
TRAJECTORY TRACKING FOR FULLY ACTUATED

MECHANICAL SYSTEMS

Francesco Bullo Richard M. Murray

Control and Dynamical Systems
California Institute of Technology

Pasadena, CA 91125
Fax : + 1-818-796-8914

email : bullo@indra.caltech.edu email : murray@indra.caltech.edu

Keywords : mechanical systems, nonlinear control, Lie
groups, Riemannian geometry

Abstract

We present a general framework for the control of La-
grangian systems with as many inputs as degrees of free-
dom. Relying on the geometry of mechanical systems on
manifolds, we propose a design algorithm for the track-
ing problem. The notions of error function and transport
map lead to a proper definition of configuration and ve-
locity error. These are the crucial ingredients in designing
a proportional derivative feedback and feedforward con-
troller. The proposed approach includes as special cases
a variety of results on control of manipulators, pointing
devices and autonomous vehicles.

1. Introduction

Mechanical control systems provide an important and
challenging research area that falls between the study
of classical mechanics and modern nonlinear control the-
ory. From a theoretical viewpoint, the geometric struc-
ture of mechanical systems gives way to stronger control
algorithms than those obtained for generic nonlinear sys-
tems. Some results in this area are surveyed for example
in [12] and [10]. The driving applications are motion con-
trol problems in underwater and aerospace environments,
where relevant Lagrangian models are available and a non-
linear analysis can successfully exploit this structure.

This paper deals with the trajectory tracking problem
for a class of Lagrangian systems. The control objective is
to track a trajectory with exponential convergence rates in
order to guarantee performance and robustness. The me-
chanical systems we consider have Lagrangian equal to the
kinetic energy and are fully actuated, that is, they have
as many independent input forces as degrees of freedom.
A wide variety of aerospace and underwater vehicles, as
well as robot manipulators, fulfill these assumptions. The

main emphasis in this paper is on the fact that the config-
uration space of these systems is a generic manifold Q.

The tracking problem for robot manipulators has re-
ceived much attention in the literature. Examples are the
contributions in [16], [13] and [17], where asymptotic and
exponential tracking are achieved via a nonlinear anal-
ysis. These results are now standard in textbooks on
control [12] and robotics [11]. Since then, similar tech-
niques have been applied to the attitude control problem
for satellites [18], and likewise to the attitude and position
control for underwater vehicles [5, Section 4.5.4]. A com-
mon feature in all these works is the preliminary choice
of a parametrization, that is a choice of coordinates for
the configuration manifold. The synthesis of both control
law and relative Lyapunov function is performed in this
specific chart.

In this paper we propose a general framework that relies
on the geometry of mechanical systems on manifolds. In
the spirit of [6], our approach avoids the parametrization
step and focuses directly on how to define a configuration
and a velocity error on a manifold. The notions of “er-
ror function” and “transport map” yield to a coordinate-
free definition of differences (errors) between configura-
tions and between velocities. Additionally, an intrinsic
definition for the feedforward control is obtained using
the theory of Riemannian connections. These ideas lead
to a coordinate independent system design. The resulting
control law, even though expressed in a specific set of co-
ordinates, is not biased by that choice. Global stability
is ensured as long as error function and transport map
satisfy a compatibility condition. The resulting design
algorithm can then be applied to a variety of examples.
We treat here only the case of a robot manipulator on Rn

and of a satellite on the group of rotations SO(3). We
refer to the report [3] for an integral version of this work,
including the instructive case of an underwater vehicle on
the group of rotations and translations SE (3).

The paper is organized as follows. Section 2 reviews
some concepts from Riemannian geometry and from me-
chanical systems. In Section 3 we define error function
and transport map. The main theorem is presented in
Section 4 and two examples are discussed in Section 5.



2. Mathematical Preliminaries

In this section we introduce the mathematical machin-
ery needed for the remainder of the paper. For an intro-
duction to Riemannian geometry we refer to [2] and [4].
For an introduction to mechanics we refer to [8].

2.1. Elements of Riemannian geometry

A Riemannian metric on a manifold Q is a smooth map
that associates to each tangent space TqQ an inner prod-
uct 〈〈· , ·〉〉q. An affine connection on Q is a smooth map
that assigns to each pair of smooth vector fields X, Y a
smooth vector field ∇XY such that for all smooth func-
tions f on Q

1. ∇fXY = f∇XY , and

2. ∇XfY = f∇XY + (LXf)Y

where LXf denotes the Lie derivative of f with respect to
X . In system of local coordinates (q1, . . . , qn) we define
the Christoffel symbols by

∇ ∂

∂qi

(
∂

∂qj

)
= Γk

ij

∂

∂qk
.

where the summation convention is enforced here and in
what follows. Given any three vector fields X, Y, Z on Q,
we say that the affine connection ∇ on Q is torsion-free if

[X, Y ] = ∇XY − ∇Y X

and is compatible with the metric 〈〈· , ·〉〉 if

LX〈〈Y , Z〉〉 = 〈〈∇XY , Z〉〉 + 〈〈Y , ∇XZ〉〉.

The Levi-Civita theorem states that on the Riemannian
manifold Q there exists a unique affine connection ∇,
which is torsion-free and compatible with the metric. We
call this ∇ the Riemannian connection on Q.

We conclude with two useful definitions. Given a real
valued function f on Q, the gradient of f is the vector
field ∇f such that

〈〈∇f , X〉〉 , LXf.

Given a one form ω and a vector field X , the covariant
derivative of ω with respect to X is the one form ∇Xω
such that

(∇Xω) · Y = LX(ω · Y ) − ω · ∇XY,

for all vector fields Y .

2.2. Computing covariant derivatives

Loosely speaking, covariant derivatives are directional
derivatives of quantities defined on manifolds. Equa-
tion (1) relates them to the notion of Lie differentiation,
whereas equation (1) plays the role of the Leibniz rule. In
the following we present some useful approaches on how
to compute covariant derivatives.

A first instructive case is when the manifold Q is a sub-
manifold of Rn and the Riemannian metric on Q is the one
induced by the Euclidean metric on Rn. Then we can de-
note with πq the orthogonal projection from Rn onto the
tangent bundle TqQ. Given any two vector fields X, Y on
Q, it holds that

(∇XY ) (q0) = πq0

(
d

dt

∣∣∣
t=0

Y (q(t))

)
,

where {q(t), t ∈ R} is any curve on Q with q(0) = q0

and q̇(0) = X(q0). We refer to [2, Chapter VII] for more
details on this description of covariant differentiation.

In the general case, e.g. whenever the previous assump-
tions are not satisfied, we can express covariant derivatives
in a system of local coordinates. The Christoffel symbols
Γk

ij of a Riemannian connection can be computed as fol-

lows. Denoting with Mij = 〈〈 ∂
∂qi , ∂

∂qj 〉〉, we have

Γk
ij = 1

2Mmk

(
∂Mmj

∂qi
+

∂Mmi

∂qj
−

∂Mij

∂qm

)
,

where {M ij} is the inverse of the tensor M . The covariant
derivative of a vector field is then written as

∇XY =

(
∂Y i

∂qj
Xj + Γi

jkXjY k

)
∂

∂qi
.

2.3. Mechanical systems in a Riemannian context

Here we describe a mechanical system and its equations of
motion in a coordinate free fashion. Key ideas are regard-
ing the system’s kinetic energy as a Riemannian metric
and writing the Euler-Lagrange’s equations in terms of
the associated Riemannian connection. For a more com-
plete treatment, see for example [7].

We start with some definitions. A simple mechanical
control system is defined by a Riemannian metric on a
configuration manifold Q (defining the kinetic energy), a
function V on Q (defining the potential energy), and m
one-forms, F 1, . . . , Fm, on Q (defining the inputs).

A simple mechanical system is said to be fully actuated
if for all q ∈ Q, the family of vectors {F 1(q), . . . , Fm(q)}
spans the whole vector space T ∗

q Q, that is if there exists an
independent input one form corresponding to each degree
of freedom.

Let Mq : TqQ → T ∗
q Q denote the metric tensor as-

sociated to the kinetic energy and ∇ the corresponding
Riemannian connection. Let q(t) ∈ Q be the configura-
tion of the system and q̇(t) ∈ TqQ its velocity. Using the
formalism introduced in the previous section, the forced
Euler-Lagrange equations can be written as

∇q̇ q̇ = M−1
q

(
dV (q) + F (t, q, q̇)

)
, (1)

where dV (q) is the differential of the potential function
V and where the resultant force F (q, t) =

∑
F a(q)ua(t)

is the input. In a system of local coordinates (q1, . . . , qn)
the previous equations read

q̈i + Γi
jk q̇j q̇k = M ij

(
∂V

∂qj
+ Fj

)
.



Note that the Euler-Lagrange’s equations are coordinate
independent (intrinsic), in the sense that they are satisfied
in every system of local coordinates.

We shall say that the mechanical system (1) has
bounded inertia if there exist m1 ≥ m2 > 0 such that
for all q ∈ Q it holds that

m1 ≥ sup
q∈Q

‖M∗
q Mq‖Mq

≥ inf
q∈Q

‖M∗
q Mq‖Mq

≥ m2,
(B1)

where ‖ · ‖Mq
is the operator norm on the inner product

space (TqQ, Mq). Here and in the following, the tag (Bn)
denotes some boundedness assumptions which will play a
crucial role in later sections.

3. Geometric Description of Configuration

and Velocity Error

In this section we study the geometric objects involved
in the controller design. To measure the distance between
reference and actual configuration, we introduce the no-
tion of error function. To measure the distance between
reference and actual velocity, we introduce the notion of
transport map. A design on two sphere manifold provides
an example of our definitions. Finally we study the time
derivative of the transport map. Together with a dissipa-
tion function, these ingredients are crucial in designing a
tracking control.

3.1. Error function and configuration error

Let ϕ be a smooth real valued function on Q × Q. We
shall call ϕ an error function if it is positive definite, that
is ϕ(q, r) ≥ 0 for all q and r, and ϕ(q, r) = 0 if and only if
q = r. We shall say that the error function ϕ is symmetric,
if ϕ(q, r) = ϕ(r, q) for all q and r.

Let d1ϕ and d2ϕ denote the gradient of ϕ(q, r) with
respect to its first and second argument. We shall say that
the error function ϕ is (uniformly) quadratic with constant
L if for all ε > 0 there exist two constants b1 ≥ b2 > 0
such that ϕ(q, r) < L − ε implies

b1‖ d1ϕ(q, r)‖2
Mq

≥ ϕ(q, r) ≥ b2‖ d1ϕ(q, r)‖2
Mq

.
(A1)

Here and in the following, the tag (An) denotes some de-
sign assumptions which will play a crucial role in later
sections.

When q and r are actual and reference configuration,
we will sometimes call the quantity ϕ(q, r) configuration
error. As mentioned above, the error function ϕ will be
instrumental in designing the proportional action.

3.2. Transport map and velocity error

Given two points q, r ∈ Q, we shall call a linear map
T(q,r) : TrQ → TqQ a transport map if it is compatible
with the error function, that is if

d2ϕ(q, r) = −T ∗
(q,r) d1ϕ(q, r), (A2)

where T ∗
(q,r) : T ∗

q Q → T ∗
r Q is the dual map of T(q,r). The

transport map T is also required to be smooth, i.e., for all
point r in Q and tangent vectors Yr in TrQ, the vector
field T(q,r)Yr is smooth.

Using a transport map, velocities belonging to different
tangent bundles can be compared. In the following, we
shall call velocity error the quantity

ė , q̇ − T(q,r)ṙ ∈ TqQ.

Note the slight abuse of terminology, given that the veloc-
ity error is not the time derivative of a position error. Also
note that since the definition of T and ė are equivalent,
we will sometimes talk about compatibility between con-
figuration and velocity errors. The next lemma provides
some insight into the meaning of the velocity error and of
condition (A2).

Lemma 1. (Time derivative of an error function) Let
{q(t), t ∈ R+} and {r(t), t ∈ R+} be two smooth curves
in Q. Let ϕ be an error function and T a compatible
transport map. Then

d

dt
ϕ
(
q(t), r(t)

)
= d1ϕ

(
q(t), r(t)

)
· ė(t), ∀t ∈ R+.

•

The result can be restated as follows. As both q and r
are functions of time, the time derivative of ϕ : Q × Q →
R reduces to a derivative only with respect to the first
argument

L(q̇, ṙ)ϕ = L(ė, 0)ϕ,

where (X, Y ) denotes a vector field on the product man-
ifold Q × Q.

Last, we introduce the notion of dissipation function,
which will be useful in defining a derivative action. We
define a (linear Rayleigh) dissipation function as a smooth,
self-adjoint, positive definite tensor field (Kd)(q) : TqQ →
T ∗

q Q. We shall say that Kd is bounded if there exist d2 ≥
d1 > 0 such that

d2 ≥ sup
q∈Q

‖Kd‖Mq
≥ inf

q∈Q
‖Kd‖Mq

≥ d1, (B2)

where ‖ · ‖M is the operator norm for (1, 1) type tensors
on TqQ induced by the metric Mq on TqQ.

3.3. Derivatives of the transport map and bound-
edness assumptions

So far we have introduced configuration and velocity errors
that will be key ingredients in designing a proportional
and derivative feedback in the next section. We now study
how the transported reference velocity (T(q,r)ṙ) varies as
a function of both q(t) and (r, ṙ)(t). This will be useful
in designing the feedforward action. We denote the total
derivative of (T(q,r)ṙ) with

D (T ṙ)

dt
= ∇q̇ (T ṙ) +

d

dt

∣∣∣
q fixed

(T ṙ) ,

where the two terms are described as follows:



1. At (r, ṙ) fixed, T(q,r)ṙ is a vector field on Q and there-
fore its covariant derivative ∇q̇ (T ṙ) is well-defined on
Q. We call covariant derivative of the transport map
the map ∇T : TqQ × TrQ → TqQ defined as

(∇XT )Yr , ∇X(T Yr),

for all tangent vectors X ∈ TqQ and Yr ∈ TrQ.

2. At q fixed, T(q,r)ṙ is a vector on the vector space TqQ
and therefore its time derivative is well-defined. We
denote it with the symbol:

d

dt

∣∣∣
q fixed

(
T ṙ

)
∈ TqQ.

We conclude the section with some boundedness as-
sumptions. We shall say that the transport map T has
bounded covariant derivative and that the error function
ϕ has bounded second covariant derivative if

sup
(q,r)∈Q×Q

‖∇T(q,r)‖M < ∞, (B3)

and

sup
(q,r)∈Q×Q

‖∇ d1ϕ (q, r)‖M < ∞, (B4)

where ‖ · ‖M is the induced operator norm on the inner
product space (TqQ, Mq). We shall say that the twice
differentiable curve {r(t), t ∈ R+} ⊂ Q is a reference tra-
jectory with bounded time derivative if

sup
t∈R

‖ṙ‖Mr
< ∞. (B5)

Notice that a sufficient condition for the bounds (B3)
and (B4) to hold, is that the quantities ∂T i

α/∂qk,
∂2ϕ/(∂qi∂qj) and Γk

ij(q) are bounded.

4. Tracking on Manifolds

In this section we state and solve the exponential track-
ing problem. Since we are dealing with second order sys-
tems on a manifold, special care is needed in defining Lya-
punov and exponential stability. We express the latter
notions in terms of a total energy function, defined as the
sum of a generalized potential (the configuration error)
and kinetic energy (the norm of the velocity error):

Wtotal(q, q̇; r, ṙ) , ϕ(q, r) + 1
2‖ė‖2

Mq
.

The control goal is to drive the total energy to zero, since
at Wtotal = 0 the state q(t) tracks the trajectory r(t) ex-
actly. This is stated as follows:

Problem 2. (Control objective) Given a reference tra-
jectory {r(t), t ∈ R+}, design a control law F =
F (q, q̇; r, ṙ) such that the total energy function Wtotal

is exponentially convergent to zero.

Recall that by exponential convergence for Wtotal we mean
the existence of two positive constants k and λ such that

Wtotal(t) ≤ k Wtotal(0) e−λt,

where we write Wtotal(t) for Wtotal(q(t), q̇(t); r(t), ṙ(t)).
We are now ready to state the main result.

Theorem 3. (Exponential tracking) Consider the me-
chanical system

∇q̇ q̇ = M−1
q F, q ∈ Q

and let the twice differentiable curve {r(t), t ∈ R+} be a
reference trajectory. Let ϕ be an error function, T be a
transport map satisfying the compatibility condition (A2)
and Kd be a dissipation function.

If the control input is defined as F = FPD + FFF with

FPD(q, q̇; r, ṙ) = − d1ϕ(q, r) − Kd ė

FFF(q, q̇; r, ṙ) = Mq

(
(∇q̇T(q,r))ṙ +

d

dt

∣∣∣
q fixed

(
T(q,r)ṙ

))
,

then the curve q(t) = r(t) is Lyapunov stable, in the
sense that Wtotal(t) ≤ Wtotal(0) from all initial conditions(
q(0), q̇(0)

)
.

In addition, if the error function ϕ satisfies the
quadratic assumption (A1) with a constant L, and if the
boundedness assumptions (B1–B5) hold, then Wtotal(t)
converges exponentially to zero, from all initial conditions
(q(0), q̇(0)) such that

ϕ
(
q(0), r(0)

)
+ 1

2‖ė(0)‖2
M

< L. •

While similar results are quite common and well-
established in the robotics literature, note that the con-
tribution of the previous theorem lies in a coordinate free
design performed on a generic manifold. We refer to the
report [3] for the proof, but we include a few remarks in
the following.

The design process and the theorem’s results are global
in the reference position r(t) but only local in the config-
uration q (the error function ϕ(q, r) must remain smaller
than the parameter L). This cannot be avoided because
of (possible) topological properties of the manifold Q. For
additional details we refer to [6], where the global aspects
of the point stabilization problem are discussed.

By constraining the choices of admissible couples (ϕ, T ),
the compatibility condition (A2) affects important design
aspects of FPD and FFF. For example, one particular
transport map might generate a “simple” velocity error
and a “simple” feedforward control, but it might also re-
quire a “complicated” error function. The next section
contains some examples of this tradeoff.

As expected, the final control law is sum of a feedback
and a feedforward term. This is in agreement with the
ideas exposed in [10] on “two degree of freedom system de-
sign” for mechanical systems. While the feedforward term
depends on the geometry of both the manifold and the me-
chanical system, the feedback term is designed knowing



only the configuration manifold Q. We expect the ideas
of configuration and velocity error to be relevant for more
general second order nonlinear systems on manifolds.

5. Applications and Extensions

We present only two applications of Theorem 3 and we
refer to the report [3] for additional examples and details.

5.1. A robot manipulator on Rn

In this section, we shall recover the standard results on
tracking control of manipulators contained in [11]. Let q ∈
Rn be the joint variables and M(q) be the inertia matrix
of the manipulator. The design described in Section 3 is
performed as follows.

Let ϕ(q, r) = 1
2 (q − r)T Kp(q − r) be the quadratic er-

ror function and as TqRn = TrRn, let the transport map
be equal to the identity matrix: T(q,r) = In. Assump-
tions (A1) and (A2) are easily verified. To design the
feedforward action, we compute the covariant derivative

of T . Let
{

∂
∂q1 , . . . , ∂

∂qn

}
be the standard basis in Rn,

let {i, j, k, . . . } be indices over q and {α, β, . . . } be indices
over r. Then one can show that

(∇ In)i
αj =

∂(In)i
α

∂qj
+ Γi

jk(In)k
α = Γi

jα,

Therefore, in contrast to a naive guess, the covariant
derivative of the identity map is different from zero. The
control law is

FPD = −Kp(q − r) − Kd(q̇ − ṙ)

FFF = M(q)
(
(∇q̇In)ṙ +

d

dt

∣∣∣
q fixed

ṙ
)

= M(q)
(
Γi

jαq̇j ṙα ∂

∂qi + r̈
)

≡ M(q)r̈ + C(q, q̇)ṙ,

where C(·, ·) is the Coriolis matrix typically encountered
in robotics. The control law F = FPD + FFF agrees with
the one presented in [11, Chapter 4, Section 5.3] under
the name of “augmented PD control”. The assumptions
(B1–B5) can be written in terms of Mq, Γk

ij and ṙ being
bounded over t ∈ R and q ∈ Rn.

5.2. A satellite on the rotation group SO(3)

In the next two sections we design tracking controllers
for mechanical systems defined on the group of rotations
SO(3) and on the group of rigid motions SE (3). We focus
on rigid bodies with body-fixed forces and invariant ki-
netic energy, as satellites and underwater vehicles. Never-
theless our treatment is relevant also for workspace control
of robot manipulators. This section presents the attitude
control problem for a satellite.

The configuration of the satellite (rigid body) is the
rotation matrix R representing the position of a frame
fixed with the rigid body with respect to an inertially fixed
frame. A rotation matrix on R3 is an element on the

special orthogonal group SO(3) = {R ∈ R3×3| RRT =
I3, det(R) = +1}. The kinematic equation describing the
evolution of R(t) is

Ṙ = RΩ̂

where Ω ∈ R3 is the body angular velocity expressed in the
body frame. Recall that the matrix Ω̂ is defined such that
Ω̂x = Ω × x for all x ∈ R3 and it belongs to the space of
skew symmetric matrices so(3) = {S ∈ R3×3| ST = −S}.
We refer to [11] for additional details.

The kinetic energy of the rigid body is 1
2ΩT JΩ, where

the inertia matrix J is symmetric and positive definite.
The Euler equations describing the time evolution of Ω
are

JΩ̇ = JΩ × Ω + f, (2)

where f ∈ R3∗ is the resultant torque acting on the body.

Error functions Let {Rd(t), t ∈ R+} denote the ref-
erence attitude trajectory corresponding to a desired or
reference frame and let Ωd = RT

d Ṙd denote the reference
velocity in the reference frame. Using the group operation,
we define right and left attitude errors as

Re,r , RT
d R and Re,l , RRT

d . (3)

The matrix Re,r is the relative rotation from the body
frame to the reference frame. Two error functions are then
defined as ϕr(R, Rd) , φ(Re,r) and ϕl(R, Rd) , φ(Re,l),
where φ : SO(3) → R+ is defined as [6]

φ(Re) , 1
2 tr

(
Kp(I3 − Re)

)
.

If the eigenvalues {k1, k2, k3} of the symmetric matrix Kp

satisfy ki + kj > 0 for i 6= j, then both error functions
ϕl and ϕR are symmetric, positive definite and quadratic
with constant L = mini6=j(ki +kj). Locally near the iden-
tity the function φ assigns a weight k2 + k3 to a rotation
error about the first axis (and similarly for the other axes).

Velocity errors To define compatible velocity errors,
we compute the time derivative of the two error functions.
Let the matrix skew(A) denote 1

2 (A − AT ) and let ·∨ de-
note the inverse operator to ·̂ : R3 → so(3). We have

d

dt
ϕr = (skew(KpRe,r)

∨)
T

Ωe,r (4)

d

dt
ϕl = (skew(KpRe,l)

∨)
T

Rd Ωe,l, (5)

where we define right and left velocity errors in the body
frame as

Ωe,r , Ω − RT
e,rΩd and Ωe,l , Ω − Ωd.

Note the slightly improper wording, since a velocity error
ė = Ṙ − T Ṙd lives on the tangent bundle TRSO(3). A
precise statement is

ėl = RΩe,l ≡ Ṙ −
(
RRT

d

)
Ṙd

ėr = RΩe,r ≡ Ṙ − Ṙd

(
RT

d R
)
.



These equalities also motivate the names “left” and
“right”. A left (right) velocity error is obtained by left
(right) translation of the velocity Ṙd.

Next we describe compatible couples of configuration
and velocity errors. Equation (4) suggests that a right
attitude error RT

d R and a right velocity error Ω−RT RdΩd

are compatible. This couple is the most common choice
in the literature, see for example [9], [6], and [18].

Left attitude and velocity error appear less frequently.
With this choice both the velocity error and, as we show
below, the feedforward control have a simple expression.
Remarkably, when the gain Kp is a scalar multiple of the
identity kpI3, the left and right error functions are equal
and it is possible to use ϕe,r with Ωe,l.

Finally we summarize the design process.

Lemma 4. Consider the system in equation (2). Let
{Rd(t), t ∈ R+} denote the reference trajectory and let
Ωd = RT

d Ṙd denote its body-fixed velocity. Corresponding
to the two choices of attitude error, we define

fr = − skew(KpRe,r)
∨−KdΩe,r + Ω × J(RT

e,rΩd)+J(RT
e,rΩ̇d)

fl = −RT
d skew(KpRe,l)

∨ − KdΩe,l + Ωd × JΩ + JΩ̇d

where Kd is a positive definite matrix and Kp is a symmet-
ric matrix with eigenvalues {k1, k2, k3} such that ki+kj >
0 for i 6= j.

Then, for both choices of attitude error, the total energy
φ(Re) + 1

2‖Ωe‖
2
J

converges exponentially to zero from all
initial conditions (R(0), Ω(0)) such that

φ(Re(0)) + 1
2‖Ωe(0)‖2

J < min
i6=j

(ki + kj). •

6. Summary and Conclusions

This work unveils the geometry and the mechanics of
the tracking problem for fully actuated Lagrangian sys-
tems. The design process in Section 3 allows us to charac-
terize in an intrinsic way a tracking controller. The basic
answered questions concern how to define configuration
and velocity errors and how to compute the feedforward
control. Almost global stability and local exponential con-
vergence are proven in full generality. Our framework suc-
cessfully unifies a variety of examples. We have here pre-
sented only two of them and we refer to the report [3]
for an integral version of this work, including proofs and
additional detailed examples.

This work provides coordinate free design techniques
for nonlinear mechanical systems. Other recent papers on
modeling [1], controllability [7] and dynamic feedback lin-
earization [14] share the same geometric tools. A parallel
avenue of research relies on the Hamiltonian formulation of
mechanical systems, see for example [12] and [15]. These
geometric techniques are a promising starting point in the
design of control policies for underactuated systems.
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