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Control systems described by the Euler—Lagrange’s equations are analyzed via differential geometric
techniques. We present an intrinsic procedure to design trajectory tracking controllers for fully

actuated systems.

Abstract

We present a general framework for the control of Lagrangian systems with as many inputs as degrees of freedom. Relying on the
geometry of mechanical systems on manifolds, we propose a design algorithm for the tracking problem. The notions of error function
and wansport map ead ¢ & proper Gchnion of confzuraton and velodty error. These are ne <ruadl ngredients in designing
& proporuoenal denivative feedback and feedforward contralier. The propesed approach inciudes as special cases a vasiety of results on
conirot of manpniators, ponning tevices and antonomons vemeies. Our design provides pariicniar insight mio both aerospace and
underwater appiications where the configuration manifotd 1s a4 Lie group. & 1999 Elsevier Science Lid. All rights reserved.
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1. Introduction

Mechanical control systems provide an important and
challenging research area that falls between the study of
classical mechanics and modern nonlinear control theory.
From a theoretical standpoint, the geometric structure of
mechanical systems gives way to stronger control algo-
rithms than those obtained for generic nonlinear systems.
Recent promising results in this area are surveyed in
Murray (1995). The driving applications are motion con-
trol problems arising from the study of underwater and
aerospace autonomous vehicles. In these environments,
relevant Lagrangian models are available and a sharp
nonlinear analysis can successfully exploit this structure.
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This paper deals with the trajectory tracking problem
for a class of Lagrangian systems. The control objective is
to track a trajectory with exponential convergence rates
in order to guarantee performance and robustness. The
mechanical systems we consider have Lagrangian equal
to the kinetic energy and are fully actuated, that is, they
have as many independent input forces as degrees of
freedom. A wide variety of aerospace and underwater
vehicles, as well as robot manipulators, fulfill these as-
sumptions. The main emphasis is on the fact that the
configuration space of these systems is a generic mani-
fold. In particular, the group of rotations SO(3) and the
group of rigid rotations and translations SE(3) are com-
monly encountered examples.

The tracking problem for robot manipulators has re-
ceived much attention in the literature. Examples are the
contributions in Takegaki and Arimoto (1981), Wen and
Bayard (1988) and Slotine and Li (1989), where asymp-
totic, exponential and adaptive tracking are achieved via
a nonlinear analysis. These results are now standard in
textbooks on control (Nijmeijer and van der Schaft, 1990)
and robotics (Murray et al., 1994). Since then, similar
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techniques have been applied to the attitude control prob-
lem for satellites (Wen and Kreutz-Delgado, 1991), and
likewise to the attitude and position control for under-
water vehicles (Fossen, 1994, Section 4.5.4). A further
example is the spin axis stabilization problem for satellites
(Tsiotras and Longuski, 1994). A common feature in all
these works is the preliminary choice of a parametrization,
i.e. a choice of coordinates for the configuration manifold.
The synthesis of both control law and corresponding
Lyapunov function is performed in this specific param-
etrization. This set of coordinate plays then an impor-
tant role, when the control system is characterized in
terms of, for example, singularities and exponential con-
vergence, and when adaptive capabilities are included.

In this paper we propose a unifying framework that
applies to a large class of mechanical systems. In the
spirit of Koditschek (1989), this is achieved by avoiding
the parametrization step. Our design algorithm focuses
on basic, intrinsic issues such as how to define a state
error and how to exploit the Lagrangian dynamics. The
notions of “error function™ and “transport map” yield to
a coordinate-free definition of errors between configura-
tions and between velocities. Together with a dissipation
function these ingredients determine the feedback law.
The feedforward control is devised using the theory of
Riemannian connections. Provided a compatibility con-
dition between error function and transport map holds,
our control strategy achieves globally stable tracking. As
discussed in Koditschek (1989), (possible} topological
properties of the configuration manifold preclude global
asymptotic stabilization. However, we prove local ex-
ponential stability under some boundedness conditions
and we provide an estimate of the region of attraction.
Useful extensions to adaptive control and to more gen-
eral mechanical systems can be included via standard
techniques. We remark that the design process, the state-
ment and the proof of the main theorem are all per-
formed without choosing coordinates on the configura-
tion manifold.

The resulting design algorithm is then set to work in
a variety of applications, recovering previous controllers
and suggesting new ones. Examples are the standard
“augmented PD control” for robot manipulators, see
Murray et al. (1994), and the novel tracking controller for
systems on the two sphere. Most instructive is the treat-
ment of the tracking problem on the group of rigid
rotations SO(3) and on the group of rigid motions SE(3).
In the latter case for example, we design a large set of
error functions with matrix gains and we characterize
transport maps as changes of reference frame. These
ideas lead to a comparison of various previous ap-
proaches and to new results. Finally, some computation-
ally simple feedforward controls are derived via an exten-
sion of the main theorem.

The paper is organized as follows. Section 2 reviews
some required tools from Riemannian geometry and

some concepts from mechanical control systems. Section 3
introduces the notions of error function and transport
map. The two sphere example illustrates these concepts
and the section ends with an additional study of the
transport map. All these ideas lead to the main theorem,
with proof and comments, in Section 4. Many examples
and applications of the main result are finally discussed
in Section 5. A preliminary version of this paper ap-
peared at the 1997 European Control Conference (Bullo
and Murray, 1997).

2. Mathematical preliminaries

In this section we introduce the mathematical machin-
ery needed for the remainder of the paper. For an intro-
duction to Riemannian geometry we refer to Boothby
(1986), DoCarmo (1992) and Kobayashi and Nomizu
(1963). For an introduction to mechanics we refer to
Arnold (1989) and Marsden and Ratiu (1994).

2.1. Elements of Riemannian geometry

A Riemannian metric on a manifold Q is a smooth map
that associates to each tangent space T,Q an inner prod-
uct £, », Given a pair of smooth vector fields X,Y, we
let [X,Y] denote their Lie bracket and equivalently
%Y denote the Lie derivative of Y with respect to X.
An affine connection on Q is a smooth map that assigns to
each pair of smooth vector fields X,Y a smooth vector
field V such that for all functions fon Q@

(1) Vix fY =fVy Y, and
(2) VxfY =/VxY + (&)Y

where % f denotes the Lie derivative of f with respect to
X. Given any three vector fields X, Y, Z on Q, we say
that the affine connection V on Q is torsion-free if

[X,Y]=VyY — WX o
and is compatible with the metric -, » if
LY, ZYy =&VxY,Z» + LY, VxZ). (2)

The Levi-Civita theorem states that on the Riemannian
manifold Q there exists a unique affine connection V,
which is torsion-free and compatible with the metric.
Indeed, combining Egs. (1), (2) and their permutations,
one obtains the equality

+ LHLX, ZY Y [X, Z])
— IKY, ZY — KXY, Z]), (3)

which uniquely determines the connection V as a func-
tion of the metric ¢ -, ). We call this V the Riemannian
{(or Levi-Civita) connection on Q.
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We conclude with two useful definitions. Given a real-
valued function f on Q, the gradient of f is the vector
field Vf such that

VL XD 2 L.

Given a one form w and a vector field X, the covariant
derivative of @ with respect to X is the one form Vyw
such that

(Vxw) Y = Py Y)— w0 Vi Y,

for all vector fields Y.
2.2. Computing covariant derivatives

Loosely speaking, covariant derivatives are directional
derivatives of quantities defined on manifolds. Eq. (1)
relates them to the notion of Lie differentiation, whereas
Eq. (2) plays the role of the Leibniz rule. In the following
we present some useful approaches on how to compute
covariant derivatives.

A first instructive case is when the manifold Q 1is
a submanifold of R” and the Riemannian metric on Q is
the one induced by the Euclidean metric on R". Let
n, denote the orthogonal projection from R" onto the
tangent space T,Q. Given any two vector fields X, Y on
Q, it holds that

(VxY)(qo) = 7, (9’

= Y(q(r))) @

t=0

where {g(t), t € R} is any curve on Q with ¢(0) = g, and
4(0) = X(q,). We refer to Boothby (1986, Chapter VII) for
more details on this description of covariant differentiation.

In the general case, e.g. whenever the previous assump-
tions are not satisfied, we can express covariant deriva-
tives in a system of local coordinates. Given the chart
(4", ..., q"). we define the Christoffel symbols I'}; by

0 é
Va/aq" (5&7) =1 fj -@?’

where the summation convention is enforced here and in
what follows. The Christoffel symbols of a Riemannian
connection are computed from Eq. (3) as follows. Denot-
ing by M;; = £6/¢q', 8/0q’, we have
oM,,; oM,; &M
rs=4mm e
Jj 2 ( aql aqj aqm>

&)

where MY is the inverse of the tensor M;. The covariant
derivative of a vector field is then written as
oY! d

VyY = (WXJ + Iy X7 Y") @ (6)

and of a one form as

dw; .., N
Vyo = (aiq’jXJ — r{fjka!> dq'. 7

Finally, we describe Riemannian connections within the
context of Lie groups. For an introduction, see Marsden
and Ratiu (1994, Chapter 9). Let G be a Lie group and
g its Lie algebra. An example is the group of special
orthogonal matrices SO(3) and the set of skew symmetric
matrices so(3). The letters g and h denote elements in G,
e is the identity. The Greek letters ¢ and 5 denote ele-
ments in g and ad:n = [, 5] denotes the Lie bracket
operation on g. The map L,:G — G; hr—gh is called
left translation. A left invariant vector field satisfies the
equality

X(gh) = T,L; X (h),

where T,L, is the tangent map to L, at h. If, in the
previous equation, we set h=e, it follows that
X(g) = T,L, ¢, where & = X(e). Thanks to this equality,
the Lie algebra g can be identified with the tangent
space T,G. To further simplify notation, we define
g-&=T,L,¢ Left invariance is preserved by the Lie
bracket operation, since

lg-& g nl=g1&n)

Let g* denote the dual space of g, that is the set of
covectors « such that {a, &) is a linear function of ¢ € g.
An inner product on the Lie algebra g, that is a tensor
l:q — g*. induces a left invariant metric on G by left
translation. The Riemannian connection V associated to
this metric is of interest to us. An application of Eq. (3)
shows that this connection satisfies

Vig-alg-n) =g-(Ven).
where the map V:gxg — g is defined by
Ven =5[En] =31 N(ad¥ly + ady 1), ®8)

and where ad¥:g* — g* is the dual operator of ad;
defined by (ad¥ «, 1) = <{a, [£, #]) for all x € g*. Invari-
ant connections on Lie groups are useful in various fields
like hydrodynamic of ideal fluids (Arnold, 1989, Appen-
dices 1 and 2) and nonholonomic control systems (Bloch
and Crouch, 1995).

2.3. Mechanical systems in a Riemannian context

Here we describe a mechanical system and its equa-
tions of motion in a coordinate free fashion. The key idea
characterizing our approach is to regard the system’s
kinetic energy as a Riemannian metric and to write the
Euler-Lagrange’s equations in terms of the associated
Riemannian connection. For a more complete treatment,
see Lewis (1995a). We start with some definitions.

A simple mechanical control system is defined by
a Riemannian metric on a configuration manifold Q (de-
fining the kinetic energy), a function V on Q (defining the
potential energy), and m one-forms, F', ..., F™, on Q (de-
fining the inputs). A simple mechanical system is said to
be fully actuated if for all g € Q, the family of vectors
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{F'(q), ..., F"(g)} spans the whole vector space T*Q. In
other words, a system is fully actuated if there exists an
independent input one form corresponding to each de-
gree of freedom.

Let M,:T,Q — T}Q denote the metric tensor asso-
ciated to the kinetic energy and V the corresponding
Riemannian connection. Let ¢(t) € Q be the configuration
of the system and 4(t) € T,Q its velocity. Using the for-
malism introduced in the previous section, the forced
Euler-Lagrange equations can be written as

Vod = M ' (—dV(g) + F(t, 9, 9)), (9)

where dV(q) is the differential of the potential function
V and where the resultant force F(q, t) = ¥ F(q)u,(t) is
the input. In a system of local coordinates (¢, ..., q") the
previous equation reads

. . . ov
ql+F;kq'Jq.k=MU<—a—q}+Fj>, i-_—‘l,...,n.

Note that the Euler—Lagrange’s equations are coordinate
independent (intrinsic), in the sense that they are satisfied
in every system of local coordinates.

Finally, we describe mechanical systems within the
context of Lie groups. A simple mechanical control system
on a Lie group is defined by a Lie group G with its algebra
g, an inertia tensor [ : g — g* (defining the kinetic energy)
and m covectors /', ..., /™, on g* (defining the body-fixed
forces).

If g € G denotes the configuration of the system and
¢eq the body-fixed velocity, then the equations of
motion (9) reduce to two sets of equations, (kinematic
and dynamic)

1& =ad} ¢+, (10)

where f =Y f“u,(t) is the resultant force acting on the
system and where adf is defined above. The previous
equations are called the Euler-Poincaré equations
(Marsden and Ratiu, 1994).

3. Geometric description of configuration and
velocity error

In this section we study the geometric objects involved
in the controller design. To measure the distance between
reference and actual configuration, we introduce the no-
tion of error function. To measure the distance between
reference and actual velocity, we introduce the notion of
transport map. A design on two sphere manifold pro-
vides an example of our definitions. Finally we study the
time derivative of the transport map. Together with a dis-
sipation function, these ingredients are crucial in design-
ing a tracking controller.

3.1. Error function and configuration error

Let ¢ be a smooth real valued function on Q@ x Q. We
shall call ¢ an error function if it is positive definite, that is
¢(g,r) =0 for all g and r, and ¢(q, r) = 0 if and only if
g = r. We shall say that the error function ¢ is symmetric,
if (g, r) = @(r, q) for all g and r.

Let d,¢ and d,¢ denote the differential of ¢(q, r) with
respect to its first and second argument. We shall say that
the error function ¢ is (uniformly) quadratic with constant
L if for all &£ > 0 there exist two constants b; > b, >0
such that (g, r) < L — ¢ implies

bylldiolg, n)] zzm, = @lg,r) 2 by dyo(q, 1) szn,, (A1)

Here and in what follows, the tag (An) denotes design
assumptions that will play a crucial role in later sections.

Remark. The quadratic assumption on the error func-
tion is necessary in order to prove exponential conver-
gence rates. This is a weak requirement, since positive
definite functions are always of at least quadratic order in
a neighborhood of their critical point.

When g and r are actual and reference configuration,
we will sometimes call the quantity ¢(q, r) configuration
error. As mentioned above, the error function ¢ will be
instrumental in designing the proportional action.

3.2. Transport map and velocity error

Given two points g, r € Q, we shall call a linear map
Tqn: T,Q — T,0Q a transport map if it is compatible with
the error function, that is if

d0(q, 1) = — Tnd10(g. 1), (A2)

where 7§ ,,: Ty Q — T}Q is the dual map of 7, ,,. The
transport map .7 is also required to be smooth, i.e., for all
points r in Q and tangent vectors Y, in T,Q, the vector
field 7, , Y, is smooth.

Given a transport map, velocities belonging to differ-
ent tangent bundles can be compared. In the following,
we shall call velocity error the quantity

é24— T, nieT,Q. (11)

Note the slight abuse of terminology, given that the
velocity error is not the time derivative of a position
error. Also note that since the definition of 4 and é are
equivalent, we will sometimes talk about compatibility
between configuration and velocity errors. The next
lemma provides some insight into the meaning of the
velocity error and of condition (A2).

Lemma 2 (Time derivative of an error function). Let
{q(1),t € Ry} and {r(t), t € R, } be two smooth curves in Q.
Let ¢ be an error function and 7 a compatible transport
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map. Then

d
5, 2. r(@) = diolq(@), (1) - €(1), VeeR,.

Proof. Applying the compatibility condition Eq. (A2), we
have

d . .

a—tfp(q(t), Ht) =die(g,r)q+diplg,r)F
=di9(g,r) 4 +(— TGndiolq, 1) 7
=dp(q, 1) (§ — TignP

The result can be restated as follows. As both g and r are
functions of time, the time derivative of ¢:Q0xQ - R
reduces to a derivative only with respect to the first
argument

Zin® = Lie.0)®s (12)

where (X, Y) denotes a vector field on the product mani-
fold O x Q.

Last, we introduce the notion of dissipation function,
which will be useful in defining a derivative action. We
define a (linear Rayleigh) dissipation function as a smooth,
self-adjoint, positive-definite tensor field (K )(q): T,Q —
T*Q. We shall say that K, is bounded if there exist
d, > d; > 0 such that

dy = sup || Ky(g) lar, = inf | Kg(q) [lar, = dy, (B1)
qeQ qeQ

where || - || 5 is the operator norm for (1, 1) type tensors
on T,0Q induced by the metric M, on T,Q. Here and in
what follows, the tag (Bn) denotes boundedness assump-
tions that will play a crucial role in later sections.

3.3. Example design for the two sphere S*

To illustrate the previous ideas we apply them to the
two sphere $?£ {p € R*| p"p = 1}. Since S? is embedded
in R?, we identify points, tangent and cotangent vectors
on the sphere, with their corresponding components in
R3. Note that the Euclidean norm | -|| on R® induces
a metric on the submanifold S%. Given an error function
¢:S?xS? > R,, the norm of its differential |d,¢| is
therefore well defined. In what follows, we let a x b de-
note the outer product between the two vectors a, be R3,
and we let 4 or a” denote the 3 x 3 skew symmetric matrix
such that ab =axb.

Lemma 3 (Design on the sphere). Let g and r belong to
S?2. It holds that

(1) ¢(g, )21 —q"r is a symmetric error function with
differential (q,r) = §*r = —r +(q'1)q,

(2) @(q,r) is a quadratic error function with constant
L =2, and

(3) Tiun2(q'r) s + (rxq) is a compatible transport map.

Proof. Since the orthogonal projection of re S* onto
span{q}* is r — (¢"r)q = — §*r, we have

Lo =—4r=—4"(r—(qng=@n"q

This proves (1). We prove (2) as follows. By assumption
we are given an ¢ > 0 such that 0 < ¢(q,r) <2 —¢, or
equivalently 1 > g"r > — 1 + & The differential of the
error function satisfies

lol*=1lr—(a"nql*=1—(q"r* =(1 + q"Nelg,r).

Since at ¢(g,r) =0 the bounds in assumption (Al)
are verified, we only need to check that there exist
by = b, > 0 such that

bi(1+4"=1>b,(1+4"r)

This holds true for b, = 1/2 and b, = 1/¢, proving (1).
Next we show that ¢ and J are compatible (A2). This is
verified with some algebraic simplifications based on the
equality v x (w x z) = (1Tz)w — (t"w)z. We have

T*di(g,n) =—(q'nr+(q""*q—(r —(@'Ng) x(rxq)
= —(@"Nr+(@'Pg—(r—@"Me)gr
— (" —(g"Mg)'r)q
=—(@nNr+@Ne+1—-grg
=q—@"r=—olgn.

Next, we present some figures to compare our design
with a traditional one. To warn of the effects of a design
performed in local coordinates, Fig. 1 shows various
paths connecting the same two points on a sphere. In
each figure we employ a different projection, that is
a different set of coordinates x(g), and we draw the flow of
the gradient of the (error) function || x(q) — x(r)||*, that is
a straight line in the particular set of coordinates. Note
how the resulting paths depend on the choice of projec-
tion.

In Fig. 2, we focus on two different choices of transport
map and velocity error. Given a fixed reference velocity
# (which is represented in both pictures by a thick arrow
on top of the sphere), we draw for various points g the
vector field 7, ,,F. The left picture portrays the global,
smooth design described above. On the right picture, we
show the velocity error computed in a latitude, longitude
parametrization. This is the procedure: if (8,, ;) are the
local coordinates, then we can write

-~

a d
F=F— (1) + 7y (1)
L300+ T )
We computed the “velocity error” vector field as

., 0 . 0
%al/longr =n '&Tl(q) + 72 EE; (CI)

At the north pole of the latitude, longitude chart the
singularity is evident.
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Fig. 1. Straight lines on different projections of S? are different curves.

Y

Y

Fig. 2. Transport maps on S*. We depict the vector F, 7 for two different transport maps: on the left our smooth global design, on the right a design
based on a latitude, longitude chart, with the north pole denoted by the letter N.

3.4. Derivatives of the transport map

So far we have introduced configuration and velocity
errors that will be key ingredients in designing a propor-
tional and derivative feedback in the next section. We
now study how the transported reference velocity (7, ,F)
varies as a function of both ¢(t) and (r, /)(z). This will be
useful in designing the feedforward action. Let the total
derivative of (7, ,F) be

D(TF) o d .
— e V. 9 + — g 13
dt q(J r) dt qﬁxed( r)’ ( )

where the two terms are described as follows:

(1) At (r,7) fixed, 7, 7 is a vector field on Q and there-
fore its covariant derivative V;(J#) is well-defined on

Q. We call covariant derivative of the transport map
the map VI : T,0 x T,Q — T,Q defined as

(Vx7) Y, &Vx(TY),

for all tangent vectors X e T,Q and Y, e T,Q.

(2) At g fixed, 7, ,F is a vector on the vector space T,0
and therefore its time derivative is well-defined. We
denote it with the symbol:

4 (7 eT,0.

dt g fixed
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Next, we compute coordinate expression for the pre-
vious quantities. Let {0/dq", ... ,8/8¢"} be a basis for T,Q
and {é/ér', ... ,d/0r"} a basis for T,Q. Then we have the
decompositions

.0
{,‘r a—qk
If I'¥; are the Christoffel symbols of V and if X is a tangent
vector in T,Q, then we have

, ¢ .
F= f’——a - and Ji=J9
r

0T . o
(ng-)’; = —a—-(P-XJ + I”ﬁ‘,-ﬁ}X’. (14)
Regarding the time derivative at q fixed, we have
d k8T
S ) =L 5
(dt qﬁxed( r)) 57 PP 4+ T 7 (15)

Remark 4. Assume for an instant that the reference
trajectory r(t) obeys the same equations of motion as the
actual mechanical system, that is

Vi = M, (1),

for some appropriate reference force F (t}e T, Q. Since in
coordinates we have (V,7)* = i + I}, (r)f’f, then we can
rewrite Eq. (15) as

d oTE 2
T T « ; ]
—(ﬂ inxed(J r) =7 Vfr * ( arﬁ ; g_y F;B(r))r ’ 5&;

& T (M F(0) + (Vion T,

where the last equality defines implicitly the map
Vo.nZ :T.Q - T,0. Note that the definition is coordi-
nate independent, hence well-posed. Roughly speaking,
this map is the covariant derivative of  with respect
to 7. This statement can be made precise by defining .7 as
a tensor on the product Riemannian manifold @ x 0. We
do not pursue this direction here for reasons of economy.

We conclude the section with some boundedness as-
sumptions. We shall say that the transport map 4 has
bounded covariant derivative and that the error function
¢ has bounded second covariant derivative if

sup VT gnlin <00 (B2)
q,ne@=xQ
and

sup  [[Vd;e(g, r)llx <o, (B3)
(q,reQ@xQ

where | - || is the operator norm on the inner product
space (T,Q, M,). We shall say that the twice differentiable
curve {r(t),teR.} < Q is a reference trajectory with
bounded time derivative if

sup || Flia, < . (B4)

teR

Given the equalities (7) and (14), a sufficient condition for
the bounds (B2) and (B3) to hold, is that the quantities
M;;, MY, Tk, 87%/8¢4" and &*¢/(8q'éq’) are bounded over
(g, Ve Q@ x Qforalli,j, k, «. On a compact manifold these
conditions are implied by the smoothness of M, K,,
J and ¢.

4. Tracking on manifolds

In this section we state and solve the exponential
tracking problem for general mechanical control systems
on manifolds.

4.1. Problem statement and main result

In what follows, we let {r(z), t € R} denote a reference
trajectory, (¢, .7 ) denote a pair of error function and
transport map and we focus on a simple mechanical
control system with no potential energy:

V,ig=M;'F, qeQ. (16)
We loosely state the control objective as follows:

Probelm 5. Design a control law F = F(q, §; r,7) such
that the configuration q(t) tracks r(t) with an exponentially
decreasing error.

Special care is needed to make this statement precise,
as no trivial definition of exponential stability exists for
systems on manifolds. We start by introducing a total
energy function, defined as the sum of a generalized
potential (the configuration error) and a kinetic energy
function (the norm of the velocity error).

Wiowld. 4 1.7 )20(q, 1) + 2114 = Tiqn i, (17

Alternatively, we will write W, (t) for W ,.(q(t), 4(1));
r(t), #(t)). Next, we introduce the following definitions:

(1) The curve q(t) = r(t) is stable with Lyapunov function
W o if it holds W (t) < W ,,,1(0) from all initial con-
ditions (g(0), g(0)).

(2) The curve g(t) =r(t) is exponentially stable with
Lyapunov function total if there exist two positive
constants 4, k such that W) <k Wim(0le ™,
from all initial conditions (g(0), ¢(0)).

We are now ready to state the main result.

Theorem 6 (Exponential tracking). Consider the mechan-
ical control system (16), and let {r(t),t e R.} be a twice
differentiable reference trajectory. Let @ be an error func-
tion, 7 be a transport map satisfying the compatibility
condition (A.2) and K, be a dissipation function.
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If the control input is defined as F = Fpp + Fpg with

Fep(q, g;r.7) = — dyolg, 1) — K4€

Feplq, g r F) =

d
((V Tan)F +— Y

(‘g.(q,rj ’:)>3
g fixed

then the curve q(1) = r(t) is stable with Lyapunov func-
tion Wgal-

In addition, if the error function ¢ satisfies the quadratic
assumption (A1) with a constant L, and if the boundedness
assumptions (B1)~B4) hold, then the curve g(t) =r(t) is
exponentially stable with Lyapunov function W, from all
initial conditions (q(0), 4(0)) such that

(q(0), H0)) + 3 [1€(0) i3, < L.
4.2. Proof of the main theorem

Proof. The proof is divided into three parts: first we
prove Lyapunov stability using the total energy as
a Lyapunov function. Second, we add an additional
“cross” term to the Lyapunov function. Finally, we
conclude local exponential stability with a bounding
argument.

The proof is based on the properties of covariant
derivatives described in Section 2.1 and on the defini-
tions in Section 3.4. This approach makes the proof
straightforward and independent from any choice of
local coordinates: the Lyapunov function, its time
derivative and the final bounding argument are co-
ordinate-free.

Part I Lyapunov stability from total energy. We employ
the total energy function Wm = @ + 3 [él%, as candi-
date Lyapunov function. By Lemma 2 the time derivative
of the first term is ¢ = ¢, -¢é. We compute the time
derivative of the second term in two steps. At r fixed, the
equality (2) allows us to write

d

5 Zkeé, ey = Keé,Ved

= K&, Vg — T7))
= <<é, M‘; 1(FpD + FFF) - (qu)r>>

At ¢ fixed, we have instead

d a2 << d . ,.>>
- zllelim, =€ 52 —Jr
dt qfixcd2H Hw” dt qfixed(q )

d
=—{ é— TV) ).
<< dt qfixed( )>>

Plugging in we have
Wlmal = (p'é + <<é, M‘;I(FPD + FFF) - (qu)r

d
(ff)>>
gfixed

%He‘ M, = 3
r fixed

dt
_d
dt

=dip-é+ <<Mq_1FPDaé>>

so that (d/dt) total is negative semidefinite and Lyapunov
stability as defined in Theorem 6 is proven.

Part 11 Introduction of cross term. To construct a strict
Lyapunov function (i.e. a function with a time derivative
strictly definite), we add a “small” cross term to total. Let
£ be a positive constant, let

Wcmss(t) = (f') = dl(pl ‘e
and consider the candidate Lyapunov function
W = Wtolal + 8Wcross-

We need to show that there exists a sufficiently small ¢,
such that W is positive definite in ¢ and | é||,. We start
by noting that from Part I and the assumptions on the
initial conditions we have

Weoa(t) < Wi (0) < L = o(f) < L,

which implies that the bounds (A1) on the differential of
the error function hold for all time. Then we have

Wz +iléli,—eldiolu,lélm,

NN A1

> ¢ +3lély
and therefore
Ve T 2 —e/b][ Ve
W=z " f
[l €1 a, —&/\/bs 2 €1 n,
EAEE
1€ 1la, li €1,
By choosing & < 2./b,, the matrix £ and the function
W are positive definite with respect to ./ and [|¢]u,.

Next, we compute the time derivative of W .. At
r fixed, we have

d
dt

¢ =V (dp-é) =

r fixed

(V;di @) é +dyo-(V,é)

=(V,di@)é+dio (M, 'F— (V7). (18)

At g fixed, we have

d d
- dooy=d,|—
dr qmed( 19) 1<dt

and therefore

m) di(dyp-(— 7)),
d - (4
d qﬁxed(p_ dt

d >
e
q fixed
=di(dig( —fr‘))-e(+d1<p-(—d

q fixed

~

\\)

dig )¢ +dio-| —
q fixed 1(p> 1@ (dt
d .
4 )
q fixed

t
(7 f))
q fixed

. d
= — ZLi(dp- (7)) —dlﬁl"(a
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= —(Ved19) (TF) — dyo(Vo(T7))

—dye- (5 (ff)).
q fixed

dt
Summing the previous equation with Eq. (18) we obtain

‘(&‘?':{Védn’f"')’ & +dye

-(M,;‘F — (V4T )F — d%

(fr'))
g fixed

—dyp (VLT 7))
and sWostnng ve coruwa: towe ¥

= (Ved19) € + dy¢- (M, ' Fop) — d1¢ - (Ve(TF))
—ldy@lli, + (Ved 1) ¢ + dyo- (M, ' Ké)
—dio-(VeT)P)

Next, by means of the quadratic assumption (A1) on ¢,
we can express W, = @ as a function of ¢ and || & M, 1
holds that

AR
Cross —_— Ilé"M" Cross Hé |l Mq i

where the symmetric matrix 2. has the following
entries:

(’Uzcross)l. 1= l/bl ’
9(choss)2.1 =

- (SUP | Kallag, + sup [ Fllag, - sup
qeQ ' (q.reQdxQ

IvT 11M)/\/b_1,

(choss)Z,Z = - SuP ” le(p ” M-

(q.1e@xQ

Note that the operators in 2, are bounded: (2,451,218
upper bounded due to assumptions (B1), (B4) and (B2),
(Zeross)2, 2 1 upper bounded due to the assumption (B3).

Part III: Bounding arguments. As last step, we
bound the time derivative of the Lyapunov function
W = Wi + eWooss- We have

EWS_[\/;:ITQ[\/; :‘,
dt [l €1l n, é HMq

where the symmetric matrix 2 is positive definite for
small enough ¢, since

=-021. 1= B(choss)l. 1
=021,2 = 8(£cross)l.2

2,5 = inf [ Kyllag, + &(Zeross)2. 25
qcQ

and 2, , is bounded away from zero owing to (B1).
Hence, there exist a 4 > O such that W < — AW. Finally,

it holds that

total — . 1 .
e HMq 0 z]Lleé HMq

and for an appropriate positive k,

ST i~
gi&-,?g LD ?) /!,E A —?,

|_||"’"€; H"'iu‘, | LH’U{';I{)M, i
<k W(t) < kg W(0)e™ ™ < 2k Wiga(0)e ™,

where we used the fact that W, ,,(0) + eW . (0) <
2Wlola](0)'

4.3. Remarks

The design process and the theorem’s results are global
in the reference position r(t) but only local in the config-
uration g (the error function ¢(q,r) must remain smaller
than the parameter L). This limitation cannot be avoided
because of possible topological properties of the mani-
fold Q. For additional details we refer to Koditschek
(1989), where the author discusses the global aspects of
the point stabilization problem.

Theorem 6 achieves Lyapunov and exponential stabil-
ity with respect to the particular total energy W, we
synthesized. Therefore the design of error function and
transport map plays a central role in imposing perfor-
mance requirements. For example the choice of error
function ¢{(g, r) affects the type of convergence we obtain
the configuration ¢ converges to the reference r in
the topology induced by ¢. Additionally, the choice of
(¢, 7) determines the (computational) complexity of the
control action. For example, one particular transport
map might be desirable since it generates a “simple”
velocity error and a “simple” feedforward control. How-
ever, the compatibility condition (A2) constitutes a con-
straint on the set of admissible pairs (¢, 7). The next
section, and in particular the SO(3) and SE(3) cases,
illustrates some of the tradeoffs involved in the control
design.

As expected, the final control law is sum of a feedback
and a feedforward term. This is in agreement with the
ideas exposed in Murray (1995) on “two-degree-of-
freedom-system design” for mechanical systems. While
the feedforward term depends on the geometry of both
the manifold and the mechanical system, the feedback
term is designed knowing only the configuration mani-
fold Q. We expect the ideas of configuration and velocity
error to be relevant for more general second order non-
linear systems on manifolds.

Note finally that, while the theorem is stated for mech-
anical systems with Lagrangian equal to kinetic energy, it
can be generalized to systems with potential functions,
viscous forces and gyroscopic forces, by pre-compensat-
ing for these extra terms.
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4.4. Extensions to model-based adaptive control

Since the control law in Theorem 6 requires full
knowledge of the inertia tensor M(q), our approach is of
limited relevance whenever an exact measurement of this
quantity is not available. Well-known solutions to this
problem rely on model-based adaptive schemes. Three
examples are the composite adaptive controller in Slotine
and Li (1989), the passivity-based controller in Arimoto
(1996) and the indirect adaptive controller in Whitcomb
et al. (1993).

In what follows, we sketch the basic common idea
behind these treatments. The key simplifying assumption
is that the unknown parameters enter linearly the
Euler-Lagrange’s equations. In particular, assume that
the inertia tensor M(q) satisfies M (q) = ¥, 6; M,(q), where
0, € R are unknown parameters and M;(q) are known
tensors. Let () be the estimate of 6§, and define the
tensor M(q, 1) = Zﬁ;(r)Mi(q).

Lemma 7 (Stable adaptive tracking). Under the same

setting as in Theorem 6, define the control input as

D(T7)
dt ’

F=—dp—Kgé+ Mg,1)

where D(Z ¥)/dt is defined in Eq. (13), and set the update
law

d, (D(TF)
&0,‘——Mi€( dr )

Then the curve ¢(t) = r{t) is stable with Lyapunov function
Wadap = Wiotar + %Z (91 - gi)z = (QD + % He”il)
+ %Z(Gi — 0%,

in the sense that W,g,(t) < Wyq,p(0) from all initial
conditions (q(0), 4(0)) and all initial estimates (0,(0)).

Proof. Following the steps described in Part I of the
previous proof, we have

d . . ~ . (D(F7V
EW,O,,,,=—Kde'e+(M—M)e~< a )
. 5 . D(FV)
=~Kd€'€+2(0[‘*0i) M,-e- dr
=—Kyé-é 2(0-6)59
- d€-e - i tdt i

where in the last step we have plugged in the update law
for §;. Finally, since (d/dt)8; = d/dt (§; — 0,), we have
d

S W = — Kyé-é.
dr e d

5. Applications and extensions

In what follows we describe examples of the design
techniques and of the stability results presented so far.

5.1. A pointing device on S*

In this section we apply the main theorem to the
sphere example described in Section 3.3. Motivating
applications are the so called “spin axis stabilization”
problem for a satellite and workspace control of a robot
manipulator such as a pan tilt unit.

Recall from Section 2.2 that, since $? is a submanifold
of R?, the Euclidean metric on R? induces a Riemannian
connection V on §2. In particular, this connection V can
be described in terms of the orthogonal projection
n, from R* to T,S? as follows. If {¢(t)} is a curve and
X(q) is a vector field on §* < R?, then

(V,X)9) = (X (q(0)) = X(q(1)) — (q()" X (q(0)))q(2),

where both ¢(f) and X(g(r)) are thought of as vectors on
R>. In the following we consider a mechanical system
defined by

V;4=F, (19)

where the input force F lives on the cotangent bundle
T}S?, which we identify with T,S? < R3. Last, recall
that in Section 3.3 we designed a quadratic error function
and a compatible transport map as

@(@.21 —q"r and T, ,2(q'NI+(xq),

where r is the reference configuration on §2.

Lemma 8 (Tracking on the sphere). Consider the system
in Eq. (19) and let {r(t),t € R,} be a reference trajectory
with sup, ||F| bounded. Let k, and k; be two positive
constants. Then the control law F = Fpp + Fgg, with

Fpp = "kp‘?z"—kd@“qx("x"'))
Fep = (FTr x g)(g x §) + g x (r x Vi)

exponentially stabilizes k,p(q,r) + 34 — Ty nFlI> to
zero from any initial condition q(0) # — r(0) and for all
4(0), #(0), k, such that

14(0) — T4.n (O
2(1 + g(0)"r(0))

Proof. In Section 3.3 we proved that ¢ is quadratic (A1)
and 7 is compatible (A2). Additionally, since S? is com-
pact, the conditions (B1)+(B3) are satisfied, because of the
smoothness of the metric, of kg, of  and of ¢. The
assumption (B4) is explicitly made in the text.

Hence, we only need to prove that the Fpp and the
Fgp above are designed as prescribed by Theorem 6.
Applying twice the equality vx(wxz)= (@ 2)w —

k, >
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(vTw)z, we have

Ti=(q"rF+ (rxq) <7 =(q"rF—("g)r

= q x(rx7),
and
d ., . ,
— (7 (,,',,r)=qx(rxr):qx(ran).
dt q fixed

Finally, following the description in Section 2.2, we com-
pute the covariant derivative of the vector field (77)(q) by
differentiating it with respect to time and then projecting
the result onto the tangent plane at ¢. In formulas this

reads as
d d
ars “ TP = — a2 Y 7).
V7) nq<dt r fixed r) 1 (df r fixed r>

Summarizing some algebraic equalities, we have

N ofd
(%J)":—qz(&

gx(rx f)> = —g(gx(§x(rx7))
r fixed

= — 4(q" (rx)d — q"4(rxM) = (@"r x F)(gxq).
This completes the proof. [

5.2. A robot manipulator on R"

In this section, we shall recover the standard results on
tracking control of manipulators contained in Murray
et al. (1994). Let g € R" be the joint variables and M(g) be
the inertia matrix of the manipulator. The design de-
scribed in Section 3 is performed as follows.

Let K be a symmetric positive-definite matrix and let
@(g, ) =+(q — N K,(g — r) be a quadratic error func-
tion. Owing to the identification T,R" = T,R", we let the
transport map be equal to the identity matrix: 7 ,, = [,
Assumptions (A1) and (A2) are easily verified. To design
the feedforward action, we compute the covariant deriva-
tive of I,. Let {d/dq", ...,0/3q"} be the standard basis in
R", let {i,j, k, ...} be indices over g and {a, f, ...} be
indices over r. Then, from Eq. (14)

(Vln)ldj = a—é{;‘ﬁ + Fl;k(ln),:: = F;an

Therefore, in contrast to a naive guess, the covariant
derivative of the identity map is different from zero.
Given a symmetric positive-definite K4, the control law is

Fep = — K,(qg — 1) — Kalg — F)

d .
F
q fixed

Fep = M(q)((V,)I,,)r‘ + a

= M(q) (rﬁadjf“a%f + f') = M(q)F + Clg. 97, (20)

where C(-,-) is the Coriolis matrix typically encountered
in robotics. The control law F = Fpp + Fyp agrees with

the one presented in (Murray et al. 1994, Chapter 4,
Section 5.3) under the name of “augmented PD control”.
The assumptions (B1){B4) can be written in terms of
I'f; and # being bounded over reR and g € R".

5.2.1. Linearization by state transformations and
by feedback

Sometimes a simple state transformation suffices for
the linearization of the Euler-Lagrange’s equations. This
happens when there exists a choice of local coordinates
such that the Christoffel symbols vanish. If the designed
described above is performed in this specific set of coordi-
nates, expression (20) for the feedforward control simpli-
fies considerably since the cross term (4, 7) vanishes.
More details on this case are discussed in Bedrossian and
Spong (1995).

More generally, the Euler-Lagrange’s equations can
be linearized by means of a feedback transformation. By
setting F = M~ Y(q)(U — C(q, 4))§, we have that the
equations of motion

M(q)g + C(q.4)g = F become 4 = U. (21)

A tracking controller is then designed using linear tech-
niques. The design procedure is the so-called computed
torque method (Murray et al,, 1994, Chapter 4, Section
5.2). Note that a controller designed this way depends on
the initial choice of the coordinates system (g, ...,q").
We reconcile this method with our framework as fol-

lows. Let V be the connection characterized by vanishing
Christoffel symbols in the chart {g', ..., q"}. Then the

equality § = U can be written as V,4 = U, hence as
a mechanical system. In other words, we regard the
feedback transformation (21) as a “change of connection”

from V to V. This idea is described in some theoretical
details in Kobayashi and Nomizu (1963, Proposition
7.10). Summarizing, the computed torque method falls
within the scope of Theorem 6 if feedback pre-
transformations are allowed.

5.3. A satellite on the rotation group SO(3)

In the next two sections we design tracking controllers
for mechanical systems defined on the group of rotations
SO(3) and on the group of rigid motions SE(3). We focus
on rigid bodies with body-fixed forces and invariant
kinetic energy, as satellites and underwater vehicles.
Nevertheless, our treatment is relevant also for work-
space control of robot manipulators. This section pres-
ents the attitude control problem for a satellite.

The configuration of the satellite (rigid body) is the
rotation matrix R representing the position of a frame
fixed with the rigid body with respect to an inertially
fixed frame. A rotation matrix on R? is an element on the
special orthogonal group SO(3) = {ReR**3| RR" = I,
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det(R) = + 1}. The kinematic equation describing the
evolution of R(t) is

R =RQ, (22)

where Q € R? is the body angular velocity expressed in
the body frame. Recall that the matrix @ is defined such
that Qx = Q x x for all xe R® and it belongs to the space
of skew symmetric matrices so(3) = {SeR**?|ST = — §}.
We refer to Murray et al. (1994) for additional details.

The kinetic energy of the rigid body is 4 QT JQ, where
the inertia matrix J is symmetric and positive definite.
The Euler equations describing the time evolution of
Q are

IQ=J2xQ +, (23)

where fe(R*)* is the resultant torque acting on the
body.

5.3.1. Error functions

Let {Ry(t),teR,} denote the reference trajectory
corresponding to a desired or reference frame and let
Q, = RIR, denote the reference velocity in the reference
frame. Using the group operation, we define right and left
attitude errors as

R.,ARIR and R.,2RR]. (24)

The matrix R, . is the relative rotation from the body
frame to the reference frame. Two error functions
are then defined as ¢ (R, R)2 ¢(R..,) and ¢,(R, Ry)2
¢(R..,), where ¢:SO(3) — R, is defined as (Koditschek,
1989)

¢(RE) é% tI‘(I<p(13 - Re))

If the eigenvalues {k,, k,, k3} of the symmetric matrix
K, satisfy k; + k; > 0 for i # j, then both error functions
¢, and @, are symmetric, positive definite and quadratic
with constant L = min;, ;(k; + k;). Locally near the
identity the function ¢ assigns a weight k, + k3 to a ro-
tation error about the first axis (and similarly for the
other axes). The appendix contains the proof of these
facts and the expression of ¢ in the unit quaternion
representation.

5.3.2. Velocity errors

To define compatible velocity errors, we compute the
time derivative of the two error functions. Let the matrix
skew(A) denote (4 — A") and let -V denote the inverse
operator to “:R* — s0(3). We have

d
E‘pr = (SkeW(KpRe,r))TQe,ra (25)

d
¥ = (skew(K,R. )" Ra Qs (26)

f; = - SkeW(KpRe.r)v

f, = — Riskew(K,R.,)

where we define right and left velocity errors in the body
frame as

2..,20-RT.Q, and Q.,20-Q,

Note the shghtly improper wording, since a velocity
error ¢ = R — 7 Ry lives on the tangent bundle TrSO(3).
A precise statement is

¢, = RQ., = R — (RRYR,,

é. = RQ., =R — RyRIR).

These equalities also motivate the names “left” and
“right”. A left (right) velocity error is obtained by left
(right) translation of the velocity Ry

Next we describe compatible couples of configuration
and velocity errors. Eq. (25) suggests that a right attitude
error RJR and a right velocity error Q — RTR,Q, are
compatible. This couple is the most common choice in
the literature (see, for example, Meyer, 1971; Koditschek
1989; Wen and Kreutz-Delgado, 1991; Egeland and
Godhavn, 1994).

Left attitude and velocity error appear less frequently
(Luh et al., 1980). With this choice both the velocity error
and, as we show below, the feedforward control have
a simple expression. Remarkably, when the gain K, is
a scalar multiple of the identity k,I, the left and right
error functions are equal and the couple (@, ,, Q2. ,) is
compatible. Finally, coordinate based approaches are
also possible. The velocity error in Slotine and Di
Benedetto (1990) is taken to be the difference between the
rate of change of the Gibbs vectors for actual and refer-
ence attitude. Similarly, in the flight control literature,
Euler angles and their rates are often used (Etkin, 1982).

5.3.3. Control laws and simulations
Finally we summarize the design process.

Lemma 9. Consider the system in Eq. (23). Let
{Rd(t) teR+} denote the reference trajectory and let
Q4 = RIR, denote its bounded body-fixed velocity. Cor-
responding to the two choices of attitude error, we define

- KdQe.r + Q x ‘J](Rz,rgd)
+ J(Re, Q).
-_ KdQe./ + Qd X \J]Q + LDQd,

where Ky is a positive definite matrix and K, is a
symmetric matrix with eigenvalues {kyky.ks} such that

Then, for both choices of attitude error, the total energy
O(R,) + 3 Q. |} converges exponentially to zero from all
initial conditions (R(0), Q(0)) such that

$(R.(0) + 3 [ (0|5 < min(k; + k).

i#*j
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This lemma is a direct consequence of Theorem 6,
except for the design of the feedforward control which is
discussed in the next section. To the authors’ knowledge,
both control laws are novel: f, in the choice of velocity
error, f, in the expression of the feedforward control.

To illustrate the difference between the two velocity
errors, we run simulations without the PD action. The
reference trajectory is a 2z radians rotation about the
vertical Z-axis performed in 10 s with velocity profile of
2n(3t* — t)/100 rad per second. The initial attitude error
is a rotation of n/4 radians about the X axis. Both the
angular velocity and the reference angular velocity
are zero at time ¢ = 0 and therefore the velocity error is
zero for all times. Indeed, the latter property character-
izes the two simulations completely: on the left side of
Figs. 3 and 4 we have R(t) = R(t)Qq4(t), on the right
side R(t) = (Ry()(t)) R(t). We note the very
different qualitative behavior of the two closed-loop
simulations.

5.4. An underwater vehicle on the group of
rigid motions SE(3)

In this section we extend the treatment of the attitude
tracking problem to the group of rigid rotations and
translations SE(3) = SO(3) x R*. Motivated by recent in-
terest in the area (Leonard, 1997) and (Fossen, 1994,
Chapter 2), we focus on the idealized model of an under-
water vehicle.

Reference trajectory

Fig. 3. Bricks represent rotation matrices. On the left we depict initial
reference attitude and initial error (i.e. a rotation of n/4 about the
X axis). On the right we depict the reference attitude trajectory.

The configuration of the underwater vehicle (rigid
body) is the rigid motion g = (R, p) representing the
position and attitude of a body frame with respect to an
inertial frame. The kinematic equations are
R =RQ,

(27)
p=RV,

where & =(Q,V)eso(3) =s0(3)xR*® is the body
velocity expressed in the body frame. Introducing the
homogeneous coordinates,

R p Q v
e d “:
g [om 1} and ¢ [om 0}

the kinematic equations read ¢ = ¢g-¢. As described in
Section 2.2, the matrix multiplication (g-) can be inter-
preted as the tangent map to the left translation on the
Lie group SE(3).

The motion of a rigid body in incompressible, irrota-
tional and inviscid fluid satisfies the Euler-Lagrange
equations with an inertia tensor which includes added
masses and inertias, see Leonard (1997). If the under-
water vehicle is an ellipsoidal body with uniformly dis-
tributed mass, the kinetic energy of the body-fluid system
is 1QT0Q +1V™V =1T1E, where M and J are
the (positive definite) mass and inertia matrices. The
Kirchhoff equations describing the time evolution of the
body velocity £ are

JO=J0xQ+MVxV +fo, ©8)

MV =MV xQ +fy,

where f=[fa. fr]1€s0(3)* is the resultant generalized
force acting on the body. As described in Section 2.3,
Eqs (28) are the Euler—Poincaré equations (10) for
a simple mechanical system on a Lie group

1¢ = ad$I¢ + f,

where the adjoint operator on so0(3) = R® is

adg vy = [ ] .

= O
oo

Fig. 4. Trajectories in the closed loop help us compare feedforward policies. Left and right velocity errors are employed correspondingly on the left

and right picture.
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5.4.1. Error functions

Let {gs=(R4 pa),t€R,} denote the reference
trajectory corresponding to a desired frame and let
Cq = (84, Vy) denote the reference velocity expressed in
the desired frame, that is gq = g4° &4. As in the SO(3)
case, we design an error function ¢ by composing a
group error ¢.g,gs) and a positive definite function
¢:SE(3) - R.

The group operation on SE(3) provides us with right
and left group errors

Jer 294 'g = (RER, Ri(p — pd)),
qe/équ_l = (RRT’ P — RRgpd)

The group element g, . is the relative motion from the
body frame to the desired frame. Disregarding the group
structure, two other group errors are

ge.1=(RiR, p —ps) and g, ,2(RR{, R'p — Ripy).

Next we design some positive definite functions on SE(3).
We set

(R, p)=3tr(K (I3 —
¢Z(R’ p) =
¢3(R’ p) =

R) +3p'Kp2 ¢, (R) + 3Pk,
$1(R) + 3R plik.,
¢1(R) + (15 + R

where the eigenvalues {kj, kj, ki} of the symmetric
matrix K, satisfy k; + k; > 0 for i # j, and where K, is
positive definite. The presence of matrix gains in both the
attitude and position variables is useful in applications.

In Fig. 5 we attempt to portray these functions re-
stricted to SE2, the group of rigid motions on the plane.
We equip this space with an invariant metric (kinetic
energy) of the form Jo? + m,v? + mw?, where (w, v,, v,)
is the velocity in the body frame. Then we compute the
gradient vector field for each of the three error functions
and we draw their flow fields. The gains on rotational
and translational components are chosen equal to
(J, my, my).

Finally we design error functions by combining
a group error g, with a function ¢. For all choices of
g. and ¢, the resulting error function ¢ is quadratic with
constant min; ;(k; + k;), where {ky, ks, k3} are the eigen-
values of the matrix K;. Since many combinations are
possible, we report only the most instructive ones in the
first column of Table 1. In the third column we charac-
terize the error functions in terms of various properties.
For example, we call ¢ invariant if it is invariant under
changes in the inertial coordinate frame. Also recall that
¢ is symmetric if @(g, ga) = ¢(gq, g)- Additionally, we
specify the frame in which the proportional gains K; and
K, are expressed.

L

Fig. 5. From left to right the functions ¢,, ¢, and ¢; are compared in terms of the flow of their gradient. Each frame on the plane represents

a configuration on SE(2).

Table 1
Error functions and transport elements on SE(3)

Error function Transport element

Comments

{(RIR) + lp — pall, (R"Ry, 0)
HRIR) + 3 IRI(p — pa)lI, 9" "ga
(RIR) + 3IR™(p — pa)lZ, 9 '9a
(
(
(

¢
¢
¢
$1(RIR) + 4 I(RT + R)(p — pa) 1%, 9" ga
¢
¢

o

{(RRY) + 1R + RoMp — pa)I7, 15,0
{(RRY) + 3R p — Ripaliz, (I3, Rips — R"p)

—_

¢1(g..1), not invariant, symmetric, gains expressed in inertial frame
¢1(g..,), invariant, not symmetric, gains expressed in reference frame
not symmetric, gains expressed in body frame

¢3(g...), invariant, symmetric

¢1(g..,), not invariant, symmetric

¢ 1(g..2), not invariant, symmetric
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5.4.2. Velocity errors

We start by recalling some kinematics (Murray et al,,
1994, Chapter 2). We are interested in the adjoint map Ad,:
se(3) — se(3) that transforms velocity vectors (elements in
s¢(3)) from the body coordinate frame to the inertial coordi-
nate frame. Identifying se(3) with R®, this map is

R 0
Adg = Ad(R.P) == [ﬁR R}.

More generally, since g, , = gq '¢ is the relative motion
from the body frame to the desired frame, the reference
-velocity in the desired frame &, is expressed in the body

frame via the map Ad,-,, = Ad,-:. These ideas lead to
a natural definition of velocity error as

6e.r = i - Ady;r‘éds

where the body and the reference velocities are expressed
in the same frame. We call £, | the right velocity error. This
is a useful definition since, with the aid of the homogene-
ous representation and some matrix algebra, we have

d d
PR O Bl Baiiprc U T N S TR
Ger = ga (dtg>+(dtgd )g gs 9g-¢—<¢g49
= ge.($ — Ady-1 o).

Therefore, every error function that relies on the right
group error g. . is compatible with the right velocity
error.

More generally the adjoint map is useful in describing
transport maps. In what follows, we parametrize the set
of transport maps with the set of change of frames, that is
with SE(3). For each transport map 7, we call transport
element the unique motion 1 € SE(3) such that

g— T dqa=g-(—Ad.&y).

In the Table 1, we report compatible transport elements
for each error function. For each couple (¢, 1), the com-
patibility is verified with some straightforward algebra.
Note that the choice of T depends only on the group error
g. employed to define ¢.

5.4.3. Control laws

We here summarize the ideas exposed so far and de-
sign a proportional derivative feedback. Additionally, we
devise a set of feedforward control laws by means of
a minor extension of Theorem 6. Let {-,-> denote the
natural pairing between se(3) and its dual se(3)*, and let
(¢, 7) be a compatible pair of error function and transport
element. We define fp, fp, € 5¢(3)* by means of

o) = = Lignoy®(g. o), Vneso(3),
fo = — Ka(& — Ad, &),

where K, :se(3)— se¢(3)* is a self-adjoint (symmetric) and
positive definite. For example, from the first row of

(29)

Table 1 we compute

skew(KlRe)v] [Q — RTQ, :]
- Kd )

h+o= —l: RTKzPe V——ReTVd

where (R., p.) = (R} R, p — py). and likewise from the
third row

fo+fo= —[

Q — RIQ,
- Kd T s
V —Re(Va+Qixpe)
where (R., p.) = (RS R,RY(p — py)). Next, we define
a family of feedforward control laws as

skew(K R.)" + (K3p.) X pe
RTKZpe

. d . ;
frr=— ad(ﬂ:\dr:d)édq + [la—r(Adtgd) + S.(&e.Ca) (30)

where the bilinear operator S,:se(3) x se(3)— se(3)* is
skew symmetric with respect to its first argument, i.e. it
holds

(Seldesm). € =0 Vnese(3). (1)

For example, corresponding to t = g~ ' g4 (second, third
and fourth row in Table 1, right group error g.,) and
T = (I3, 0) (fifth row in Table 1, left group error g.,), an
appropriate choice of S, leads to the simple feedforward
controls:

fre., = —ad¥lAd,. ¢y + 1Ad,- &,

Y9 Ya Y da
fer., = —adilé + 1E,

Note that, with the corresponding definition of Ad and
ad operators, these choices are the same employed for the
attitude tracking problem in Lemma 9.

Lemma 10. Consider the system in Egs. (27) and (28). Let
{ga(t),t € R, } denote the reference trajectory and let
Es = ga ' §q € 5e(3) denote its bounded body-fixed velocity.
From Table 1, let ¢ be a quadratic error function with
constant min; » ; (k; + k;), and let © be a compatible trans-
port element. Also, let S, be a bilinear operator satisfying
Eq. (31), and according to Egs. (29) and (30), let

S =/ +fo + frr € se(3)*.

Then the total energy @(g, gq) + 3 | ¢ — Ad.&4]lf converges
exponentially to 14 from all initial conditions (g(0), £(0))
such that

9(g(0), ga(0)) + 31 £(0) — Ady0)Ea(0) 1§ < I?Lin(ki + kj).
t#)

In what follows we present a sketch of the proof. First,
the proportional and derivative feedback are devised
according to the design procedure in Section 3, so that
the only difference with the design in Theorem 6 regards
the feedforward control. In fact, the latter theorem can be
extended as follows.
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Lemma 11. Let the map Sq.,: T,Q x T,Q — T7Q satisfy
S(q.r)(Xq’ Yr) ) Xq = 0

Jorall X, e T,Q and Y, € T,Q. Also consider the bounded-
ness condition:

sup  [|VT g+ M7 'Sy < . (B2)
@neQxQ

The statement of Theorem 6 holds true if we set

F= Fp[) + F}:F + S(é, Y:) instead OfF = FpD + FFFa and lf

we assume (B2') instead of condition (B2).

The proof of this statement is a straightforward modifi-
cation of the proof of Theorem 6. Thus we only need to
show that feedforward action fgf in Eq. (30) differs from
the one defined in the main theorem, call it frr, by a skew
symmetric operator. Indeed, using some of the tools
introduced in Section 2.2, we compute

d
frr = [ Ve(Ad, &) + a_i(Adléd)s

where the map gV:gxg— g is defined in Eq. (8), and
frr = ftr when the operator S, is defined as

Se(Ces Co) = 3(I[Ee Adi&al + adiage, 1. — adZ(Ad,E0)).

6. Summary and conclusions

This work unveils the geometry and the mechanics of
the tracking problem for fully actuated Lagrangian sys-
tems. The design process in Section 3 allows us to char-
acterize in an intrinsic way a tracking controller. The
basic answered questions concern how to define config-
uration and velocity errors and how to compute the
feedforward control. Almost global stability and local
exponential convergence are proven in full generality.
Our framework successfully unifies a variety of examples:
a robot manipulator on the Euclidean space R”, a point-
ing device on the two sphere S?, a satellite on the group
of rotations SO(3) and an underwater vehicle on the
group of rigid motions SE(3). Case by case, we provide
new insight into previous results and introduce novel
viewpoints and control laws.

Relying on concepts from Riemannian geometry this
work provides coordinate free design techniques for non-
linear mechanical systems. Other recent papers on
modeling (Bloch and Crouch, 1995), controllability
(Lewis and Murray, 1997), interpolation (Noakes et al.,
1989) and dynamic feedback linearization (Rathinam and
Murray, 1998) share the same theoretical tools. A parallel
avenue of research relies on the Hamiltonian formulation
of mechanical systems, see for example Nijmeijer and van
der Schaft (1990, Chapter 12) and Simo, et al. (1991).
All these geometric techniques are a promising starting
point in the design of control policies for underactuated
systems.

Appendix: The error function on SO(3)

We here study the modified trace function on
SO(3) introduced in Section 5.3. We refer to Koditschek
(1989) for additional details. Given a 3 x 3 symmetric
matrix K, recall that we defined ¢:SO(3) > R, as

¢(R)&tr(K(I; — R)),

and, given any 3 x 3 matrix A, we defined skew(4) =
1 T
34— A"

Lemma 12. Let the eigenvalues {k,, k;, k3} of the matrix
K satisfy k; + k; > O for all i # j, and define d¢ € so(3)*
such that ¢ = d¢-(R"R). It holds
1. #(R) = ¢(R") = 0 and ¢(R) = 0 if and only if R = I,
2. ¢ = skew(KR), and
3. for all £ >0 there exist by > b, >0 such that ¢(R)
< minx;(k; + k;) — & implies by | ¢ ||> = ¢ = b, @[>
In addition, we have the following coordinate expressions.
Let R be a rotation of angle 0 about the unit vector k and
define the unit quaternion representation of R by q* = [qo
91 92 93] = [qo, qI], where

qo = cos(0/2) and gq, = sin(8/2)k.

Finally, define K*! as the matrix with the same eigenvec-
tors as K and with eigenvalues {(k, + k), (ki + k3),
(ky + k3)}. Then it holds

4. ¢(R) = lq,| k=, and

5. dd) = %(qOK[Zlqv - éuK[Z]qu) " .

Proof. We start by proving Eq. (2). It holds:
¢ =1 tr(K(~ R)) = — +tr(KR R"R).

Recall that the linear space of 3 x 3 matrix decomposes
into the direct sum of symmetric and skew symmetric
matrices with respect to the trace inner product. If we let
skew(4) = 4(4 — A") and sym(A4) = 4(4 + A7), it holds

$ = — Ltr((skew(KR) + sym(KR))(R"R))
= — L tr(skew(KR)(RTR)).

Finally, we recall the matrix pairing between so(3) and its
dual: o~ & = 3 tr(a’¢), where a is in so0(3)* and ¢ in so(3).
This pairing corresponds to the standard pairing
%9 =x"yfor all x, y in R*. This leads us to

¢ = skew(KR)-(R"R),

which proves Eq. (2). Next we introduce the unit quater-
nion representation. By Rodrigues’ formula, it holds that
R =I5 + 2904, + 2472 Hence we have

Pso = — tr(Kqoq,) — tr(K §°)
= —tr(K§*) = ¢" K%y,

where the second equality can be proved in coordinates.
This proves Eqgs. (4) and (5) can be verified by recalling
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the kinematic equation for R in terms of the unit quater-
nion representation. Regarding Eq. (1), it is straightfor-
ward that ¢(R) = ¢(R") > 0. Also if $(R) = 0, then g, is
the zero vector and R is the identity matrix.

Last, we prove the claim in Eq. (3), that is that ¢ is
quadratic with constant equal to the minimum eigen-
value of K. Since the two terms in the equation in
Eq. (5) are orthogonal, we have

2(ldg 11> = | goK™'q.11* + 4. K™q. |I*.

Since H‘ivK[Z]qv HZ < ||‘I: “2 H K[2]qu2 < )~max(K[2])”qt \}IZ(["

we have
¢ = |lg. |7

%QO “ q. :\K'Z' +32 "‘L “I\' 1

Nl»—-

s llgellze + I4.K™q.||*

P
2mar (K2
> min(1, 1/Amax(K™1) [dep | *

This proves one direction of the bound. Next,
recall that we are assuming that, given an &> 0, we
have the inequality ¢ < An.(K®) — e Hence it holds
that

Je, >0 st glP<1—gy,
and this implies that
e, >0 st |gol® > e.

However, it holds that ||d¢||*
and therefore

Idpll* = 319

This completes the proof of Eq.(3) and of the whole
Lemma. [

> 390K g, 117 = 3434,
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