kp}C > 0 if and only if
P restricted to KerC is positive definite.

We refer to [42] for a proof of this statement. Finally, we formalize the discussion in this
section via the following result.

Proposition 4.4 (Stabilization of relative equilibria). Let (Q, M, V, F) be a mechan-
ical control system, let X be an infinitesimal symmetry and let {γ : I → Q, γ(0) = q0} be a
relative equilibrium. Let φ1, . . . , φp be p functions obtained as in Lemma 4.2 so that, without
loss of generality, we set

Yj = gradφj , j = 1, . . . , p ≤ m.

Assume that the effective potential VX is positive definite over variations perpendicular to
the subspace {X, gradφ1, . . . , gradφp}, that is,

HessVX(Y, Y )(q0) > 0, (21)

for all Y perpendicular to {X, gradφ1, . . . , gradφp}q0
.

Then there exist positive constants k1, . . . , kp such that the feedback controls

uj(q) = −kjφj(q),

render the relative equilibrium {γ : I → Q, γ(0) = q0} Lyapunov stable.

Proof. The proof is a application of Proposition 3.4 to the closed loop system and follows
in spirit the original proof in [42]. Notice that the feedback controls in the statement of the
theorem coincide with the one defined in equation (20). Therefore, by Lemma 4.1 the closed
loop system is a mechanical control system with infinitesimal symmetry X and relative
equilibrium {γ : I → Q, γ(0) = q0}. The effective potential of the closed loop is V̂X and,

according to Proposition 3.4 the relative equilibrium is stable if the Hessian of V̂X is positive
definite when restricted to the perpendicular to X .

From the definition of Hessian in Section 3, we compute

Hess

(
1

2
φ2

)
(Z1, Z2) =

(
LZ1

LZ2
− L∇Z1

Z2

) (
1

2
φ2

)

= LZ1
φLZ2

φ − φL∇Z1
Z2

φ

= (LZ1
φ) (LZ2

φ) + φ
(
LZ1

LZ2
φ − L∇Z1

Z2
φ
)
,
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so that

Hess V̂X(Z1, Z2) = Hess VX(Z1, Z2) + Hess


1

2

p∑

j=1

kjφ
2
j


 (Z1, Z2)

= Hess VX(Z1, Z2) +

p∑

j=1

kj 〈〈gradφj , Z1〉〉〈〈gradφj , Z2〉〉,

where the last equality holds at q = q0 since φj(q0) = 0.
Let us now write coordinate expressions for the tangent space Tq0

Q. With respect to
a basis, we let Hess VX = P ∈ R

n×n, we let 〈〈gradφj , Zi〉〉 = cjzi, where cj ∈ R
1×n and

zi ∈ R
n×1. According to these definition we have

p∑

j=1

kj〈〈gradφj , Z1〉〉〈〈gradφj , Z2〉〉 = zT
1 CT diag{k1, . . . , kp}Cz2,

where C = [c1 . . . cp]
T . Notice that the subspace kerC is spanned by vectors orthogonal to

gradφj for all j. The assumption in equation (21) states that P is positive definite when
restricted to kerC + X⊥

q0
. Therefore the assumptions of Lemma 4.3 hold and there exist

positive constants k1, . . . , kp such that

P + CT diag{k1, . . . , kp}C > 0 restricted to {X}⊥.

Therefore the Hessian of V̂X is positive definite when restricted to the perpendicular to X
and the relative equilibrium is stable.

4.2 Damping control along a relative equilibrium

In this section we employ the classic notion of damping (or dissipative) feedback to achieve
asymptotic and exponential stability. Within the context of relative equilibria stabilization,
the key observation is that the effective Hamiltonian HX is positive definite in all but one
direction on the tangent space to TQ.

We start by computing the time derivative of the effective Hamiltonian along the closed
loop system. Instead of computing Lie derivatives on the tangent space to TQ, we take
advantage of the geometric formalism described in Section 3 and state the following lemma.

Lemma 4.5. Consider the mechanical control system (Q, M, V, F) with infinitesimal sym-
metry X and with effective Hamiltonian

HX(vq) =

(
V −

1

2
‖X‖2

)
+

1

2
‖vq − X‖2.

It holds

D HX(vq)

dt
= 〈〈vq − X , Yi〉〉u

i.

Proof. We compute

1

2

D

dt
‖vq − X‖2 = 〈〈vq − X ,

D vq

dt
−

DX

dt
〉〉

= 〈〈vq , − gradV − ∇vq
X〉〉 − 〈〈X , − gradV − ∇vq

X〉〉 + 〈〈vq − X , Yi〉〉u
i

= −〈〈vq , gradV 〉〉 − 〈〈vq , ∇XX〉〉 + 〈〈vq − X , Yi〉〉u
i,
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and

D

dt

(
V −

1

2
‖X‖2

)
= 〈〈vq , gradV −

1

2
grad‖X‖2〉〉,

so that

1

2

D

dt
HX = −〈〈vq ,

1

2
grad‖X‖2 + ∇XX〉〉 + 〈〈vq − X , Yi〉〉u

i.

The conclusion follows from equation (17).

Finally, we can state the concluding result:

Proposition 4.6 (Exponential stabilization of relative equilibria). Let (Q, M, V, F)
be a mechanical control system with equations of motion

D vq

dt
= − gradV + Yiu

i.

Let X be an infinitesimal symmetry, let {γ : I → Q, γ(0) = q0} be a relative equilibrium, and
let φ1, . . . , φp be p functions obtained as in Lemma 4.2 so that, without loss of generality,
we set

Yj = gradφj , j = 1, . . . , p ≤ m.

Assume that the system (with all m input forces) satisfies the linear controllability condi-
tion (7) at vq = X(q) and q = q0, and assume that

HessVX(Y, Y )(q0) > 0,

for all Y perpendicular to {X, gradφ1, . . . , gradφp}q0
.

Then, there exist positive constants k1, . . . , kp and d1, . . . , dm such that the feedback
controls

uj(vq) = −kjφj(q) − dj φ̇j(vq), 1 ≤ j ≤ p

ui(vq) = −di〈〈vq − X , Yi〉〉, p < i ≤ m,

render the relative equilibrium {γ : I → Q, γ(0) = q0} exponentially stable.

Proof. For 1 ≤ j ≤ p, the expression for the damping controls are justified by

〈〈vq − X , Yj〉〉 = 〈〈vq − X , gradφj〉〉 = L(vq−X)φj = φ̇j ,

since LXφj = 0.
From Lemma 2.1 we know that a damping controls ui = −Lgi

V lead to exponential
convergence under two assumption: the system is linearly controllable and the Lyapunov
function has positive definite second variation. But linear controllability is an assump-
tion and Proposition 3.4 shows that the effective Hamiltonian with the feedback correction
described has in fact a positive definite second variation.

Remark 4.7 (Positive definiteness and controllability assumptions). Loosely speak-
ing, the assumption in equation (21) requires the unforced system to be stable in certain
directions. This is illustrated by the examples in the following section.

Certain vehicles are actuated only by means of internal moving masses or spinning ro-
tors. Such forces are called “internal” because they do not affect the value of the momentum.
Mechanical systems endowed with only internal actuation are necessarily not linear control-
lable (since momentum is conserved along forced equations of motion).
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5 Applications to Vehicle Control

We present two design examples for models of vehicles. While both the underwater planar
body and the satellite have a full SE(2) (the group of planar displacements) and SO(3) (the
group of rotations in three dimensional space) symmetry, we focus on the stabilization of a
one-dimensional symmetry: translation along the major axis and rotation about a specific
axis. Our analysis on the effective potential agrees with the results in [23, 24, 29].

This is a brief summary of the results presented below. With regards to the planar
vehicles depicted in Figure 2 stabilization is obtained only for the system on the right with
mx > my. With regards to the satellite example, spin axis stabilization about the first axis
(with actuation on the first and second axis) is obtained so long as I1 > I2; no assumption
is made on I3, i.e., first and second axis need not be the first and second principal axis of
the rigid body.

5.1 A Planar Underwater Body with Two Forces

In this section we study in more detail the motivating example presented in the Introduction;
see Figure 1 at page 3. The control objective is to stabilize a steady translation of the body.

The four objects describing the planar body are the following. The configuration mani-
fold is SE(2), that is the group of rotations and translations on the plane. Coordinates for
this manifold are q = (θ, x, y). The inertia tensor is M as described in equation (1). With
respect to the basis of vector fields { ∂

∂θ
, ∂

∂x
, ∂

∂y
}, the inertia has the matrix expression in

equation (4). No potential is present, V = 0, and the forces are F 1 = cos θdx + sin θdy
and F 2 = − sin θdx + cos θdy − hdθ, that is, in vector notation with respect to the basis
{dθ, dx, dy}:

F 1 =




0
cos θ
sin θ


 , and F 2 =




−h
− sin θ
cos θ


 .

The input vector fields can be computed by inverting M :

Y1 =




0
cos θ/mx

sin θ/mx


 , and Y 2 =




−h/I
− sin θ/my

cos θ/my


 .

In this set of coordinates the un-forced Euler-Lagrange equations are:

θ̈ =
my − mx

2I

(
(ẋ2 − ẏ2) sin(2θ) − 2ẋẏ cos(2θ)

)

ẍ =
my − mx

2mxmy

(
θ̇ẏ(my cos2 θ − mx sin2 θ) − θ̇ẋ(mx + my) sin(2θ)

)

ÿ =
my − mx

2mxmy

(
θ̇ẋ(mx cos2 θ + my sin2 θ) + θ̇ẏ(mx + my) sin(2θ)

)
.

As noticed in the Introduction, the vector field X = v0
∂
∂x

= [0 v0 0]T is an infinitesimal
isometry for this mechanical system. According to the various definitions, we compute the
momentum as

JX(θ, x, y; θ̇, ẋ, ẏ) = v0(mx(cos θ)2 + v0my(sin θ)2)ẋ + v0((mx − my) sin θ cos θ)ẏ,
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Figure 4: Change of basis for the set of input forces. We let Yi = M−1F i.

and the effective potential as

VX(θ, x, y) = −
v2
0

2

(
mx(cos θ)2 + my(sin θ)2

)
.

Relative equilibria for this system along the infinitesimal symmetry X correspond to critical
points of VX :

∂VX

∂θ
= 0 ⇐⇒ sin 2θ = 0.

Notice that since VX depends only on the variable θ, its second variation cannot be positive
definite in a two dimensional subspace. Therefore we cannot apply Proposition 3.4 to assess
stability.

To design a Lyapunov function and obtain stability via feedback we employ the potential
shaping technique as described in Lemma 4.2 and Proposition 4.4. The distribution Y⊥ has
dimension one and it is spanned by the vector field

Y⊥ =




1/h
− sin θ
cos θ


 .

Additionally, we notice that the distribution spanned by X and Y⊥ is involutive and that
therefore there must exist a function φ that satisfies the requirements in Lemma 4.2. As
mentioned in the Introduction, the function φ(θ, x, y) = y −h sin θ satisfies LXφ = LY⊥

φ =
0. Accordingly, we compute

gradφ =




−h cos θ/I
(my − mx) cos θ sin θ/mxmy

(cos θ)2/my + (sin θ)2/mx


 ≡ (sin θ)Y1 + (cos θ)Y2.

Before defining the feedback controls, it is convenient to perform a change of basis for the
input distribution. According to the statement in Proposition 4.4, we let

Y3 = (sin θ)Y1 + (cos θ)Y2

Y4 = −(cos θ)Y1 + (sin θ)Y2,

so that we have u1Y1 + u2Y2 = u3Y 3 + u4Y4. In Figure 4 we illustrate what this change of
basis means with respect to the force co-vectors F i. Next, we proceed to apply the feedback
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controls described in Proposition 4.4. We set u4 = 0 and

u3(θ, x, y) = −k(y − h sin θ). (22)

To check the stability of the closed loop we compute the second variation of VX over the
perpendicular subspace to {X, Y3}. Some straightforward algebra leads to {X, Y3}

⊥ =
span{Y5}, where

Y5 =




sec θ/h
(mx−my) cos θ sin θ

mx(cos θ)2+my(sin θ)2

1


 .

According to the definition in equation (10) (see also the coordinate expression in equa-
tion (24)), the Hessian of VX at the critical point θ = 0 is

HessVX(Y5, Y5) = v2
0(mx − my)/h2.

In what follows we assume mx > my and we focus on the relative equilibrium described by
(θ, y) = (0, 0). Since the second variation of the Hessian is positive definite, this relative
equilibrium is stabilizable. Given the feedback in equation (22), the closed loop effective
potential is

V̂X = −
v2
0

2

(
mx(cos θ)2 + my(sin θ)2

)
+

1

2
k(y − h sin θ)2,

and its Hessian is positive definite on the subspace X⊥ for all k > 0.
Exponential stability is obtained by invoking Proposition 4.6. We compute the damping

(or dissipative) action as:

u3(θ, x, y; θ̇, ẋ, ẏ) = −k(y − h sin θ) − d3(ẏ − hθ̇ cos θ)

u4(θ, x, y; θ̇, ẋ, ẏ) = d4(v0 − ẋ − hθ̇ sin θ).

Since it can be verified that the linearized system is controllable, the convergence is expo-
nential for all h 6= 0, mx > my and v0 > 0.

In Figure 5 we present a simulation of the closed loop system. Numerical values are
expressed in SI units as: I = 1.5, mx = 1.5, my = .5, h = .4, v = .2, k = .25, d3 = .125,
d4 = .5. The initial condition has zero velocity and and error of π/6 rad in orientation and
1m in y position. The simulation lasts for 80 seconds and one sample is displayed every 5
seconds.

5.2 A Satellite with Two Thrusters

As a second example design, we consider the model of a satellite with two thrusters. The
classic model is written as follows; see [29]. The attitude and the body fixed velocity are
(R, Ω), the kinetic energy is 1

2ΩT
IΩ, no potential is present, V = 0, and the two inputs

consist of torques about the first and second axes. The equations of motion are:

Ṙ = RΩ̂

IΩ̇ = IΩ × Ω + e1u1(t) + e2u2(t), (23)
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Figure 5: Stabilization of steady forward motion for the planar body example.

where Ω̂y = Ω×y and where {e1, e2, e3} denotes the standard basis on R
3, i.e., e1 = (1, 0, 0),

e2 = (0, 1, 0) and e3 = (0, 0, 1). We assume I = diag {I1, I2, I3} with I1 > I2 and we leave
I3 free to have any value.

Because the later computations are better performed in coordinates, we now choose a
convenient parameterization and obtain various coordinate expressions. Recall that the
exponential map exp : R

3 → SO(3) is defined as (Rodriguez formula; see [32]):

exp(x̂) = I3 + sin ‖x‖
x̂

‖x‖
+ (1 − cos ‖x‖)

x̂2

‖x‖2
,

where I3 is the unity matrix. We write R as

R(α, β, γ) = exp(α ê1) exp(β ê2) exp(γ ê3),

that is, we parameterize5 SO(3) by a set of Euler angles (α, β, γ), that is singular at β =
±π/2. The unusual order of rotation is well-suited to the relative equilibrium and to the
set of input vector fields at hand. The Jacobian relating Euler angles rates and body fixed
velocity is

Ω =




cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sinβ 0 1







α̇

β̇
γ̇


 , J(α, β, γ)




α̇

β̇
γ̇


 ,

and, the inertia matrix with respect to this basis is M(α, β, γ) = JT (α, β, γ)IJ(α, β, γ).
The forces are F 1 = JT (α, β, γ)e1, F 2 = JT (α, β, γ)e2, and the input vectors are Y1 =
J−1(α, β, γ)Ie1, Y2 = J−1(α, β, γ)Ie2.

We attempt to stabilize rotation about the first principal axis; this problem is often
referred to as “spin axis stabilization.” This correspond to the vector field X = ω0

∂
∂α

=

5This local chart of SO(3) is one set of Euler angles and not the usual one, see [32]. Coordinate systems
obtained via repeated single exponentials are referred to as “exponential coordinates of the second kind.”
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[ω0 0 0]T . Accordingly, we compute:

JX(α, β, γ; α̇, β̇, γ̇) = ω0

(
I3(sin β)2 + (cosβ)2(I1(cos γ)2 + I2(sin γ)2)

)
α̇

+ ω0

(
(I1 − I2) cosβ cos γ sinγ

)
β̇ + ω0

(
I3 sin β

)
γ̇,

VX(α, β, γ) = −
1

2
ω2

0

(
I1(cos β)2(cos γ)2 + I2(cos β)2(sin γ)2 + I3(sin β)2

)
.

The relative equilibrium of interest is described by (β, γ) = (0, 0).
Next, we follow the same procedure as in the general case and in the previous example.

It turns out that Y⊥ = [0, 0, 1]T , the function described in Lemma 4.2 is φ(α, β, γ) = β and
the vector Y5 = [−I3 sin(β)/(I3(sin β)2 + (cos β)2(I1(cos γ)2 + I2(sin γ)2)), 0, 1]T . Finally,
the second variation of the effective potential VX satisfies:

HessVX(Y5, Y5)(0, 0) = ω2
0(I1 − I2).

For I1 > I2, the design procedure can be applied. In brief summary, the control law
[
u1

u2

]
=

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

] [
−d4(α̇ − ω0) cos(β)

−kβ − d3β̇,

]

achieves local exponential stability for positive values of d3, d4 and for a sufficiently large k.

6 Conclusions

We have presented an extension of the works in [16, 24, 42] to full exponential stabilization
of relative equilibria. The proposed control design is coordinate independent and provides
a constructive procedure. Lyapunov stabilization via potential shaping (i.e., proportional
action) requires the positive definiteness of the effective potential in certain “uncontrolled”
directions. Exponential stabilization is proven under a linear controllability assumption. In
brief, our treatment relies on certain stability properties of the unforced system and obtains
strong convergence properties of the closed loop. In the work on “Controlled Lagrangians”
by Bloch, Leonard and Marsden [4, 5], a complementary approach is introduced to overcome
this limitation.

These results are nicely dual to the classic results in van der Schaft [42]. Effective Hamil-
tonian and effective potential play a similar role for relative equilibria as usual Hamiltonian
and potential play in the point stabilization problem. We claim that the adoption of the
effective potential as candidate Lyapunov function is appropriate in control applications
where a fully positive definite function is sought.

Numerous research avenues provide future challenges. Viscous forces has been neglected
in this treatment, whereas they play an important role in applications. Backstepping and
I/O linearization techniques have also been successfully applied to vehicles stabilization
problems, and it might be rewarding to understand the relationship between these methods
and the field of geometric control for mechanical systems. Finally, a wide variety of motion
planning and trajectory generation problems are open, such as for example the design of
provably stable switching maneuvers from one relative equilibrium to another.
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A Coordinate expressions

In this first Appendix, we present coordinate expressions for various quantities defined
intrinsically in Section 3. Let (q1, . . . , qn) be a local coordinate system about the point q0.
A vector field X is written as

X(q) = X i(q)
∂

∂qi
,

where the summation convention is enforced here and in what follows.
We write a covariant derivatives in coordinates by defining its Christoffel symbols Γi

ij

∇ ∂

∂qi

(
∂

∂qj

)
= Γk

ij

∂

∂qk
.

The Christoffel symbols of a Riemannian connection are defined and computed as follows.
Let M be a matrix representation of the metric; in other words let Mij = 〈〈 ∂

∂qi , ∂
∂qj 〉〉. We

have

Γk
ij =

1

2
Mmk

(
∂Mmj

∂qi
+

∂Mmi

∂qj
−

∂Mij

∂qm

)
,

where M ij is the inverse of the tensor Mij . The covariant derivative of a vector field is then
written as

∇XY =

(
∂Y i

∂qj
Xj + Γi

jkXjY k

)
∂

∂qi
.

In local coordinates the forced Euler-Lagrange equations are

dvi
q

dt
+ Γi

jkvj
qv

k
q = M ij

(
−

∂V

∂qj
+ F i

jui

)
,

where Γi
jk(q) are the Christoffel symbols of the metric Mq and where M ij(q) is the inverse

tensor to Mij . As a final detail, note that whenever grad f(q) = 0, the Hessian of a function
f is written in coordinates as:

Hess f

(
X i ∂

∂qi
, Y j ∂

∂qj

)
(q) =

∂2f

∂qi∂qj
X iY j(q). (24)

B Implementation in Symbolic Software

The following Mathematica code illustrates the results presented in Section 5.1.

(* Francesco Bullo, June 1999 *

* Planar underwater body example *)

(* Routines: *)

Grad[f_, g_, x_] := Inverse[g]. Table[D[f,x[[i]]],{i,Length[x]}];

Hessian[f_,X1_,X2_,x_] := Sum[D[f,x[[i]],x[[j]]] X1[[i]] X2[[j]],

{i,Length[x]}, {j,Length[x]}];

Kinetic2Inertia[KE_,Vel_] := Module[{n}, n=Dimensions[Vel][[1]];
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2 Table[ If[i==j, Coefficient[KE, Vel[[i]], 2],

Coefficient[KE, Vel[[i]] Vel[[j]]]/2 ] ,{i,1,n},{j,1,n}] ];

(* Configuration and Velocity *)

Conf = {th,x,y}; Vel = {thd,xd,yd};

(* Kinetic Energy and Inertia

* easily written in body frame first, transformed afterwards *)

rule = {om -> thd, vx -> Cos[th] xd + Sin[th] yd,

vy-> -Sin[th] xd + Cos[th] yd };

KineticEnergy = (II omˆ2 + mx vxˆ2 + my vyˆ2)/2 /. rule;

Inertia = Simplify[Kinetic2Inertia[KineticEnergy, Vel]];

(* Conserved quantities *)

Hamiltonian = KineticEnergy;

X = {0,v0,0};

JX = X.Inertia.Vel ;

VX = - X.Inertia.X / 2;

HX = Hamiltonian - JX;

(* Existence of Relative Equilibria *)

RelEqR = Solve[ Simplify[ Grad[VX, Inertia, Conf]]=={0,0,0}, th];

(* Forces as one forms *)

F1 = {0,Cos[th],Sin[th]};

F2 = {-h, -Sin[th], Cos[th]};

(* and as input vector fields *)

Y1 = Simplify[Inverse[Inertia] . F1];

Y2 = Simplify[Inverse[Inertia] . F2];

(* Compute the perpendicular distribution to {Y1,Y2}

* and its Lie closure - (it is trivially involutive) *)

Yperp = {a,b,d};

rule = Solve[ {Y1.Inertia.Yperp==0, Y2.Inertia.Yperp==0}, Yperp];

Yperp = Flatten[Simplify[Yperp /. rule /. d-> Cos[th]]];

(* By Lemma 4.2, there exist an appropriate function phi *)

phi = y-h Sin[th];

Y3 = Simplify[Grad[ phi, Inertia, Conf]];

(* and arbitrarily: *)

Y4 = Simplify[-Cos[th] Y1 + Sin[th] Y2];

(* Compute the subspace perpendicular to {X,Y3} = span Y5 *)

Y5 = {a,b,d};

rule = Solve[ {Y3.Inertia.Y5==0, X.Inertia.Y5==0}, Y5];

Y5 = Flatten[Simplify[Y5 /. rule /. d->1]];

(* Check that VX has positive definite Hessian on Y5 *)
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Simplify[ Hessian[VX, Y5, Y5, Conf] /. RelEqR ]

(* Dissipative Input u4 *)

u4 = d4 Simplify[ Y4. Inertia . (Vel - X)];

(* End of File *)
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