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Abstract

This paper describes a systematic procedure to expo-
nentially stabilize relative equilibria of mechanical sys-
tems. We review the notion of relative equilibria and
their stability in a Riemannian geometry context. Po-
tential shaping and dissipation are employed to obtain
full exponential stabilization to the desired trajectory.
Two necessary conditions are that the effective poten-
tial be positive definite over a specified subspace and
that the system be linearly controllable.
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1 Introduction

Control of underactuated mechanical systems is a chal-
lenging research area of increasing interest. On the the-
oretical side, control problems for mechanical systems
benefit from the wealth of geometric mechanics tools
available. On the other hand, strong motivation for
these problems comes from applications to autonomous
vehicles design and control. In this paper, we inves-
tigate stabilization techniques for the steady motions
called relative equilibria. This family of trajectories is
of great interest in theory and applications.

Stabilization of underactuated Hamiltonian systems
was originally investigated by van der Schaft [12]. Re-
cently, geometric tools have been employed to address
the class of mechanical systems with symmetries. Sta-
bility of underwater vehicles is studied in Leonard [7]
where symmetry breaking potentials were employed
to shape the energy of the closed loop system. Jal-
napurkar and Marsden [5] present a framework for
the design of controllers for underactuated mechani-
cal systems. In these treatment the family of input
forces is assumed momentum preserving and stability
in the reduced space is characterized via the Energy-
Momentum method.

In this work we focus on vehicles with generic body

1This work is a short version of [1].

forces, including both internal (e.g, momentum wheels
and sliding masses) and external ones (e.g., propellers).
Typically, these systems move on trajectories that do
not belong to a constant momentum level set. A sim-
ple idealized example is an underwater planar body,
depicted in Figure 1. This model is reminiscent of the
V/STOL aircraft studied by Hauser and co-workers [4],
of the surface vessel studied by Godhavn [3], and of the
underwater submersible studied by Leonard [7, 8]. This
particular systems is proven to be differentially flat by
Martin and co-workers in [10] when no hydrodynamic
forces are present.

The main contribution of this paper is the design of
a Lyapunov function and of a corresponding controller
that stabilize all of the variable of interest, i.e., all of the
velocity variables and the internal configuration vari-
ables. We refer to this notion as stabilization on the
full phase space, as opposed to stabilization for only
the internal variables or stabilization on a momentum
surface.

A second theme is the emphasis on exponential as op-
posed to asymptotic convergence, and on the full power
of dissipation-based stabilization techniques. In partic-
ular we exploit the fact that a dissipative systems has
exponential convergence rates under the assumption of
linear controllability and the existence of a quadratic
Lyapunov function. This fact is well known within the
nonlinear stabilization literature, see [6, 11], but has
not been fully exploited within the context of mechan-
ical systems. Finally, a third feature of our approach
is that we employ a novel Riemannian geometry for-
malism in describing relative equilibria and their sta-
bilization. One advantage of this approach is that it is
capable of dealing with general (but velocity indepen-
dent) control forces, like the ones present in models of
vehicles such as that in Figure 1.

1.1 Example and summary of result

We briefly present the key steps of our design procedure
by applying it to the planar vehicle in Figure 1. More
specifically, we attempt to design some feedback con-
trols that stabilize a trajectory consisting of a steady
motion along the x axis of the inertial reference frame.



Figure 1: Planar underwater vehicle with forces {F', F°}
a distance h from the center of mass CM. The
effect of the fluid is modeled via added masses.

Stability of an equilibrium point: We start
with some classic results on stability of mechanical sys-
tems about a point. Let ¢ = [¢!,...,¢"]% be the con-
figuration of the systems and let the Hamiltonian be

Hg,d) = Vig) + 30" M@ = V(a) + - (1)

The equations of motion are

ov
_a_q+Fa (2)

M(q)§ +C(g,4)d =
where C(qg, ¢) is the Coriolis matrix and where the re-
sultant force F' can be written as linear combination of
m independent control forces F;:

m
F = Z Fiui.
i=1

If m is strictly less than the degrees of freedom n, the
system is called underactuated. Finally, qg is a stable
equilibrium point if the first variation of V' vanishes
and if the second variation is positive definite at gp:

ov o?V

6_q(QO) =0, and m(%) > 0.

Steady translations of the planar vehicle:
Next, we examine the planar vehicle in Figure 1. Let
g = [0,z,y]T € R® denote the position of the vehicle.
Assuming that gravity is absent, the Hamiltonian is
H(q,q) = ¢" M(q)4/2, where M(q) is

I 0 0
0 my(cosh)? +my(sind)®>  (m, —my)cosfsind
0 (my;—my)cosfsind  my(cosd)? + my(sinh)?

and where I, m,,m, are inertial parameters that in-
clude the influence of the fluid surrounding the vehicle
(e-.g., they include the so-called added masses); see [7].
Let v,c € R? denote the velocity of the desired steady
motion; e.g., v = [0,1,0]7 to require the vehicle to
move at unit speed along the z axis of a reference frame.

Notice that the Hamiltonian does not depend on the
variable z, i.e., 0H/Oz = 0. As it is known in mechan-
ics, this independence implies that the momentum in
the direction v, is a conserved quantity along the so-
lution of the equations of motion. The momentum is:

Jre(a,4) = ¢T M(q)vre = (my(cos6)? +my(sin6)?)
+ ((mg — my) sinf cos 6) 3.

Beside Hamiltonian and momentum, an additional con-
served quantity is computed via some algebraic manip-
ulation (“summing the square”) as follows:

Hre(Qa q) = H - Jpe

1. .
= 5lld = vee + vrell3s - ¢" M (q)vre
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We call H,, the effective Hamiltonian, and accordingly
we define the effective potential as

1 1 ,
Vie(q) = _§||vr8||?\/[ =-3 (Mo (cos 0)* + my(sin)?) .

The concepts of effective Hamiltonian and potential
lead to an elegant parallel between the treatment on
stability of an equilibrium point and stability of a
steady motion. For example, H,, has a “kinetic energy”
component proportional to the velocity error (¢ — vye),
as opposed to the usual kinetic energy being propor-
tional to the velocity ¢. Additionally, we will show the
following results. The steady motion v, through the
point go is a solution to the equations of motion if the
first variation of V. vanishes at qq,

Ve
dq

(qO) = 07

and it is a stable motion if the second variation of Ve
restricted to the subspace perpendicular to v, is posi-
tive definite:

0?Vze
0q0q

(g0) > 0, restricted to v.

In the planar body example, steady translation along
the z axis is a solution whenever sin26 = 0. How-
ever, we know nothing about the stability of this mo-
tion since Vie(q) is independent of y and its second
variation is not positive definite when restricted to v;.

Proportional derivative control for steady
translations: A proportional action Fp is a control
force proportional to the first variation of a function f:

p 9@
dq
Under such a feedback, the closed loop system satisfies

an equation of motion of the form (2), where the closed
loop potential energy equals (V + f) and the stability of



the equilibrium point ¢o depends on whether the second
variation of this new potential is positive definite. A
dissipative action Fp is usually defined as a control
force proportional to the velocity. In particular, for an
underactuated system (2) one would set:

m
Fp=-) Fi(Fq).
=1

To render the steady translations of the planar vehicle
first stable and then asymptotically stable, we adapt
proportional derivative control to the current setting.
In particular, we have two fundamental constraints in
the design of the proportional action. The latter quan-
tity must preserve the existence of the steady solu-
tion, and must lie in the span of the available forces
{F!, F?}; see Figure 1. In other words, we employ a
feedback 0f/0q where the function f is required to
satisfy 0f/0xz = 0 and 0f/dq € span{F',F?}. In
Section 3.1 we provide a methodology to design such
functions. For now, it suffices to note that f(q) =
(y — hsin®)? satisfies these constraints in the planar
vehicle example. For m, > m, the second variation of

f+Vie = (y — hsin)® — 1 (my(cos 0)*+my(sin6)?)

is positive definite when restricted to v . The steady
translation vy, through (6o, 2o0,y0) = (0,0,0) is there-
fore stabilized by the proportional feedback —9f/dq.

Finally, we employ dissipation to render the steady
translation exponentially stable. Since the nominal ve-
locity is ¢ = vpe, we expect the correction should be
proportional to the velocity error ¢ — vee. In fact, in
Section 3.2, we show how the feedback controls

u; = —FF (¢ — vre)-

lead to the desired exponential convergence rates.

2 Mechanical systems with symmetries

We present a coordinate free definition of mechanical
control systems based on geometric ideas. Because of
space limitations, this section is a very short summary
of the treatment in [1].

2.1 Natural operations on manifolds

We review some definitions in order to fix some nota-
tion; see [2] for a comprehensive treatment. Let @ be
a smooth manifold, ¢ be a point on it, v, be a point on
TQ, I C R be areal interval and v : I — @ be a curve
on ). On the manifold @), we can define smooth func-
tions ¢ — f(gq) € R, vector fields ¢ —» X, € T,Q, and
more general (r,s) tensors fields, that is, real valued
multi-linear maps on (T,Q*)" x (T,Q)*. We let C(Q)
and X(Q) denote the set of functions and vector fields

on Q.

A Riemannian metric on a manifold @ is a (0,2) posi-
tive definite tensor field, that is a map that associates
to each ¢ € @ an inner product (-, -))q on T,Q. A
manifold endowed with a Riemannian metric is said to
be a Riemannian manifold. An affine connection on @
is a smooth map that assigns to a pair of vector fields
X,Y a vector field VxY such that for all f € C(Q)
and for all X,Y, Z € X(Q),

(1) Vix+vZ = fVxZ +VyZ, and

2 Vx(fY+2Z)=(Lxf)Y + fVxY +VxZ.

We also say that VxY is the covariant derivative of Y
with respect to X. A Riemannian metric on @) induced
an affine connection connection called Riemannian by
means of the Levi-Civita theorem, see [2].

Next, we introduce the notion of covariant derivative
along a curve. Consider a smooth curve v = {y(t) €
Q,t € [0,1]}, and a vector field {v(t) € T, @t €
[0,1]} defined along «y. The covariant derivative of the
Do(t)

dt -

vector field v along + is denoted by

The notion of first and second variation of a function
are introduced as follows. Given a function f € C(Q),
its gradient is the vector field defined by

Lx [ = (grad f, X)),
and its Hessian is the (0,2) tensor field defined by

Hess f(X,Y) = (LyLx — Lvy x)/- 3)

Notice that Hess f maps T,Q x T,Q to the real line
and it is therefore a two form; we will often investigate

whether this two form is positive definite over certain
sub-bundles of T,Q).

2.2 Mechanical control systems

A mechanical control system is defined by the follow-
ing objects: (1) an n-dimensional configuration mani-
fold @, with local coordinates {¢*,...,q"}, (2) a Rie-
mannian metric M, on @ (the kinetic energy), also de-
noted by (-, -), (3) a function V on @ describing the
potential energy, and (4) an m-dimensional codistribu-
tion F = span{F",..., F™} defining the input forces.

Let g € @ be the configuration of the system and v, €
T,Q its velocity. The total energy, Hamiltonian, H is

1 1
H(vg) = 5 v, va)) + V() = Sllvall® + V(a)-
Let the input vector fields be ¥; = M, 'F*, and let
Y = spang(g){Y1,...,Ym} be the input distribution.
The Euler-Lagrange equations are

D,

o= —eradV + > v, ()

i=1

where the input functions {u‘(t),t € Rt} are bounded
measurable.



Given a metric tensor M on the manifold @), a vector
field X is said to be an infinitesimal isometry if the
tensor field VX : Y — Vy X is skew symmetric with
respect to the metric tensor M, that is,

(Y, vzX) + (2, Vy X)) = 0. (5)

We call X an infinitesimal symmetry for the mechani-
cal control system (Q, M,V, F), if it is an infinitesimal
isometry and if it satisfies LxV =0 and LxY; = 0 for
all i = 1,...,m. An infinitesimal isometry gives rise
to a conserved quantity. The momentum Jx : TQ —
C(Q) is defined by

JX(Y) = «Xa Y»a Ye x(Q)a

and, along the solutions to the equations of motion (4)
at u; = 0, it holds 2Jx (vs) = 0.

Last, we devise an integral of motion by combining
Hamiltonian and momentum. The effective Hamilto-
nian is the map Hx : TQ — R defined by Hx (vq) =
H(vy) — Jx(vg). The “summing the square” computa-
tion [9] shows that

1 1
x(on) = (V = 5IX0F) @+ 3l — XIP,

and, accordingly, we call effective potential the map
Vx : @ — R defined by

V(@) = V(a) — 5 IXI°(@).

Hence, the effective Hamiltonian is sum of two terms:
a potential and a kinetic energy-like term. The latter
term is a modified kinetic energy, where the argument
is a “velocity error” (v, — X).

Next, we present a quick review of various definitions
and results; see [9] for a more extensive treatment. A
curve v: I C R — @ is called relative equilibrium if it
solves the equations of motion (4) and if it is a flow of
the infinitesimal isometry X, that is,

25 = X0, (©

Proposition 2.1 (Existence and Stability) Let
(Q, M,V,F) be a mechanical control system and let X
be an infinitesimal symmetry. A solution v: 1 — @Q to
the equations of motion (4) is a relative equilibrium if
v(0) = qo is a critical point for the effective potential:

grad Vx(qo) = 0. (7

Additionally, the relative equilibrium v is Lyapunov
stable if the Hessian of the effective potential is pos-
itive definite over variations perpendicular to X :

Hess Vx (Y,Y)(qo) > 0, (8)
for allY € Ty Q such that (Y, X)) = 0.

The fundamental fact in the last proposition is that
the effective Hamiltonian Hx is a map 7Q) — R that
has positive definite Hessian in all but one directions
on the phase space T'Q). This observation is key to
later developments, where Hx will be the candidate
Lyapunov function for the stabilization problem.

3 Stabilization on the phase space

In what follows, we design controllers that stabilize rel-
ative equilibria of a mechanical control system with a
symmetry. Because of space limitations, this section is
a very short summary of the treatment in [1].

3.1 Potential shaping that preserves the rela-
tive equilibrium

As discussed in the Introduction, numerous works have
studied the application of a so-called proportional feed-
back action. The effect of such controls is described in
terms of the effective potential energy “shaping” of the
closed loop.

Lemma 3.1 Given the mechanical control system

(Q, M,V,F) with equations of motion (4). Assume
there exists a function ¢ : Q@ — R such that
m .
grad¢ = Y _c'(q)Vs,
i=1
and set the inputs u® = —c'(q)¢ + v'. Then the

closed loop system is the mechanical control system

(@Q,M,(V +3¢%), F).

We apply this idea to the present context: we attempt
to “shape” the effective potential Vx while preserving
the existence of the relative equilibrium through the
point go. In equivalent words, we ask for the existence
of a function ¢ : @ — R with ¢(go) = 0 and such that

Lx¢=0,

and that
grad¢ € ),

where ) = span{Y1,...,Y,,} is the input distribution.

Proposition 3.2 Let X be an infinitesimal isometry
on the Riemannian manifold Q. Let Y be an m di-
mensional distribution invariant under the action of
X, and let Y+ denote its orthogonal complement and
let Lie(Y*) denote its involutive closure.

Then, the distribution Lie(Y") + spang(g){X} is in-
volutive, has dimension (n — p) > (n —m), and its p
integral functions ¢1,... , ¢y, satisfy
grad¢; € ),

[,XquZO, and VjZI,...,p.



Given these p functions ¢;, let ki,... ,k, be positive
scalars and apply the feedback controls u*(g) defined
implicitly via

D Yilguila) = =) ki) grad é;. (9)
i=1

Jj=1

According to Lemma 3.1, we define the effective Hamil-
tonian for the closed loop as

~

Bxw)) = H(og) + 5 3 kst — (X, vg)
7j=1

1 2 1 2
= P a kg | + gl -,
and the effective potential for the closed loop as

~ 1
Vx =Vx + 35 > kg3
Jj=1
Recall from Proposition 2.1, that stability of a relative

equilibrium depends from the positive definiteness of
the Hessian of V.

Proposition 3.3 (Stabilization) Let (Q,M,V,F)
be a mechanical control system, let X be an infinites-
imal symmetry and let {y : I — Q,v(0) = go} be
a relative equilibrium. Let ¢1,...,¢, be p functions
obtained as in Lemma 3.2 so that, without loss of
generality, we set

Y; = grad ¢y, i=1...,p<m.

Assume that the effective potential Vx is positive def-
inite over variations perpendicular to the subspace

{X,grad ¢,... ,grad ¢, }, that is,

Hess Vx (Y,Y)(g0) > O, (10)
for all' Y perpendicular to {X,grad¢q,... ,grad ¢plq,-
Then, there exist positive constants ki1, ... , kp such that

the feedback controls u/(q) = —k;$;(g), render the rel-
ative equilibrium v Lyapunov stable.

3.2 Dissipation

In this section we employ the classic notion of dissi-
pative feedback to achieve asymptotic and exponen-
tial stability. Within the context of relative equilibria
stabilization, the key observation is that the effective
Hamiltonian Hx is positive definite in all but one di-
rection on the tangent space to 7TQ.

We start by computing the time derivative of the effec-
tive Hamiltonian along the closed loop system. Given
the mechanical control system (Q,M,V,F) with in-
finitesimal symmetry X and with effective Hamiltonian
Hx, it holds

DHx(’Uq)

2 = vy = X, Yoo,

Proposition 3.4 (Exponential stabilization)
Under the same assumptions as in Proposition 3.3,
there exist positive constants ki, ... ,kp and dy, ... ,dp
such that the feedback controls

w? (vg) = —k;o;(q) — djd;(vy),
ut(vg) = —di{{vg — X, i),

render the relative equilibrium {y: I — Q,v(0) = qo}
exponentially stable.

1<j<p
p<i<m,
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