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Abstract

Walking machines are mechanical systems that undergo
impacts and changes in dynamic equations and can be
viewed as a subclass of hybrid systems. In this work
we focus on a class of planar mechanisms that can lo-
comote through plastic impacts and clamping. This
setting retains enough structure to investigate discrete
phenomena in locomotion. We use a geometric frame-
work to describe smooth phenomena such as inertial
and constraint forces and discrete events such as im-
pacts. In this setting hybrid mechanical control sys-
tems are described in terms of affine connections and
linear jump transition maps. For this class of systems
we perform a local controllability analysis. In partic-
ular we employ the notion of configuration controlla-
bility to identify systems that are able to locomote
by clamping. Additionally, we discuss how to adapt
smooth motion planning algorithms to this hybrid set-
ting and present some instructive set of gaits.

Keywords: mechanical control systems, hybrid sys-
tems, impact models, nonlinear controllability

1 Introduction

An instructive subclass of hybrid systems are mechani-
cal systems that interact discontinuously with their en-
vironment in order to move. Key motivating examples
are walking multi-legged devices. Advances in control
of smooth Lagrangian systems have recently led to a
theoretical framework that encompasses numerous lo-
comotion mechanisms. However, problems like motion
planning and dynamic stabilization of a walking robot
remain open.

The purpose of this paper is twofold. On one side we
investigate geometric models for impact mechanics and
relate them to this recently developed framework. We
present a geometric model of mechanical systems sub-
ject to switching constraints. In particular we give an

intrinsic definition of hybrid mechanical control system
in terms of affine connections and linear jump transi-
tion maps. As an application, we consider some low
dimensional examples of sliding and clamping mecha-
nisms and design locomotion gaits for them. Secondly,
we present a local nonlinear controllability analysis for
these systems. This is an attempt to apply tools from
nonlinear controllability theory to hybrid systems with
controlled switches and jumps. Even though our re-
sults are specific to Lagrangian systems, we hope to
gain insight into more general problems from the study
of such structured examples.

Modeling and controllability results for smooth me-
chanical systems are discussed in various works by
Lewis and Murray, see [10, 11, 12]. Some of these
results are related to the general local controllability
problem studied by Sussmann [14]. Also of relevance
are contributions on the motion planning problem.
These include results on kinematic systems by Leonard
& Krishnaprasad [9] and Lafferriere and Sussmann [8].
Bullo et al. [5] developed a motion planning method for
mechanical systems that evolve on a Lie group. Good-
wine & Burdick [6] developed a controllability test and
a planning method for a class of hybrid kinematic sys-
tems called stratified systems. A comprehensive treat-
ment on impacts is given by Brogliato in [3].

The focus of this paper is on mechanical systems with
changing dynamics. They represent a subclass of more
general hybrid systems. A number of approaches to
modeling and control of hybrid systems, as well as sev-
eral applications are described in [1, 7]. However, these
works consider a general setting. Our aim is instead to
explore the inherent structure of the mechanical sys-
tems to derive our results. An approach in this direc-
tion is also [15].
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2 Smooth and hybrid mechanical systems

In this section we review some tools and results in
modeling of smooth mechanical systems. We assume
the reader to be familiar with the geometric machinery
usually employed in nonlinear control theory [13].

Given a smooth manifold Q, an affine connection on
Q is a smooth map that assigns to each pair of smooth
vector fields X, Y a smooth vector field ∇XY such that
for all functions f on Q

(i) ∇fXY = f∇XY , and

(ii) ∇XfY = f∇XY + (LXf)Y

where LXf denotes the Lie derivative of the function f

with respect to X . Affine connections are a formal way
of defining differentiation of vector fields and can be
naturally extended to derivations on the set of tensor
fields on Q, see [10] for further details.

2.1 A geometric description of mechanical con-

trol systems

We start with systems that have Lagrangian equal to
the kinetic energy and later generalize this model to in-
clude constraints [10] and impacts. A mechanical con-
trol system is defined by the following objects:

(i) an n-dimensional configuration manifold Q, with
local coordinates q = {q1, . . . , qn},

(ii) a metric Mq : TQ × TQ → R on Q (the kinetic
energy), alternatively denoted by 〈〈· , ·〉〉,

(iii) an m-dimensional codistribution F =
span{F 1, . . . , Fm} defining the input forces.

Let q(t) ∈ Q be the configuration of the system and
q̇(t) ∈ TqQ its velocity. Let the input vector fields be
Yk = M−1

q F k and let Y = span{Y1, . . . , Ym} denote the
input distribution. The Euler-Lagrange equations for
the system can be written in a coordinate independent
form relying on the Riemannian connection ∇ of the
metric Mq:

∇q̇q̇ = Ykuk, (1)

where (Ykuk)i denotes the ith component of (Ykuk),
and where the input functions {uk(t), t ∈ R

+} are as-
sumed piecewise constant.

2.2 Holonomic and nonholonomic constraints

From the point of control, constraints on a mechanical
system limit the set of directions in which the system
can move. An intrinsic description of a constraint is
therefore through a distribution on TQ, describing at
each point the set of feasible velocities. If a constraint
is nonholonomic, it is by definition described by such a
distribution. If a constraint is holonomic, it is described
by a smooth map ϕ : Q → R

n−p. If C is a regular value
of ϕ, then the equation ϕ(q) = C defines a submanifold
R of Q. The set of feasible velocities is then D(q) =
TqR, which formally corresponds to the null space of
{dϕ1(q), . . . , dϕn−p(q)}. Assuming that the holonomic
constraint can be applied at any point (as is the case
with clamping), and assuming that the set of regular
values of ϕ contains an open non-empty neighborhood
of ϕ(q0) ∈ R

n−p, the constraint distribution D(q) as
the null space of {dϕ1(q), . . . , dϕn−p(q)} is well defined
for each q in a neighborhood W ⊂ Q of q0.

It is important to note that both holonomic and non-
holonomic constraints can be written in the form q̇ ∈
D(q), for an appropriate distribution D(q). In gen-
eral, a mechanical control system together with a con-
strained distribution will be called a constrained me-
chanical control system. In what follows we denote one
such system with

Σ = {Q, Mq, F, D, U}, (2)

where U = {u1(t), . . . , um(t), t ∈ R
+} is the set of

piecewise constant inputs.

Let D⊥ denote the orthogonal complement to D with
respect to the metric Mq. Accordingly, let P : TQ →
TQ and P⊥ : TQ → TQ denote the orthogonal projec-
tions onto D and its complement, P⊥ = I − P . The
equations of motion for the constrained system (2) are
written in concise form as

∇̃q̇q̇ = P (Yk)uk, (3)

where the affine connection ∇̃ is given by

∇̃XY = ∇XY +
(
∇XP⊥

)
(Y ), ∀X, Y.

We refer to [10] for a complete treatment. Observe
that the input distribution for the constrained system
is a projection of the input distribution of the uncon-
strained system. Since equation (3) is formally identi-
cal to equation (1), it is possible to provide a unified
treatment of both constrained and unconstrained me-
chanical control systems, see [10]. In particular, given
a system (2) (set D = TQ for an unconstrained sys-
tem), the forced equations of motion can be expressed

in terms of the pair (∇̃, Y), where we define the set of
input vector fields as

Y = span{P (Yk) | Yk = M−1
q F k, k = 1, . . . , m}.
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2.3 Plastic and elastic impacts

Loosely speaking, an impact causes a switch in the
equations of motions and a jump in the system’s ve-
locity. Let (Q, Mq, F) be a mechanical control system,
let D− and D+ be two constraint distributions, and
let (∇−, Y−) and (∇+, Y+) be the corresponding affine
connections and input distributions. We say that the
mechanical systems undergoes an impact at time t if
the following events occur

(i) the dynamic equations switch from (∇−, Y−) to
(∇+, Y+),

(ii) the state (q, q̇) undergoes a discontinuous change
in velocity described by a tensor field Jq : TqQ →
TqQ. In other words1:

q(t+) = q(t−)

q̇(t+) = Jq

(
q̇(t−)

)
.

This definition recovers the classic notions of purely
plastic and elastic impacts as special cases. For ex-
ample, if a particle hits a surface with nonzero veloc-
ity, then the linear operator Jq annihilates the normal
component of the velocity in the plastic impact case
and reverses it in the elastic impact case (module a
coefficient of restitution e). Formally, we define:

Plastic impact: The two constraint distributions D−

and D+ are distinct (for example D− = TQ and
D+ = TR is the tangent space of a submanifold
R ⊂ Q). The operator Jq = PD+ is the orthogonal
projection from TqQ onto D+.

Elastic impact: The equations of motion do not
change, as connection and input distributions do
not change. There exist a submanifold R such that

Jq = PTR + (−e)P⊥
TR,

where PTR is the orthogonal projection onto the
tangent space to R and where 0 < e < 1 is the
coefficient of restitution.

We note that the above definition of impact applies
to both holonomic and nonholonomic impacts, that is
to impacts that possibly involve either holonomic or
nonholonomic or both type of constraint distributions.
This is an important advantage of the geometric frame-
work we advocate.

2.4 Hybrid mechanical control systems

In this section we introduce a special class of hybrid
systems by merging the notion of “control systems

1The notations q(t−) and q(t+) refer to the limiting processes
lim

s→t− q(s) and lim
s→t+

q(s).

on manifolds with an affine connection,” see [12], and
that of “controlled general hybrid dynamical system,”
see [2].

The fundamental discrete phenomena we model are
controlled switches between distinct sets of constraints,
resulting in impacts. The underlying structure is a
mechanical control system (Q, Mq, F) together with a
given set of constraint distributions Di, where i be-
longs to an index set I. Each constraint Di leads
to a constrained mechanical control system Σi =
[Q, Mq, F, Di, U ], with associated affine connection ∇i

and input distribution Yi. Formally, we define the hy-
brid mechanical control system as

HMCS = [I, Q, ΣQ,V, ∆] (4)

where:

(i) I is the index set of constraints,

(ii) Q is the n-dimensional configuration manifold,

(iii) ΣQ = {Σi = [Q, Mq, F, Di, U ]}i∈I is the collection
of constrained mechanical control systems on Q,

(iv) V = {Vij}i,j∈I is the set of discrete controls. We
require Vij 6= ∅.

(v) ∆ = {δij |i, j ∈ I} is the set of jump transition
maps, where δij : Vij × ∪q∈QDi(q) → ∪q∈QDj(q),
and δij(v)(q, q̇) = (q, Jij(q, v) · q̇). the operator
Jij(q, v) is linear for each q ∈ Q and each v ∈ Vij .

The evolution of a hybrid mechanical control system
can be described as follows. The system starts in a
state ((q, q̇), i) ∈ TQ×I and it evolves according to the
dynamics given by ∇i and the chosen set of controls.
At any point, we can choose to jump to any other dis-
crete state through impact and in general we also have
several different impacts to choose from (indexed by
the set of discrete inputs Vij).

2.5 Remarks

There are a number of differences between our defini-
tion and the definition in [2]. The controlled jump sets
are in our case equal to Q and are thus omitted. Fur-
thermore, we impose more structure on the controlled
jump destination maps: at each point q ∈ Q we can
choose to change the discrete state from i to j by un-
dergoing an impact. During the impact, the velocity
is mapped from Di(q) to Dj(q) through a linear oper-
ator. However, in general there is more than one way
of changing the discrete state between i and j. The
choices are indexed by the set of discrete inputs Vij .

If we require that we can only perform a finite num-
ber of impacts in a finite time interval, we can guar-
antee the existence and uniqueness of the solution of
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the equations of motion. Since impacts are under our
control, this is not a very restrictive assumption.

3 Nonlinear controllability and motion

planning

In this section we investigate controllability and mo-
tion planning for HMCS. Our controllability analysis
is strongly motivated by notions of configuration and
equilibrium controllability [12]. We are thus naturally
led to study the case when the velocity at the impact
is zero (in the terminology of [2], the system undergoes
controlled switches rather than controlled jumps).

3.1 Equilibrium controllability for a smooth

mechanical control system

For any discrete regime i, we have the control system
Σi = [Q, Mq, F, Di, U ] with associated connection and
input distribution (∇i, Yi). The equations of motion
are

∇i
q̇ q̇ = Y i

kuk(t), (5)

where {Y i
1 , . . . , Y i

m} is a base for Yi. Let q0 be a point
in Q and let W be a neighborhood of q0. The reachable
set of q0 within W is

RW
Q (q0, ≤ T ) = ∪t≤T {x ∈ Q | ∃ a solution to (5) s.t.

q̇(0) = 0, q(t) ∈ W for t ∈ [0, T ], and q(T ) = x}.

The system (5) is locally configuration controllable at q0

if there exist a time T such that RW
Q (q0, ≤ T ) contains

a non-empty open subset of Q, and equilibrium control-
lable on on W ⊂ Q, if, for q1, q2 ∈ W , there exist an
input {uk(t), t ∈ [0, T ]} and a solution {q(t), t ∈ [0, T ]}
such that q(0) = q1, q(T ) = q2, q(t) ∈ W for all
t ∈ [0, T ], and q̇(0) = 0, q̇(T ) = 0. These controllabil-
ity notions are quite useful since there exists algebraic
tests for them. Before presenting these tests, we review
a few definitions. Given a pair of smooth vector fields
X, Y on Q, we use two operations on them, Lie bracket
and symmetric product. The latter is defined as:

〈X : Y 〉 = ∇XY + ∇Y X.

Corresponding to these operations between pairs of vec-
tor fields, we introduce two operations on a family of
vector fields X = {X1, . . . , Xm}. We let Lie(X) be the
closure of X under the Lie bracket operation (the in-
volutive closure), and we let Sym(X) be the closure of
X under the symmetric product operation. Within the
set Sym(X), we define the order of a symmetric prod-
uct to be the number of vector fields Xj present in it.
We say that a symmetric product is bad if it contains
even number of each Xi. Otherwise the product is said
to be good. The controllability tests are then

(i) if the rank of Lie(Sym(Y1, . . . , Ym)) is full and if
every bad symmetric product at q is a linear com-
bination of lower order good symmetric products,
then the system (5) is locally configuration con-
trollable at q,

(ii) if these conditions are verified at every q ∈ W ,
then the system is equilibrium controllable on W .

Intuitively, the symmetric closure of the input vec-
tor fields describes what velocities are reachable, while
the involutive closure describes what configuration are
reachable. See [12] for details.

3.2 Equilibrium controllability for the hybrid

mechanical control system

The definition of equilibrium controllability only relies
on the properties of the solutions to the motion equa-
tions. Since these solutions are well–defined for hybrid
mechanical control systems, the definition above is also
applicable in this setting. We now provide an algebraic
test for equilibrium controllability of a hybrid mechan-
ical control system in the case when the velocity at the
impact is zero.

Proposition 3.1 The hybrid mechanical control sys-
tem (4) is equilibrium controllable on an open set W if
the following two conditions hold:

(i) in each discrete state i, every bad symmetric prod-
uct is a linear combination of lower order good
symmetric products

(ii) the rank of Lie(
∑

i∈I Symi(Yi))(q) is full for all
q ∈ W .

This statement is proven in [4]. The proof relies on
two facts. First, by (i) the system in each regime is
equilibrium controllable if restricted to the maximal
integral manifold of the distribution Lie(Symi(Yi))(q).
In other words, we can reach any configuration on this
submanifold and we can reach it at zero velocity. These
last observation implies that the control problem is now
kinematic as opposed to dynamic. Secondly, we can
switch from each smooth regime i to any other j at any
time and configuration (this is guaranteed by point (iv)
in the definition of HMCS where set Vij 6= ∅). We are
thus dealing with a kinematic control system with input
vector field in Lie(Symi(Yi))(q) and Lie(Symj(Yj))(q).
By Chow’s theorem the set of reachable points is

Lie
(
Lie(Symi(Yi)) + Lie(Symj(Yj))

)
∀i, j.

3.3 Motion Planning

Numerous results are available on the motion planning
problem for smooth mechanical control systems. We

p. 4



0

0

X

Y

CM
2l1

2l2

Figure 1: Sliding and clamping device with two legs pa-
rameterized by (θi, xi, yi). The second leg is al-
lowed to fully clamp on the floor reducing the
system’s degrees of freedom from 4 to 1.

propose to employ a scheme composed of local and
global planning algorithms. The method in [5, 9] can
be directly adapted for motion planning in the smooth
regimes. For planning motions that span different dis-
crete states, we combine this local scheme with the dis-
continuous motion planning schemes proposed in [8].
We should note that there are still open questions
about motion planning for smooth systems and here we
do not attempt to address these questions. For exam-
ple, it is still not clear how to perform motion planning
for generic under-actuated mechanical systems. How-
ever, the existing techniques already cover a broad class
of systems (fully actuated mechanical systems, systems
with symmetries and conserved quantities) and as new
techniques are developed for smooth systems they can
be directly employed in the hybrid setting.

3.4 Example: sliding and clamping devices

We present a simple example: two homogeneous bars of
unit density and lengths (l1, l2), connected by a joint
(Figure 1). In the figure, CM denotes the center of
mass of the two body system. The coordinates of the
center of mass of the jth joint are (θj , xj , yj), while
(xCM, yCM) are the coordinates of CM. We assume that
the joint is actuated and that we can instantaneously
clamp the second bar to the ground, resulting in fixing
the position and orientation ϕ1(q) = (θ2, x2, y2).

The configuration manifold of the two body sys-
tem is Q = T

2 × R
2, with a configuration q =

(θ1, θ2, xCM, yCM). The inertia matrix Mq is

l−1




5

6
(l41 + l21l

2
2) + 2l41l

2
2 2l31l

3
2 cos(θ1 − θ2) 0 0

2l31l
3
2 cos(θ1 − θ2)

5

6
(l21l

2
2 + l42) + 2l21l

4
2 0 0

0 0 2l 0
0 0 0 2l


 ,

where l = 6
(
l21 + l22

)2
. The input codistribution is F =

span{dθ1 − dθ2}.

When the second link is clamped, the system is con-
fined to the submanifold R1(q0) = {q ∈ Q | ϕ1(q) =
ϕ1(q0) = (θ20, x20, y20)}. This holonomic constraints
induces the constraint distribution D1(q)

span

{
(l21 + l22)

∂

∂θ1

+ l31 sin(θ1)
∂

∂xCM

− l31 cos(θ1)
∂

∂yCM

}
.

If we set D0(q) = TqQ, we thus have two distinct con-
strained mechanical control systems [Q, Mq, F, Di], for
i ∈ {0, 1}.

Next we present the input vector fields on the two
regimes. The input in the unconstrained regime is

Y0 = ηl

((
5l22 + l21

(
5 + 12l22

)
+ 12l31l2 cos(θ1 − θ2)

) ∂

∂θ1

−
(
5l22 + l21

(
5 + 12l22

)
+ 12l1l

3
2 cos(θ1 − θ2)

) ∂

∂θ2

)
.

By projecting Y0 onto the appropriate constraint dis-
tributions, we get

Y1 = ζ

(
(l21 + l22)

∂

∂θ1

+ l31 sin(θ1)
∂

∂xCM

− l31 cos(θ1)
∂

∂yCM

)

for an appropriate scalar function ζ = ζ(θ1, θ2).

We now have all the necessary tools to check for equi-
librium controllability. In particular we perform the
operation of symmetric closure on the two regimes:
Symi(Yi). For both i, we have

〈Yi : Yi〉i ∈ span{Yi},

and therefore all (good and bad) symmetric products
are linear combination of lower order symmetric prod-
ucts. Next we look at the Lie brackets computations
on the manifold Q. It is straightforward to compute
that

rank {Y0, Y1, [Y0, Y1], [Y0, [Y0, Y1]]} (q) = 4

in a neighborhood of the point (θ1, θ2, xCM, yCM) =
(0, 0, 0, 0). Therefore, the hybrid mechanical control
system {Σ0, Σ1} is equilibrium controllable.

We conclude this section exhibiting some simple loco-
motion gaits for this hybrid mechanical system. At the
point q0 = (0, 0, 0, 0)

[Y0, Y1](q0) = ζ
∂

∂xCM

where ζ is a scalar function. Piecewise constant out of
phase inputs can be employed to generate a displace-
ment along these two Lie bracket directions. Figures 2
illustrates this idea. As discussed above, we refer to
the work in [8] and plan to present an extension of
that algorithm to our setting in a subsequent work.
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Figure 2: Translation gait for the {Σ0, Σ1} hybrid mechanical system. When the second leg is clamped to the ground, it is
colored in gray. Notice the final displacement of the center of mass.

4 Conclusions

We have presented a rigorous and comprehensive
framework for the study of hybrid mechanical control
system. This class of hybrid systems has interesting
features such as a very structured and well understood
smooth dynamics (a set of affine connections) and lin-
ear jump transition maps (the classic models of plastic
and elastic impact). We have presented a controllabil-
ity test that characterizes the reachable set via zero ve-
locity impacts, discussed the motion planning problem
and designed a set of simple gaits for a low dimensional
examples. Our next goal is to investigate the motion
planning problems with jumps at non-zero velocity.
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