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Abstract: In this paper we construct motion primitives as algorithm building blocks
for stabilization and control of a class of underactuated systems that includes
spacecraft, submersibles and planar vehicles. The underactuated systems are modelled
as Lagrangian systems on Lie groups; thus, they are systems with drift and with
accessibility distributions described by the operation of Lie bracket and symmetric
product. Directions of motion that are not directly actuated are identified with
symmetric products of the input vector fields, and in-phase sinusoidal forcing is used
in the primitives to generate motion in these directions. These primitives can then
be used for a variety of low velocity maneuvers. For example, we demonstrate their
use for exponential point stabilization and for static interpolation. We evaluate our
algorithms and investigate the advantage of planning motions along relative equilibria.
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1. INTRODUCTION

Underactuated mechanical control systems pro-
vide a challenging research area of increasing in-
terest in both application and theory. In this
paper, we design stabilization and motion con-
trol laws for an important class of underactuated
mechanical control systems that includes under-
water vehicles, satellites, surface vessels, airships
and hovercrafts. For these systems, relevant La-
grangian models are available and lift/drag type
effects are sometimes negligible. Key features are
the following: (1) the configuration space is a Lie
group, as, for example, the group of rotations
SO(3) in the case of a satellite, (2) the Lagrangian
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is equal to the kinetic energy, (3) external forces
are fixed with respect to the body, and (4) there
are fewer actuators than degrees of freedom.

These systems offer a control challenge as they
have non-zero drift, their linearization at zero ve-
locity is not controllable and they are generically
neither feedback linearizable nor nilpotent. Fur-
ther, no test is available to establish whether or
not they are differentially flat. In other words, the
motion planning problem for this class of systems
cannot be solved with any established method.

Important references include the work on small-
time local controllability (Sussmann, 1987) and on
configuration controllability for simple mechanical
systems (Lewis and Murray, 1997). Regarding the
constructive controllability problem, we employ
an analogous approach to one in (Leonard and
Krishnaprasad, 1995), where motion algorithms
for a class of kinematic systems on Lie groups were



designed with small-amplitude periodic inputs.
We achieve exponential stabilization by iterating
an approproximate stabilization step in the spirit
of (Lafferriere and Sussmann, 1991).

The paper is organized as follows. In Section 2 we
review from (Bullo and Leonard, 1997) an alge-
braic test for local controllability at zero velocity
and a perturbation analysis of mechanical systems
under small amplitude forcing. In Section 3 we
design two motion primitives that perform the
basic tasks of changing and maintaining velocity
using in-phase inputs. The two motion primitives
are the building blocks for designing high-level
motion procedures; we design algorithms to solve
point-to-point reconfiguration, local exponential
stabilization and static interpolation problems.
Our algorithms provide suboptimal control laws;
however, we show how the interpolation algorithm
applied to a path along a sequence of relative
equilibria exploits system dynamics to provide an
efficient motion control strategy.
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2. MODELS, CONTROLLABILITY AND
APPROXIMATIONS

Here we review some results presented in (Bullo
and Leonard, 1997); a more detailed treatment is
found in (Bullo et al., 1997).

2.1 Tools and models

Let G denote a matrix Lie group with matrix
multiplication as group operation. Let g be its Lie
algebra and let ad¢ 7 = [, 7] = {n—né denote the
Lie bracket operation (i.e. matrix commutator).
We assume that the set G is the Cartesian product
of copies of the group of rigid motions SE(3) and
its proper subgroups. This includes for example
the rotation group SO(3) and its associated Lie
algebra s0(3). On an arbitrary Lie group we can
define a surjective map and local diffeomorphism
called the exponential map exp : g — G. For
example, given z € R®, Rodrigues’ formula gives

~ /\2
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eXpSO(B) (33') =T+sin ||$||m + (1 — COos ||$||) ||$||2

where the operator = : R® — s0(3) is defined
via Zy £ z x y for all z,y € R®. In an open
neighborhood of the identity I € G, we define
x = log(g) € g to be the exponential coordinates of
the group element g and we regard the logarithmic
map as a local chart on the manifold G.
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Fig. 1. Planar body with two forces applied at a
point a distance h from the center of mass.

Definition 1. We describe a mechanical control
system on a Lie group with the following objects:
an n-dimensional Lie group G (defining the con-
figuration space), an inertia tensor I : g — ¢*
(defining the kinetic energy) and a set of input
co-vectors {f1,...,fm} C g* (defining the body-
fixed forces). The system is said to be underactu-
ated if the number of available input forces m is
less than the number of degrees of freedom n.

Let g € G denote the configuration of the system
and £ € g the body-fixed velocity, so that the ki-
netic energy is %§T]I§ . The kinematic and dynamic
equations of motion are

g=9-§

I = ad; I + Zfiui(t):
i—1

=

1)
(2)

where ad; is the dual operator of ad¢ and where
the scalar input functions {u;,i =1,...,m} be-
long to the space of measurable functions ™. For
convenience we define b; = I~! fi-

For any vector n with the property that ad; In=
0, the curve t € R — (exp(tn),n) is a solution to
the system (1)—(2). These curves are studied in
mechanics (Marsden and Ratiu, 1994) under the
name of relative equilibria and describe motion
that corresponds to constant body-fixed velocity
for the uncontrolled system.

Next, we define the operation of symmetric prod-
uct on the Lie algebra g. Given two vectors &,n
on g, we define

(€:m) £ 17" (adf In+ ad; I¢).
For example, on 50(3) ~ R® with the inertia tensor
J and with the equality ad; = —£, we compute

(€:m) =T71H(€ x In+n x JE).

Ezxample 2. (Planar body in a fluid). Let (6,z,y)
in SE(2) denote the configuration of the planar
body and (w,v1,v2) its body-fixed velocity. The
kinetic energy is KE = 1Jw? + im0} + tmav}
where {.J, m1, my} are positive constants. On se(2)
the adjoint operator is computed as

0 0 O
ad(w,vl,w) = V2 0 —w
—vw 0



The two control inputs consist of forces applied at
a distance h from the center of mass, see Figure 1.
After inverting I = diag {J,m1,m2}, we have b; =
mi1e2 and by = _Thel + mLzeg7 where {e;,es,e3}
is the standard basis on R3. In coordinates the
equations of motion (1)—(2) read

6=w Jw = (my—ma)vive — hus
T = cypv1 — SgU2 , MU = Maws + Uy

Y = SgU1 + Cov2 Moy = —MiWU1 + Us.

where ¢y = cos(f) and sy = sin(6).

2.2 Local controllability

For T > 0, a solution of the system (1)—(2), is
a pair (g,u), where g : [0,7] — G is a piecewise
smooth curve on G and u is an admissible input.
Let go € G and let W C G x g be a neighborhood
of (go,0). For T' > 0, set

RW (g0, < T) =
U {(91,&) |3 asol(g,£) s.t.(9,€)(0) = (g0,0)

0<t<T

(9,€)(s) € W for s € [0,¢] and (g,£)(t) = (91,&1)}-

Definition 8. The system (1)—(2) is small-time
locally controllable at go and at zero wvelocity if
RY (go, < T) contains a open set of G' x g for all
T > 0 and for all W, and if (gg,04) belongs to the
interior of this set. If this holds for any g¢ € G,
the system is called small-time locally controllable
at zero velocity (STLC at zero velocity).

Let B = {b1,... ,by} denote the family of input
vectors. We define the symmetric closure of B, de-
noted by Sym(B), as the set of vectors obtained by
taking iterated symmetric products of the vectors
in B. The order of an iterated product of factors
from Sym(B) is the total number of factors. We
say that a symmetric product from Sym(B) is bad
if it contains an even number of each of the vectors
in B. Otherwise, we say that the symmetric prod-
uct is good. For example, ({by:b2):b1) has order
three and is good, ({{by :b3) :b3) :b1) has order four
and is bad.

Proposition 4. The system (1)—(2) is STLC at
zero velocity if the subspace Sym(B) has full rank
and every bad symmetric product is a linear com-
bination of lower-order good symmetric products.

Ezample 5. (Planar body in a fluid). Consider the
planar body of Example 2 The only relevant non-
vanishing symmetric products are

<b1:b2> =

—h — h
es + me mlel, <b2:b2> = 2
Jma Jmimso Jma
—2h(m1—ms2) —2h2
(bz:(bz:bz)) = > ! 2 e + e3.

J“mima J2m2

€2,

The system is STLC at zero velocity, since the
subspace generated by the vectors {b1, b2, (b1 :b2)}
has full rank and the bad symmetric product
(b2 :by) is a linear combination of lower-order good
products: <b2:b2) = —(2h/J)b1

Motivated by this example, we say that a system
is STLC at zero velocity with second-order sym-
metric products if

(AC) The subspace span{b;,(b;:bi),j < k} has

full rank and each bad product {b;: b;) is a linear
combination of the vectors {b1,... ,bm}.

2.3 Approximate solutions under small-amplitude
forcing

In this section we compute an approximate solu-
tion of system (1)—(2) under small-amplitude forc-
ing. Given a vector-valued function h(t), t € Ry,
define its first integral function h(t), as the finite
integral from 0 to ¢

t
a) & /0 h(r)dr.

Higher-order integrals, as for example ﬁ(t), are
defined recursively. In the following, we consider
inputs of the form

u;i(t,€) = euy (t) + e2u?(t)

where 0 < € << 1 and where u}, u? are O(1). Ac-
cordingly we write the resultant forcing ), bju;(t, €)
as the sum of two terms of different order in €

Z biu,-(t, 6) = Z b; (EU,} (t) + 62U? (t))
=1 =1

= ebl(t) + € b2(1), (3)

where we define b'(t) = Y7 | bjul(t) and b%(t) =
Yo, biuZ(t). In the following, given any quantity
z(€), we let ¥ denote the kth term in the Taylor
expansion of z(e) about ¢ = 0; for example, we
will write £(t,€) = £ (t) + €2€%(t) + O(e3).

Proposition 6. Let (g(t),£(t)) be the solution
to (1)—(2), let € <« 1 and define the inputs as
in (3). Let z(t) be the exponential coordinates of
g(t), and let £(0) = €&} + €2&2. Then for t € [0, 2]
it holds that £(t,€) = €€ () +€2£%(t)+ O(e?), with

£'(t) = & + b1 (1),
(1) = §—(6:68) 5~ (& T+ 12 - <bléb1>>
and z(t,€) = ex' () + e22%(t) + O(€3), with
2l (t) = &t + b (8),
2 2 1.¢1 £ 12 13170\
(1) = G- (6:65) T + (bz Y :bl)) (t
E

|

() + 4 [ + B, &t + BT ().



Next we design inputs (b!(t),b%(t)), that allow us
to simplify the approximations above and steer
the velocity of the system to an arbitrary value.

Lemma 7. (Inversion Algorithm). Let (AC) hold
and let 77 be an arbitrary element in g.

(1) Set N =m(m—1)/2andlet P = {(j,k) |1 <
j < k < m}. Number the elements in P

with 1,... , N, and let a(j, k) be the integer
corresponding to (j,k). Fora=1,... ,N, let

Yalt) = J= (a sin(at)— (a + N) sin(a + N)t).

(2) Because of (AC), the matrix with columns
b; and (b;:by) has full rank. Via its pseudo-
inverse, compute (m + N) real numbers 7;
and n;, such that

n= Yy mbi+
1<i<m
(3) Finally, set

bt =" /el (b — sign (s ) gy 1)

i<k
2 _ i,
b2 = Z bt Z
i i<k
(4) and denote this procedure with
(b'(t),b°(t)) = Inverse(n).

It can be shown that
(b2 - %(b_l:b_l)) (2m) = .

Z Nk (bj:bk) .

1<j<k<m

|Z’:| ((bj:bj)ﬂbk:b’“))’

3. MOTION PRIMITIVES AND CONTROL
ALGORITHMS

In this section we design motion control algo-
rithms based on the approximations in Proposi-
tion 6 and the inversion algorithm in Lemma 7.
We start by designing two primitive motion pat-
terns, Maintain-Vel and Change-Vel.

3.1 Primitives of motion

We describe two basic maneuvers that each last
27 units of time. The parameter ¢ < 1 is a new
small positive constant. To maintain a velocity
of order O(co), an input of order O(o) suffices,
while to obtain a change in velocity of order
O(o), we employ a control input of order O(y/o).
Each primitive is described in terms of initial
configuration and velocity, input design, and final
configuration and velocity.

Maintain-Vel(o,&ef): keeps the body velocity
&(t) close to a reference value o&.er. The initial
state is

(g(O), E(O)) = (907 a'é-ref + 0'2£err)a

the input is designed as € = ¢ and

(b',b%) = Inverse(m (ot :Eret) — Eorr)

and the final state is

log(go_lg(27r)) = 2700 &ret + MO Eerr + O(0°),
£(2m) = 0&eer + O(0?). (4)

Change-Vel(o, &anal): steer the body velocity £(t)
to a final value 0&gpna1- The initial state is

(g(O)J 5(0)) = (QOa J£0)7
the input is designed as € = /o and

(bl, bz) = Inverse(&ana — &) ,

and the final state is

log(go ' 9(2m)) = 70 (& + &hnal) + O(0*/?)
£(27) = 0bgnal + O(0?). (5)

The statements (4) and (5) are proved via an
application of the results in Proposition 6 and in
Lemma 7. Next we compute estimates of final con-
figurations after multiple intervals. The following
result is a consequence of the Campbell-Baker—
Hausdorff formula (Marsden and Ratiu, 1994).

Lemma 8. Let 0 < 1 be a positive constant, let
90,91 € G, and set yo = log(go) € @, y1 =
log(g1) € g. If the vector [yo,y1] is higher order
in ¢ than (yo + y1), then

log(gog91) = yo + y1 + O([yo, y1])-

Finally we evaluate costs associated with the two
primitives. The magnitude of control input is

||7T <£ref:£ref) - é.err”O(o')a

during a Maintain-Vel(g, &.f) primitive and

||£ﬁnal - 60“0(\/5);

during a Change-Vel(o, {ana1) primitive.

3.2 Control algorithms

We present three algorithms to solve various mo-
tion control problems. These algorithms combine
the two motion primitives with a discrete-time
feedback. This makes the approximations hold
over multiple time intervals, as, for example, over
a time interval of order 1/o.

Point-to-point reconfiguration problem This mo-
tion task reconfigures the system, i.e. changes its
position and orientation, starting and ending at
zero velocity. We assume that the initial state is
(9(0),£(0)) = (g0, 04) and the final desired state is
(91,04). For simplicity, we require log(gy 1 g1) to be
well defined, even though this assumption can be
removed. On SO(3) the logarithm is well defined
whenever the change in attitude is less that .



Table 1. Constant Velocity Algorithm

Table 2. Exponential Stabilization Alg.

Goal:
Arguments:

steer from (go,0g4) to (g1,0g)-
(90,91,0).

1: N <= Floor(| log(gy g1)Il/(270))

2: {Floor(xz) is the greatest integer < z.}
3: &nom < log(go_lgl)/(Qﬂ'o'N)
4: Change-Vel(o, &nom)

5: for k=1 to (N —1) do
6 Maintain-Vel(o, énom)
7: end for

8: Change-Vel(o, Og)

The algorithm consists of three steps. Over the
first time interval, we change the velocity to an
appropriate reference value. We then maintain the
velocity close to this constant reference value for
an appropriate number of periods. Finally, we stop
the system when close to the desired configura-
tion. The details are described in Table 1.

Lemma 9. (Constant Velocity Algorithm). Let o
be a sufficiently small positive constant and let
(9(0),£(0)) = (g0, 0(0?)) and let g1 be a group
element such that log(gy 'g1) is well defined. Let
N € N and the inputs (b',%)(t) for t € [0,2(N +
1)7] be determined according to the algorithm in
Table 1. At final time it holds

log (9(2(N +1)m) 1g1) = O(c*/2),

5(2(N + 1)7r) = 0(o?).

The final state is not exactly as desired, instead
there are errors of order O(c*/?) and O(c?). This
undesirable feature can be compensated for by
solving the point stabilization problem.

Point stabilization problem This motion task
asymptotically stabilizes the configuration g(t) to
a desired value that we assume without loss of gen-
erality to be the identity. Convergence is ensured
as long as [|(log(g(0)),£(0))|| is small enough.

The key idea of the algorithm is to iterate the
following procedure: measure the state at time g,
and design control inputs that try to steer the
state to the desired value (I,04) at time tp4q1 =
tr, + 4m. Since we impose two requirements, one
on the final configuration and one on the final
velocity, two calls to the Change-Vel primitive are
needed. The details are described in Table 2.

Lemma 10. (Exponential Stabilization Algorithm).
Let ||(log(g(0)),£(0))|| < o be sufficiently small.
Let the inputs (b'(¢), b%(t)) be determined accord-
ing to the algorithm in Table 2 and let t;, = 4kn.
Then there exists a A > 0 such that for all k € N

|| (log(g(tr)), £(t)) || < || (log(9(0)), £(0)) |le= .

Goal: steer the state to (I,04) as t — oo.

: for k =1 to +00 do
ty < 4dkm {tk is the current time}
o <= [|(log(g(tk), £(tk)))l
Eemp = — (log(g(th)) + m€(tr)) /(2may)
Change-Vel(og, &smp)
Change-Vel(oy,0g)

end for

AN o

Table 3. Static Interpolation Algorithm

Goal: steer through points {g;}.
Arguments:  (90,91,--- ,9M, 0)-

1: for j =1 to M do

2: Jtmp,j < g(t) eXp(Wf(t))

3:  Nj <« Floor(||10g(g,m, ;95)l/(277))
4 Enom,j < log(gin, 195)/(2m0N;)

5 Change-Vel(0, énom,;)

6: fork=1to (N; —1)do

7: Maintain-Vel(o, &nom,;)
8: end for
9: end for
10: Change-Vel(o, Og)

Additionally, for t € [4km,4(k 4+ 1)x] it holds
| (log(g(t), £1)) || = O(e=#72).

Static Interpolation problem This motion task
steers the system’s configuration along a path con-
necting the set of the ordered points {go, ... , gnm}-
As above, we require log(g; ', gx) to be well de-
fined for 1 < k£ < M. Roughly speaking, the
algorithm consists of M repeated constant veloc-
ity maneuvers but without stopping in between
points. The details are described in Table 3. It
can be shown that the configuration g(¢) follows a
path passing through the points {go,91,..- ,9m}
with an error of order o.

3.2.1. Interpolating sequences of relative equilibria
versus constant velocity motions The Constant
Velocity and the Static Interpolation Algorithms
provide two different solutions to the reconfig-
uration problem. These two algorithms can be
compared on the basis of an input cost of the form

T
lullo.zy = / L(u(t))dt,

where T' = T'(0) is the time required to complete
the maneuver and L : U™ — R is a cost on the
space of input functions. We let g; and gy denote
initial and final (desired) configurations and we let
P = {90 =9i,91,--- ;9 = gy} be a sequence of
configurations such that log(gj__l1 g;) is a relative
equilibrium vector for all j = 1,... , M. Recall
that n € g is a relative equilibrium vector if {1:7)
vanishes.

(1) The Constant Velocity Algorithm to go from
go to gy involves 2 calls to the Change-Vel



m M A
VYAV, .~

O
|

X

Fig. 2. Constant Velocity (left) and Static Interpolation (picture) algorithms. The bullet-shaped objects
represent the planar body’s location: darker objects correspond to beginning and end of a primitive.

primitive and (N-1) calls to the Maintain-Vel

primitive. The cost of the complete maneuver
can be computed as

lullo,r1 = O(V) + (N =1)[[{&nom : énom ) [ O (o)
=0(1),

since |[{€nom :nom}||=0(1) and N=0(1/0).

(2) The Interpolation Algorithm applied to the
set of configurations P involves (M +2) calls
to the Change-Vel primitive and (3}, N;)
calls to the Maintain-Vel primitive. With
the notation in Table 3

llulljo,r) = (M + 2)0(+/0)
+ (EJNJ)” <€n0m,j :gnom,j) ||0(U)

Since the configuration g(t) follows the path
determined by set P with an error of or-
der o, and since log(g;_llgj) is a relative
equilibrium vector, it can be shown that
(&nom,j :€nom,j) = O(0). Summarizing

lullo,r = (M +2)0(/a) + (£,N;)0(0?)
= 0(V).

We conclude that for small o (or equivalently, for
long final times T'= O(1/0)), moving along a set
of relative equilibria is a more efficient strategy
than the Constant Velocity Algorithm.

3.3 Numerical simulations

The algorithms have been implemented on the
planar body in Example 2. The parameter values
in normalized units were chosen to be J=1,m; =
.6,my = 1,h = 2. For both the Constant Veloc-
ity Algorithm and the Static Interpolation Algo-
rithm, we let the initial configuration be the iden-
tity and the final (desired) configuration consist of
a rotation of 7 and a translation of 2 units along
the y-axis. Equivalently, we set ginitia1 = (0,0, 0)
and gginal = (7, 0,2). We let the parameter o vary
in the [.001, .5] range, and we present here results
for the ¢ = .1 case. For all three algorithms,

the numerical results were in agreement with the
theoretical analysis presented above.

The left picture in Figure 2 corresponds to the
Constant Velocity Algorithm and illustrates how
the configuration variables evolve along a screw
motion toward the desired configuration. The
right picture in Figure 2 corresponds to the Static
Interpolation Algoritm. The initial and final (de-
sired) configurations are the same as in the pre-
vious run. The set of ordered configuration points
is {(0,0,0), (0,0,2), (m,0,2)}. The path in the z,y
plane consists of a straight line and a rotation.
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