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Abstract

This paper proposes a systematic procedure for the ex-
ponential stabilization of relative equilibria of mechanical
systems. The emphasis is on 1 dimensional symmetries.
A key design idea is to distinguish between horizontal
forces, which preserve the momentum, and vertical forces
that affect it. A proportional, derivative control in the
horizontal directions and a first order regulator in the ver-
tical direction lead to exponential stability of the closed
loop provided some assumptions hold. In particular, two
necessary conditions are that the relative equilibrium be
Lyapunov stable and that the system satisfy a certain
linear controllability test. Relevant applications to au-
tonomous vehicle control are described.
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1 Introduction

Control of underactuated mechanical systems is a chal-
lenging research area of increasing interest. On the theo-
retical side, control problems for mechanical systems ben-
efit from the wealth of geometric mechanics tools avail-
able. On the other hand, strong motivation for these
problems comes from applications to autonomous vehi-
cles design and control. In this paper, we investigate
stabilization techniques for the steady motions called rel-
ative equilibria. This family of trajectories is of great
interest in theory and applications.

Stabilization of underactuated Hamiltonian systems
was originally investigated in [8], see [6] for a standard
treatment. Recently, geometric tools have been employed
to address a the class of mechanical systems with sym-
metries. Stability of underwater vehicles is studied in [4]
where symmetry breaking potentials were employed to
shape the energy of the closed loop system. In [1], a
novel and powerful approach is introduced to deal with
an even larger class of systems.
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In this paper, we build on the work in [4] and focus on
the exponential stabilization problem (as opposed to Lya-
punov or asymptotic stabilization). The control design is
based in ideas from two areas: the theory of Hamilto-
nian reduction (and the Energy–Momentum method in
particular), see [7], and the theory of passive nonlinear
systems, see [8]. We divide the control synthesis into
two steps: first we design a controller for the reduced
system employing only the momentum preserving forces,
then we regulate the value of the momentum with the
remaining control authority. The main contribution is a
set of coordinate independent conditions that ensures the
exponential stability for the full (internal variables and
momentum) system.

A key feature of our approach is that we focus on 1 di-
mensional (Abelian) symmetries because applications to
control of vehicles require this assumption. This restric-
tion leads to strong results and a simple exposition.

In Jalnapurkar and Marsden [3] the authors obtain sta-
bilizing controllers for underactuated mechanical systems
with non-Abelian symmetry. In their treatment the fam-
ily of input forces is assumed momentum preserving and
stability in the reduced space is characterized in terms of
certain Poisson brackets.
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2 Stabilization of Nonlinear Systems

In this section we review some basic tools in stabiliza-
tion of nonlinear control systems. Let M be a smooth
n dimensional manifold and consider the smooth control
system

ẋ = f(x) +
∑

gi(x)ui (1)



Let x0 be an equilibrium point for f , and assume V :
M → R+ is smooth function such that

V (x) > 0 ∀x 6= x0 ∈ Bε(x0)

V (x0) = 0
(2)

where B(x0) is a a neighborhood of x0. If it holds

0 = LfV (x)

ui(x) = −Lgi
V (x),

(3)

the point x0 is Lyapunov stable. Additionally if it holds

dim{gi, adf gi, . . . , adn
f gi, ∀i}(x0) = n, (4)

the solution x(t) will converge asymptotically to x0.
Finally we examine the stability properties of the lin-

earization of the control system (1). Consider a local
chart about the point x0. With no loss in generality
we let x ∈ Rn denote a coordinate system about the
point x0 = 0. Additionally, f, gi denote the correspond-
ing quantities in the coordinate system.

Lemma 1. Consider the nonlinear control system (1)
with x ∈ Rn and let 0 be an equilibrium point. Assume

the conditions in equations (2), (3) and (4). If the second

variation of V at x = 0 is positive definite, i.e., if

∂2V

∂x∂x
(0) = P > 0, (5)

then the point x = 0 is locally exponentially stable.

We refer the reader to [2] for a proof.

3 Mechanical Control Systems

A simple mechanical control system is defined by the fol-
lowing objects:

(i) an n-dimensional configuration manifold Q, with lo-
cal coordinates {q1, . . . , qn},

(ii) a metric Mq on Q (the kinetic energy), alternatively
denoted by 〈〈· , ·〉〉,

(iii) a function V on Q describing the potential energy,
and

(iv) an m-dimensional codistribution F =
span{F 1, . . . , Fm} defining the input forces.

Let q(t) ∈ Q be the configuration of the system and q̇(t) ∈
TqQ its velocity. The Lagrangian for the system is

L(q, q̇) =
1

2
Mij(q)q̇

iq̇j − V (q) =
1

2
〈〈q̇ , q̇〉〉 − V (q),

where the summation convention is enforced here and
in what follows. In local coordinates the forced Euler-
Lagrange’s equations are

q̈i + Γi
jk q̇j q̇k = M ij(q)

(
−

∂V

∂qj
(q) + F k

j uk

)
, (6)

where Γi
jk(q) are the Christoffel symbols of the metric

Mq and where M ij is the inverse tensor to Mij .
A symmetry of the mechanical system is a group action

that leaves kinetic and potential energy invariant. We
refer to [5] for the most general definition of group action.
In what follows, we present a simplified treatment of the
the trivial 1–dimensional case.

Abelian Symmetries

We assume that the manifold Q can be written as Q =
R × G, where (G, +) is either the torus or the real line.
Correspondingly, the configuration is q = (r, x) ∈ R × G,
and the group action if the smooth diffeomorphism of
Q defined by (y, (r, x)) = (r, x + y). The kinetic and
potential energy are invariant under the action of G if
∂L/∂x = 0. The vector field ∂/∂x is sometime called
an infinitesimal isometry or the infinitesimal generator of
the group action.

The momentum map µ is a one-form, that is a map
TQ → R defined by

µ(Xq) , 〈〈Xq ,
∂

∂x
〉〉 Xq ∈ TqQ.

The value of the momentum map is constant along the
solutions to the unforced mechanical system (i.e., equa-
tion (6) with uk = 0). In particular one can prove that:

d

dt
µ(q̇) =

m∑

k=1

〈F k ,
∂

∂x
〉uk. (7)

Given µ0 ∈ R, we define the locked inertia I(r) and the
amended potential Vµ0

(r) as

I(r) = 〈〈
∂

∂x
,

∂

∂x
〉〉,

Vµ0
(r) = V (r) +

1

2
I(r)−1µ2

0,

where we write V (q) = V (r) thanks to ∂V/∂x = 0. A
relative equilibrium is a pair (µ0, r0), where µ0 ∈ R and
r0 ∈ R is a critical point of Vµ0

, i.e., a point such that
dVµ0

(r0) vanishes.
If (µ0, r0) is a relative equilibrium, then any curve of

the form {(r(t), x(t)) ∈ Q| r(t) = r0, ẋ(t) = µ0/I(r0), t ∈
R} is a solution to the unforced mechanical system (i.e.,
equation (6) with uk = 0). In other words, a relative
equilibrium is an “equilibrium solution” in the reduced
space R × R that correspond to a family of solution in
the full phase space.

Finally, we introduce the notion of momentum preserv-
ing forces. We define the horizontal codistribution horq

as the annihilator of the distribution spanned by ∂/∂x,
that is:

horq = Ker span{
∂

∂x
}.



According to equation (7), a force F is horizontal, i.e.,
it takes values in horq, if and only if it preserves the
momentum µ. Next, we let horq F denote the largest
horizontal subspace (subbundle) of F . The dimension of
this subspace is either m−1 or m, depending on whether
the external forces affect on the momentum or not.

4 Exponential Stabilization of Relative

Equilibria

In what follows we let (µ0, r0) be a relative equilibrium
for the mechanical system with Abelian symmetry (6).

Problem 1. Design a feedback law u = u(q, q̇) such that(
µ(q̇(t)), r(t)

)
converge exponentially fast to (µ0, r0).

We devise our control strategy on the base of the fol-
lowing assumptions. First, we assume that the horizontal
input codistribution is m−1 dimensional and integrable,
i.e., we assume that there exist m−1 functions φi : R → R

such that

horq F = span{dφ1, . . . , dφm−1}. (A1)

This also implies that we can arbitrarily pick a covector
Fvert to complete F . In other words, we have decomposed
the set of inputs F into horizontal forces (momentum
preserving) and a complementary force. Accordingly, we
re-parameterize the input force as

m∑

k=1

F kuk = Fvertuvert +

m−1∑

i=1

dφi uhoriz,i.

Notice that this is a different requirement than asking
for F itself to be integrable. Condition (A1) implies that
the set of allowable inputs F can exert a force of the form
dVfdbk, for any function Vfdbk = Vfdbk(φ1, . . . , φm−1).

Next, we require the second variation of the amended
potential Vµ0

(r) to be positive definite over the “uncon-
trolled” subspace Ker{horq F} ⊂ TrR. More precisely,
we require that the matrix

(
∂2Vµ0

∂ri∂rj
(r0)

)
be positive definite restricted to

Ker span{dφ1, . . . , dφm−1}(r0) ⊂ Tr0
R. (A2)

This requirement is closely related to certain conditions
given in [7] and [8, Proposition 2.3].

Finally, we require the following controllability condi-
tion. Set uvert = 0 (i.e. only horizontal forces are al-
lowed) and let (A, Bhoriz) denote the linearization about
the point (r, ṙ, µ) = (r0, 0, µ0) of the mechanical system
in equation (6). We say that the horizontal forces have
full linear controllability rank if

rank
[
Bhoriz ABhoriz · · · A2(n−1)Bhoriz

]
= 2(n − 1).

(A3)

This condition allows us to prove asymptotic and expo-
nential stability. A similar statement can be expressed
in terms of an involutivity condition of certain Poisson
brackets, see [8]. We finally state the main result.

Theorem 1 (Exponential Stabilization). Consider

the simple mechanical control system in equation (6)
and let (µ0, r0) be a relative equilibrium. Let assump-

tions (A1), (A2) and (A3) hold. Then there exist (m−1)
positive constants kp1, . . . , kp(m−1) such that

Vµ0
(r) +

m−1∑

i=1

kpiφi(r)
2 > 0

for all r 6= r0 in a neighborhood of r0. Let kvert and

kd1, . . . , kd(m−1) be positive constants and define

uvert = −kvert(µ(q̇) − µ0)

uhoriz,i = −kpiφi(r) + kdiφ̇i(r, ṙ) ∀i = 1, . . . , m − 1.

Then (µ, r)(t) locally exponentially converges to (µ0, r0).

We refer the reader to [2] for a proof.
There are two advantages of the controller described

in the previous theorem over a standard linear con-
troller based on linearization: First, by investigating the
amended potential Vµ0

we can establish the region of at-
traction of our controller. Second, our design is indepen-
dent from the exact knowledge of the inertia coefficients,
leading to robustness to parameter uncertainty.

The assumption that the amended potential be positive
definite over the “uncontrolled subspace” is quite strong.
Should this condition fail, one can employ the techniques
introduced in [1].

5 Applications to Vehicle Control

We consider the model of a planar body moving in an
idealized fluid, see [4] for more details. Let (θ, x, y) denote
the configuration of the planar body and ξ = (ω, vx, vy)
its velocity expressed in a body–fixed reference frame.
The Lagrangian is L = 1

2Jω2 + 1
2mxv2

x + 1
2myv2

y where
J > 0 and mx > my > 0. The two control inputs consist
of forces {f1, f2} applied at a distance h from the center
of mass. The equations of motion are:

θ̇ = ω Jω̇ = (mx − my)vxvy − hu2

ẋ = cos(θ)vx − sin(θ)vy , mxv̇x = myωvy + u1

ẏ = sin(θ)vx + cos(θ)vy my v̇y = −mxωvx + u2.

Even though the planar body has a full SE(2) symme-
try, we focus on the Abelian group action (χ, (θ, x, y)) 7→
(θ, x + χ, y). According to the definitions, we compute

µ = (mx cos2 θ + my sin2 θ)ẋ + (mx − my) sin θ cos θẏ,

I(r) = mx cos2 θ + my sin2 θ,



and Vµ0
(r) = 1

2 µ2
0/I(r). The control goal is to stabilize

the relative equilibrium described by r = (θ, y) = (0, 0)
and µ = µ0 = mxẋ0. Assumption (A1) holds because

F = span{cosθdx + sinθdy, cosθdy − sinθdx − h sinθdθ}

= span{dy − h cos θdθ} + span{dx + h cos θdθ},

where one can verify that horq F = span{d(y − h sin θ)}
and where we have chosen dx+h cos θdθ to complete the
input codistribution. Regarding (A2), we compute the
second variation of Vµ0

as
(

∂2Vµ0

∂θ ∂y
(0, 0)

)
=

µ2
0

m2
x

[
mx − my 0

0 0

]
,

which is positive definite for mx > my when restricted
to the subspace Ker span (dy − h cos θdθ) = span{ ∂

∂y
+

h cos θ ∂
∂θ

}. The controllability assumption (A3) can be
easily verified. If we let cθ = cosθ and sθ = sinθ, local
exponential stability is obtained by

[
u1

u2

]
=

[
cθ −sθ

sθ cθ

] [
−kvert(µ − mxv0)

−kp(y − hsθ) − kd(ẏ − hωcθ)

]

Next, we consider the classic model of a satellite with
two thrusters, see for example [5]. Let SO(3) denote the
group of rotations in the Euclidean space R3. The atti-
tude and the body fixed velocity are (R, Ω), the inertia
matrix is J so that the kinetic energy is 1

2ΩT JΩ. The two
inputs consist of two torques about the first and second
axes. The equations of motion are:

Ṙ = RΩ̂

JΩ̇ = JΩ × Ω + e1u1(t) + e2u2(t), (8)

where e1 = (1, 0, 0) and e2 = (0, 1, 0). We assume J =
diag {J1, J2, J3} with J1 > J2 > J3.

Even though the satellite has a full SO(3) symme-
try, we focus on the Abelian group action (χ, R) 7→
exp(χê1)R where the exponential map exp : so(3) →
SO(3) maps an angle-axis of rotation to the correspond-
ing rotation matrix. A convenient parameterization of
SO(3) is as follows. We write R as

R(α, β, γ) = exp(α ê1) exp(β ê2) exp(γ ê3),

that is, we parameterize SO(3) by a set of Euler angles
(α, β, γ), that is singular at β = ±π/2. The unusual order
of rotation is well-suited to the symmetry we consider and
to the set of input vector fields. We refer to [2] for the
expression of the Jacobian relating Euler angles rates and
body fixed velocity and of the inertia matrix as a function
of (α, β, γ). In terms of the (α, β, γ) chart we compute

f1 = (cosβ cos γ)dα + (sin γ)dβ

f2 = (− cosβ sinγ)dα + (cos γ)dβ

µ =
(
J3 sin(β)2 + cos(β)2(J1 cos(γ)2 + J2 sin(γ)2)

)
α̇

+ 1

2
(J1 − J2) cos(β) sin(2γ)β̇ + J3 sin(β)γ̇,

I(r) = J1 cos2β cos2γ + J3 sin2β + J2 cos2β sin2γ.

The control goal is to stabilize the relative equilibrium
described by r = (β, γ) = (0, 0) and µ = J1α̇0. This
problem is often referred to as “spin axis stabilization.”
Assumption (A1) holds because

F = span{(cosβ cos γ)dα + (sin γ)dβ,

(cos γ)dβ − (cosβ sin γ)dα}

= span{dβ} + span{cosβdα},

where one can verify that horq F = span{dβ} and where
we have chosen cosβdα to complete the input codistribu-
tion. Regarding (A2), we compute the second variation
of Vµ0

as

(
∂2Vµ0

∂β ∂γ
(0, 0)

)
=

µ2
0

J2
1

[
J1 − J3 0

0 J1 − J2

]
,

which is positive definite for J1 > J2 when restricted to
the subspace Ker span (dβ) = span{ ∂

∂γ
}. The controlla-

bility assumption (A3) can be easily verified. Summariz-
ing, local exponential stability is obtained by

[
u1

u2

]
=

[
cos γ − sinγ
sinγ cos γ

] [
−kvert(µ − J1ω0)

−kpβ − kdβ̇

]
.
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