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Abstract: We compute a series describing the evolution of a mechanical system
starting at rest and subject to a time-varying external force. This generalizes various
previous results and lays the foundation for the design of motion control algorithms
for a large class of autonomous vehicles, robotic manipulators and locomotion devices.
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1. INTRODUCTION

Underactuated mechanical systems provide a chal-
lenging research area of increasing interest in both
application and theory. In this paper, we examine
an important class of mechanical control systems,
including autonomous vehicles and robotic loco-
motion devices.

A rich literature is available on the motion plan-
ning problem for kinematic systems, that is sys-
tems without drift. Numerous approaches in-
clude chained systems (Murray and Sastry, 1993),
systems on Lie groups (Leonard and Krish-
naprasad, 1995) and (Kolmanovsky and McClam-
roch, 1996), and the general solutions proposed
in (Lafferriere and Sussmann, 1991). The enabling
step in these works is the characterization of the
evolution of the control system. In other words,
the basic contributions of these papers is the com-
putation of a “input history to final displacement”
map. In its most general formulation this prob-
lems is solved by the Chen-Fliess-Sussmann series
in (Sussmann, 1986) and by the logarithmic se-
ries in (Agrachev and Gambkrelidze, 1978). Motion

control algorithms are then designed by inverting
this “inputs to displacement” map.

Unfortunately, this body of literature is of limited
applicability to a large class of mechanical systems
that present dynamics. Recently, some progress
in this direction has been obtained in (Bullo and
Leonard, 1997) and (Bullo et al., 1997). Under
the assumption of small amplitude forcing, the
authors compute the initial terms of a Taylor
series describing the forced evolution. This result
is related to the controllability analysis in (Lewis
and Murray, 1997).

The main contribution of the paper is a series
that describes the evolution of a forced mechanical
system starting from rest. Mechanical systems are
presented as second order systems on a configura-
tion manifold. Instead of a series on the full phase
space (2n dimensional), the evolution is described
as a flow on the configuration space @. The treat-
ment relies on some “chronological calculus” tools,
see (Agrachev and Gamkrelidze, 1978), as op-
posed to the previous work based on the perturba-
tion method. This improvement leads to numerous
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conceptual and computational advantages, one of
which is the series this paper presents.

2. TOOLS FROM CHRONOLOGICAL
CALCULUS

We present some basic result useful to describe
composition and perturbation of flows of vec-
tor fields on manifolds. They are borrowed from
the so-called “chronological calculus”, as intro-
duced in (Agrachev and Gamkrelidze, 1978), and
employed in (Lafferriere and Sussmann, 1991;
Kawski and Sussmann, 1997).

We begin by reviewing some notation:

(i) The order of composition of functions is
f(¢(2)) = (Fo ) ().

(ii) z is a point on the manifold M, f(z),g(z)
are vector fields, and [f, g](z) = ady g(2) is
their Lie bracket.

(iii) A non-autonomous differential equation on
M is written as

&(t) = f(z,1)
z(0) = zq,
and the solution is denoted by
2(t) = ®f 4(20).
(iv) If g is a vector field and ¢ is a diffeomorphism

on M, the pull-back ¢*g is a vector field
defined by

(@*9)(2) £ (To¢™" 0 g0 ¢) ().

2.1 Variation of constants formula

Consider the non-stationary differential equation

z(t) = f(z,t) + g(z) (1)
z(0) = zo,

where f(z,t) and g are analytic vector fields. It
is instructive to regard g as a perturbation to the
vector field f and describe the flow of the previous
differential equation in terms of a nominal and
perturbed flow. As depicted in Figure 1, we have
the following relationship between flows of vector
fields (i.e., solutions of differential equations):

(@5 )79
ngg = ‘I)g,t o <I’0,1&0' . (2)

We formally state this result as follows.
Lemma 2.1. Let {z(t),t € [0,T]} be the solution

to equation (1) and let {y(¢),t € [0,T]} be the
solution to

9t = ((@)°9) @) (3)
y(0) = zo.

To

cI)<<I>£,t)*g
0,t

Fig. 1. The flow along f + g is written as the
composition of a flow along the pull-back
system (@g,t)*g and the flow along f.

Then it holds

o(T) = &} (y(T)).

2.2 Formal expansions for the pull-back along a

flow

Motivated by equation (3) we investigate the pull-
back of a vector field g(z) along the flow of a time-
varying vector field f(z,t). It turns out that

d * *
2 (9l) 9= (%1,) @ 0,9@) @
where the Lie bracket between f and g is com-
puted at t fixed. While this equality is a well-
known fact for autonomous vector fields, it also
holds for time-varying f. This statement is proved
in (Agrachev and Gambkrelidze, 1978), see equa-
tion 3.3.

At fixed 2 € M, we integrate equation (4) from
time O to ¢ to obtain

@ra=a+ [ (@471, 1) ds.

where we have dropped the argument z inside
the integral in the interest of simplicity. We can
iteratively apply the previous equality to obtain
the formal expansion:

o0 t Sp—1
(®4.)*9= g+ Z//
n=1"0 0

(adf(s,) - --adg(sy) 9) dsn---ds1. (5)

If the vector field f is time-independent, i.e.,
f(z,t) = f(z), the previous formula reduces to
the classic Campbell-Backer-Hausdorff formula:

o t"
®f,)7g="> adfg—.
( o,t) g n:Oa fgn!



3. MECHANICAL SYSTEMS AND
HOMOGENEITY

In what follows we model mechanical systems on
a configuration manifold (). Because we are inter-
ested in local problems, we restrict our analysis
to the case where Q = R"; we include some com-
ments on the extension to the general manifold
case. The fundamental feature of this setting is
that we analyse second order differential equa-
tions, where the input is an acceleration (alter-
natively a force) and not a velocity.

Let ¢ = (¢%,...,q") € R" be the configuration.
We consider the following control system

i + Tl (@)@ d* = Yi(gua(t),  (6)

where

(i) the summation convention is in place here
and in what follows,

(i) I‘;?k(q) are n° analytic functions called the
Christoffel symbols,

(iii) for @ = 1,...,m, Y,(q) is an input vector
fields and Y(g,t) is its i*" component with
respect to the usual basis on R™. In what
follows, we let

Y(Qv t) = Z Y, (q)ua (t)

Equation (6) describes a large class of mechanical
systems with Lagrangian equal to kinetic energy,
see (Lewis and Murray, 1997), with symmetries,
see (Bullo et al., 1997) and with nonholonomic
constraints (Lewis, 1998; Lewis, 1997). For exam-
ple, should the mechanical system be a robotic
manipulator, then the Christoffel symbols can be
easily computed via a well-known combination of
partial derivatives of the inertia tensor.

3.1 Lie algebraic structure

We here review the Lie algebraic properties of the
system (6). We start by rewriting the system in
vector notation as

il = Lo v 5]

— .| = N Uq (T

dt [q] [—F(q,q) ; Y, ®)
where I'(q,q) is the vector with components
F;.k(q)qjq'k. If we define z = (g, ¢), and

_ q lige & | O
=] = )

then we can rewrite the system as

&= Zy(z) + Y Ya(z)Mu,.

Let h;(q,§) be the set of scalar functions on R?",
which are arbitrary functions of ¢ and which are
homogeneous polynomials in {¢*,...,...q"} of
degree i. Let P; be the set of vector fields on R2"
which have the first n components in h; and the
second n components in h;1. It can be directly
verified that

Z,€ Py and Yalift e P_;.
This set of vector fields has the useful properties:

(i) {[X,Y]st. X € P;,Y € Pj} C Piyjs
(ii) if £ < —2, then P;, = {0},
(iit) if & > 1, then X(g,0) = 0 for all X(q,q) €
Pr-

On the base of these properties we investigate the
Lie brackets between the drift Z;, and the inputs
Y)ift Tterating these brackets we have:

(1) Z, € P; and Y}it € P_;.
(2) [Zg,Y;ift] E PO and [Yalift,yblift] =0.
3) [Zgj [Zga YJ’“.]] € Py and

[Y'bhft’ [Zg7 Yahft]] c P—ly

and so forth, as the number of Lie brackets in-
creases.

Remark 3.1. While the results in this section are
presented in a coordinate dependent fashion, see
also (Sontag and Sussmann, 1986), it is possible
to turn them into geometric statements. Key
concept is the notion of geometric homogeneity
described in (Kawski, 1995) (mechanical systems
are homogeneous with respect to the Liouville
vector field).

3.2 The symmetric product

In this section we focus on the Lie bracket
[V, [Z,, Y]], Since this vector field belongs to
P_1, there must exist a vector field on R™, which
we denote (Y, : Y}), such that

(Va2 V)™ = [V, [7,, VY.

Such a vector field is called symmetric product
between Y, and Y, and a direct computation
shows that it satisfies
T) ST ) A
. t_ a v by
<)/bYa> - 8qu'b + aqj Ya

+T%, (Yij’“ + Ya’“ij) .

For a more geometric definition of symmetric
product we refer the reader to (Lewis and Murray,
1997). The adjective “symmetric” comes from the
straightforward equality

(Yo :Y) =(Vs: Ys).



Finally, let Y%ft(q,t) = S Y!#(g)u,(t) and, at
fixed g, denote finite integrals with respect to time
t as:

V(g t) 2 /0 Y (g, 5)ds. (7)

We insist that ¢ is fixed during the integration
with respect to t. Via an integration by parts and
thanks to the symmetry of the symmetric product,
one can verify that

// (g
~5 0 YO)™, ©)

where the (g,¢) dependency is dropped for sim-
plicity.

Yhft (81) g]]d82d51 =

3.3 Solutions of ordinary differential equations
with polynomial vector fields

In this section we compute solutions to a few
differential equations defined by the polynomial
vector fields introduced above. In particular we
can make significant simplifications in the follow-
ing two cases:

(i) Let Y(q,t) be a vector field on R", and
consider the differential equation on z =
(q,v) € TR™:

& =Y"(q,1).
In coordinates the previous equation reads

g=0and v =Y(q,t). If (go,v0) € Ty, R are
the initial conditions we compute

oy ([33]) - [vo +%0(qo,t)] ‘

(if) For m > 0, consider the differential equation
on z = (¢q,v) € TR"

= Xo(q, v, t) + Xm(q7v7t) (9)
I(O) = (q070)7

where the X, and X,,, belong respectively to
Po and P,,. We write Xq as

Xy = [ Xoa(g,1t) ]

X0,2 (q7 v, t)

where X 2 depends linearly on v. Since every
component of the vector field X,, is at lest
linear in v and since the initial velocity v(0) is
assumed zero, v(t) remains zero for all time
t. Accordingly, the differential equation (9)
on TR™ reduces to a differential equation on
R™. In short:

q(t)
v(t)

’1 (0)

0,¢

4. A SERIES FOR MECHANICAL SYSTEMS

We would like to describe the evolution of sys-
tem (6) when starting from rest. We plan to do
this by writing the total flow into a flow in the
velocity variables and a flow in the configuration
variables.

Theorem 4.1. Let {y(t),t € [0,T]} denote the
solution to the differential equation

¥+ DMy AE =Y (nt)
with initial conditions y(0) = go and 4(0) = 0. Let
the functions I‘j.k(q) and the vector field Y(q,t)
be uniformly integrable and bounded analytic in
a neighborhood of go. At fixed g, let Vi(q,t) =
f(f Y (q, s)ds and

Viti(g,t) =

/0t<v’“ (25) : ZV q,8)+5 Vk(q, )>ds.

There exists a sufficiently small T, such that
the series > 7~ Vi(g,t) converges absolutely and
uniformly in ¢ and ¢ for all ¢t € [0,T,] and for all
¢ in a neighborhood of ¢o. Over the same interval
the solution +y(t) satisfies

“+oo
t) = Vi(y(®),1)- (10)
k=1

For a detailed proof of convergence of the series
we refer to a forthcoming publication. In what
follows, we present a formal derivation of the series
expansion.

PROOF. Let k be a positive integer, z; € R?",
and let X and Y} be time varying vector fields
on R™. Consider the differential equation

ik — (Z + [Xllft VA ] Yhft) (J)k,t) (11)
z1(0) = [q((])] .

We recover the mechanical system in equation (6)

by setting k¥ = 1, X3 = 0, Y1 = Y(q,t), and
accordingly z(t) = z1 (¢).

Using the variation of constants formula in equa-
tions (2.1) and (3), we set

2i(t) = B0 (241 (1)) (12)
and
mﬂ=(@£ﬁWz+w“zmyuﬂ)
(13)
2p41(0) = [qoo] .



where we compute the pull-back along the flow
by means of the infinite series in equation (5).
Remarkably, this series reduces to a finite sum.
From the discussion in Section 3.1 on the Lie
algebraic structure of the various vector fields, we
have

a-dr;fzm Zg =0
s X}, 2,) =0,

for all m > 3. With a little book-keeping we can
exploit these equalities and compute

lift \ * -
(204 ) (2,+[XE", 2,)
t
= Z,HXE 2,0+ [ ), (2, + (X", 2,))ds
t s1 . ’ .
+ / / [Vif(s2), [Yi(s1), Zg]]dsads:
0 JoO
i —lift —lift .
= ZQ + [Xllclft + Yk 7Zg] + [ch (S)v [Xllclfty Zg]]
t s1 . .
[ o), 15 52), 2, s
0 J0
= Z,+ X[+ V., 2] - (7, XER)
1 /=it it
_ oYy >
2 < BTk

where we have used equation (8). Therefore, the
differential equation describing the evolution of
Zr+1(t) is of the same form as equation (11),
where

Xip1 =X+ Yy

Yit1 :_<?k Xk+%7k>

We easily compute

k-1

Xy, = Ym

m=1

and set
k-1
Yii1 = —<Y,c > Y+ %Yk>

According to the the iteration in the statement of
the theorem, we have proven that Vj, = Y.

In summary, the iteration procedure proves that,
for any k£ > 2, the solution to the original mechan-
ical system z(t) = z1(t) satisfies

1ift

ylift ylift ylif
z(t) = (<I>0}t 0®p% o...0®y} ‘) (zx(2)),

where {z(t),t € [0,T]} is the solution to equa-
tion (11). We immediately simplify this result as
follows. Since the Lie bracket

[Yili“ ('T7 51)7 leift(w7 52)] =0

for all 7,5 and for all s1, s, the flows of Y;li“ and
Yjlift commute. Accordingly, we write

o(t) = 87" (24 (1)),

Since the previous equality holds for all k, we
next investigate the quantities an:l Y (g,t) and
{zx(t),t € [0,T]} in the limit £k — +o0.

Since the input Yi(q,t) = Y(q,t) is assumed
analytic and bounded, one can prove the existence
of a constant M and positive values c¢;, such that

||?k(q7 t)” < th2k_l and Ck+1 < Mck’

where || - || is an appropriate semi-norm. In the
interest of brevity, we refer to a forthcoming
publication for the proof of these statements.

In short, the series Y oo_; Yi(q,t) converges ab-
solutely and uniformly in ¢ and ¢, for ¢ in a
neighborhood of gy and for sufficiently small ¢.
We denote

Yoo(:t) = ) Yin(g,1).

Since the vector field Y* belongs to P_; we can
explicitly integrate its flow, see Section 3.3. From
the initial condition [¢f,07]T € T,,R", we have

o () o

Next, we investigate the limit as £ — oo of
the solution {z(t),t € [0,T]} to the differential
equation (11). The previous arguments lead to
uniform convergence in ¢ for small time ¢ of the
limits:

lim Y (g,t) =0 and lim Xi(g,t) =Y oo.
k—oo k—oo

The limit 2o (t) = limg_00 2 (t) satisfies
. —lift
Too = (Zg + ¥V 7Zg])(z<x>)
Zoo(0) = [‘g’] .

This differential equation can be integrated as
discussed in Section 3.3, since the initial velocity
is zero and the vector field belongs to P; + Pg.
From the initial condition [¢T, 0T]T, we have

o = [1®] _ | @¥F (q0)
=(t) = [éoo(t)] _[ 0 0]’ (15)

The final result in the theorem follows from com-
bining the two flows in equations (14) and (15).

Notice that equation (10) is well-defined, since at
fixed ¢, the integration is performed with respect



to the time variable. Using the abbreviated nota-
tion introduced in equation (7), a few terms of the
iteration are computed as

V=Y
Vo= —5(V:7)
1 1

Ve=3((V:Y):Y) - (V1) V:7)),
so that we can write
§(0) = V(3,0 = 3V 1)) +
%<<?: V) V) (1) + ().

4.1 Expansions under small amplitude forcing

The series in equation (10) converges under the
assumption of small final time 7' and bounded
total acceleration Y (g,t). Here we derive a series
that converges under the assumption of bounded
final time 7" and small acceleration Y (g, t).

Let € be a small positive constant. Motivated by
the treatment in (Bullo et al., 1997), consider a
total acceleration dependent on € and of the form:

Y(q,t,€) = eX(q,1).

Equation (10) is equivalent to

(0 = X(1,8) — S (X X))

+ %<<X LX) : X>('y,t) +O(e). (16)

This expression generalizes the results presented
in Proposition 4.1 in (Bullo et al., 1997), since
in that context the treatment was restricted to
manifold with Lie group structure and invariant
vector fields. Notice that this series now converges
under two different set of assumptions: either € is
bounded and ¢ goes to zero (see main theorem
above), or t is bounded and e goes to zero (see
statement in (Bullo et al., 1997)).
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