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ABSTRACT. This paper presents a general framework for the control of
mechanical systems with as many control inputs as degrees of freedom.
An intrinsic interpretation of proportional derivative feedback and feed-
forward control is provided through a Riemannian geometry framework.
An error function and a transport map are the crucial design ingredients.
The proposed approach includes various results on joint and workspace
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1. Introduction

This report is a contribution in the area of nonlinear control theory for mechan-
ical systems (Murray 1995) and it is the completion of our previous works, (Bullo
and Murray 1995) and (Bullo, Murray and Sarti 1995). Given a fully actuated
control system, that is a system wth as many inputs as degrees of freedom, our
control objective is to track a trajectory with exponential convergence rates, as to
guarantee performance and robustness.

Exponential tracking for a robotic manipulator was first achieved by Wen and Ba-
yard (1988) using a Lyapunov technique and is now standard in textbooks (Murray,
Li and Sastry 1994). Since then, similar techniques have been applied to other
fields in robotics, like position and attitude stabilization and for satellites and au-
tonomous underwater vehicles. Additionally, relevant work on global stability issues
was performed by Koditschek (1989).

Here we consider general mechanical systems defined on Riemannian manifolds
and extend Koditschek’s (1989) approach to the exponential tracking problem. The
solution is the sum of a proportional derivative feedback and a feedforward control,
which are designed using two key ingredients: an error function and a transport
map. The gradient of the error function gives the proportional action. The trans-
port map allows for a coordinate independent definition of velocity error and of
derivative action. Furthermore, the feedforward control is the sum of two terms,
depending on the reference input, the transport map and its covariant derivative.

The control design is therefore reduced to the design of these basic objects. More
precisely we require a compatibility condition on how the transport map acts on
the gradient of the error function. Provided some relevant operator are bounded,
this condition is sufficient to prove exponential convergence. The main result is
then applied to the various examples: the Euclidean space R™, the Lie group SO(3)
and the two sphere S2. Generally, there is a great freedom in designing error
function and transport map and this is reflected by the numerous available works
on the subject. However, our compatibility condition represents a precise test with
instructive implications even in the basic examples. Additionally, instructive design
trade-offs become clear and are outlined in the various examples.

Regarding the feedforward terms, the mechanical structure of the problem re-
veals itself clearly within our solution: the feedback part does not depend on the
mechanical structure, while the feedforward control does! Additionally, the feed-
forward term is expressed in terms of intrinsic objects, which constitute a novel
contribution. Indeed, following the discussion on “two degree of freedom system
design” in (Murray 1995), we expect these terms to be important also in underac-
tuated situations.

The report is organized as follows. In Section 2 we review the necessary tools
from Riemannian geometry and fix some notation. In Section 3 we describe the
design process, introducing the error function and the transport map. Also we
compute the covariant derivative of the latter. Section 4 contains the main theorem
with some useful comments. In the following sections we apply the general theory
to the various cases: R™, SO(3) and S2. Some final comments are reported in
Section 8.
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2. Mechanical systems on Riemannian manifolds

In this section we review some standard material, however some adhoc notation
is introduced in Subsection 2.2. See in particular equations (2.5) and (2.6).

2.1. Elements of Riemannian geometry. We refer to (Kobayashi and Nomizu
1963) and (Do Carmo 1992) for an introduction to Riemannian geometry. Here we
simply review some notation.

Let M be a Riemannian manifold, denote with {-, -)) or with g its metric tensor
and with the symbols * : TM — T*M and ¥ : T*M — TM the musical isomor-
phisms. An affine connection on M is a map that assigns to each pair of smooth
vector fields X,Y a smooth vector field VxY such that

(i) foy = fVXY and
(i) VxfY = fVxY + (Lx f) Y for all f € C*(M).
In a local chart with coordinates (z*) we define the Christoffel symbols by
Vit % =T aiz'
Given any three vector fields X,Y, Z on M, we say that the affine connection V
on M is torsion-free if [X,Y] = VxY — VyX and is compatible with the metric

() if

Lx(Y, Z) =(VxY, Z) + (Y, Vx Z)). (2.1)

By the Levi-Civita theorem, there exists a unique torsion-free affine connection V
on M compatible with the metric. We call this V the Riemannian (or Levi-Civita)
connection on (M, (-, -»). Its Christoffel symbols are computed as

- (02 2)
Given a smooth real valued function f on M, define its gradient as
(Vf, X) 2 Lxf.
Next, let K be a (1,1) type tensor field on M and let X,Y € X(M). It holds
Vx(K(Y)) = (VK)(Y; X) + K(VxY)
where VK is a type (1,2) tensor field on M such that

(VE)) = Kl = (K} x + DKL - T KL, (2.2)

Similarly, let w be a (0,1) type tensor field (hence a one form). Its covariant
derivative is a (0, 2) type tensor which satisfies

(Vw)ak =Wyk = Wik — I‘Z;wm. (23)
For a complete treatment on the covariant derivative of a tensor, we refer to (Kobayashi
and Nomizu 1963, page 122 and page 146). The same authors, in Proposition 7.10

at page 147, study the difference between two Riemannian connections V' and V.
For any pair X,Y € X(M), it holds

ViY = VxY + §(X,Y) (2.4)

where S is a symmetric tensor field on M, whose coordinates satisfy S, = I}, —T",.
Conversely, given any Riemannian connection V and any symmetric tensor field S,
equation (2.4) defines a new Riemannian connection V'.
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2.2. Mechanical control systems on Riemannian manifolds. We now turn
to mechanical systems. The following definitions are standard:

Definition 1. A simple mechanical control system is defined by a Riemannian
metric on a configuration manifold @ (defining the kinetic energy), a function V
on @ (defining the potential energy), and m one-forms, F*,..., F™, on @ (defining
the inputs).

A simple mechanical system is said to be fully actuated, if for all ¢ € @ it holds
span{F'(q),...,F™(q)} = T;Q, i.e. if there exists an independent input one form
corresponding to each degree of freedom. |

In the following we will assume that the configuration manifold ) comes provided
with a natural Riemannian metric (-, -)). We denote with

\Y the Levi-Civita connection on @, ¢, . (2.5)
Equivalently, tangent and cotangent bundle are naturally identified:
T;Q = T,Q. (A1)

Remark 1. This basic assumption is emphasized with the label (A1). Beside sim-
plifying notation, this identification holds in every example and is usually exploited
in the design of a dissipation and error function, see next sections. O

With respect to this natural structure, the kinetic energy of the mechanical
system can be expressed in terms of a positive definite symmetric tensor field M, :
T,Q — T,Q. We denote with (-, -)»y = (M-, -) the inner product associated to
the kinetic energy (mechanical metric) and with ,V the Riemannian connection
associated to the simple mechanical system. Hence we have

Y the Levi-Civita connection on (@, &) Nar)- (2.6)

Let us denote with ¢(t) € @ the configuration of the system and with ¢(¢) € T,Q
its velocity. Using the formalism introduced in the previous section, the Fuler-
Lagrange equations for a simple mechanical control system can be written as

qu'q = MVV(Q) + Mq_lfa((I)uaa (27)

where the input vector fields f,(q) € T,Q are identified with the input one forms
F*(q) € T;Q through (Al).

We conclude the section with a boundedness condition. We shall say that the
mechanical system (2.7) has bounded inertia, if there exist m; > mg > 0 such that

my 2 sup || M| 2 inf [|My[| > ms, (A2)
9€Q 1€Q
where || - || is the operator norm on the normed linear space (T,Q, (-, -)).

3. The design process

In this section we introduce the notion of error function ¢ and transport map 7.
An error function provides us with a notion of state error and generalizes the
notion of proportional action (Koditschek 1989). A transport map provides us
with a notion of velocity error and, coupled with a dissipation function, generalizes
the notion of derivative action. Additionally the transport map is crucial in the
computation of the feedforward controls. As in the previous section and for the
rest of the paper, we assume (A1). Also, we label with (An) the main assumptions
in the design construction.
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3.1. The error and dissipation functions. Let ¢ be a smooth real valued
function on @ x Q. We shall call ¢ an error function if it is symmetric, i.e.
p(g,m) = ¢(r,q), and if it is positive definite, i.e. ¢(gq,r) = 0 if and only if ¢ = r.
Denote with Vi the gradient of ¢(g,r) with respect to its first argument. We shall
say that the error function ¢ is quadratic at r if there exists a neighborhood N,. of
r and by > by > 0 such that

billVe(a, r)II” > 2¢(g,) > bal|Veo(a, r)|1*. (A3)

for all ¢ € N,.. Furthermore, ¢ is said to be quadratic if it is quadratic at each r
with the same constants by, bs.

Remark 2. The quadratic assumption on the error function is needed to prove ex-
ponential convergence rates. We could impose weaker conditions, as for example a
class K requirement, and obtain only asymptotic type results. But exponential con-
vergence helps in proving robustness properties and in designing adaptive schemes.
Additionally, in the examples we are always able to find such ¢’s and indeed we
later show a standard procedure to design such error functions. |

Define a (Rayleigh) dissipation function by introducing a symmetric positive
definite tensor field (Kgq)q : T,Q — T,Q. We assume Ky admits upper and lower
bounds over (), that is there exist d2 > d; > 0 such that

d2 > sup | Kq|| > inf |[Kql| > di, (A4)
qEQ q€Q

where || - || is the operator norm on the normed linear space (T,Q, (-, -)). O

3.2. The transport map. Given two points ¢,7 € @, the linear map 74, :
T,Q — T,Q is said to be a transport map if it is compatible with the natural inner
product (A1)

<<X7‘7 Y-T»T = «T(q,r)YT: T(q,T)XT»q (A5)
and it is compatible with the error function
T(q,r) V‘P(Ta q) = _VQP(QJ T)' (AG)

We say that the trasport map 7 is smooth, if for all » € @ and Y, € T,.() there
exists a neighborhood N, of r, such that 7(,,)Y; is a smooth vector field for all
q € N,.. In the next lemma, we motivate the introduction of a transport map with
such properties as (A5) and (A6).

Lemma 1 (Time derivative of error function). Let r(t) and ¢(t) be two curves in
Q, such that Vo(q(t),r(t)) is well-defined for all t. Assume (A1), (A5) and (A6).
Then

Sola(0),7(0) = (Yol 1), 4= g7

Proof. Using the symmetry property and the transport map on the second adden-
dum:

d

77a@),r®) = (Vela,r), e+ {Velr,a), 7)r
={(Velg,r) s @g + {1ar) Ve (r, @) s 74,1 Ng by (A5)
={Vela,r), @)g — (Veld,7); T¢,nTNq by (A6)
={Velg,r), 4= 14N
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The result can equivalently be stated as follows. Recall that ¢ : Q@ x Q@ — R and
(¢,7) € @ x Q. The time derivative of ¢ on the full space reduces to a derivative
only with respect to the first argument

Lig, 1P = Lg—rgni 0% (3.1)
where (X, Y) denotes a vector field on @ x @. In the following, we shall call the
quantity

é 2 G—1gnt €T,Q

the velocity error. Note the slight abuse of terminology, given that no corresponding
“position error” exists.

Remark 3 (Standard design using Riemannian tools). On a generic manifold, a
choice of error function and transport map is always given by distance function and
parallel transport map associated to a Riemannian metric. A detailed description
of these ideas is contained in Appendix A. a

3.3. Covariant derivative of the transport map. In the computation of the
feedforward control, the “time derivative” of the transport map 7 will be required.
In this subsection, we show how one can covariantly differentiate 7 after turning it
into a tensor field. This is implemented through the following tedious, but straight-
forward construction.

We start with some notation. Let Q = @ x @ and denote with (g,r) a generic
point on it. In the natural trivialization of T, @, write (X,,Y;) € T,Q x T,Q.
Next, define 71 : T(y,n@ — T,Q and 73 : T, »Q — T,Q to be the first and second
projection, so that

(X, YY) =X, and m2(X,,Yr) =Y,
Also, denote with ;' and 7, ! the generalized inverse maps (lifts) such that
(Wfl)(q,T)Xq = (anor) and (ng)(q,r)n = (Oanr)-

Next, we introduce a Riemannian metric and the relative Levi-Civita connection
on T4, Q- For any pair U,V € TQ let

(U, Vg 2 {mU, mV)u + (U, mV),

Note the different inner products on the two subspaces: we employ the mechanical
metric (-, - on the T,Q subspace and the natural metric (-, -) on the T,.Q
subspace (A1). Denote with

\Y the Levi-Civita connection on @, (-, Vo) (3.2)
The connection V is determined by the two connections V on (@, (-, -)) (defined
in (2.5)) and ,¥ on (@, (-, -Va) (defined in (2.6)). Indeed, let § -2
for T,Q and {3% } for T.Q. One can verify that
V%%:(MV%%,O) and V%%Z(O,V%%),
while the cross covariant derivatives between 0/9¢® and 9/0r® vanish. In other

words, if ,I" are the Christoffel symbols for ,» and I are the ones for V, the only
non vanishing Christoffel symbols of V are T, = ,I'}, and T3 =T 5. O

be a basis

dqe
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We now ready to study the transport map 7. Define the (1,1) type tensor field
T on () as

?(‘1,7‘) (Xq7 Y;‘) = (T(q,r)Y:r‘aO)a

or, more precisely, T(g») = 71" - T(gr) ST T(qn@ — Tq,r)@. Next, we
compute coordinate expressions for 7, 7 and V7. We have
(tr)® = 157%, and (7(0,7))* = 727,

(This equality in coordinates reveals once again how the construction above is
indeed trivial.) Additionally note thay 7¢ = 7% = 0 for all k, since the tensor 7 has
the T,Q subspace as its kernel and image. To compute the (1,2) type tensor VT
we use equation (2.2):

T — — —a Y =m

(VT)ak = Task = Tak T LTreTa = ThaTm

_ a a b B _a
=Tak + sl kTa = ThaTh

— Tg,c + MngTg if k= c, (3 3)
Tg’,y — Fga’i’g if k=1. '

Next, note that for any X € T(q’r)a, the map Vx7 has the same kernel and image
as 7 and therefore it drops to a function from 7.Q) = T,Q. In particular we define

Vxt & m -VXT(q,r) -yt (3.4)

Remark 4. In the examples of the later sections, we will need to compute the
quantity V4, #) (T(q,(0,7)). The previous coordinate expressions give of course a
correct (sometimes tedious) answer. However, simpler procedure are often available,
as for example in Section 6. |

We conclude the section by formalizing two boundedness conditions. We say
that the transport map has bounded covariant derivative if
sup ||V7| < oo, (AT)
(¢,7)€QXQ
where || - || is the operator norm for (1,2) type tensors on @ x Q). Also, we say that
the error function ¢ has bounded second covariant derivative if
sup || WV dgl| < o0, (A8)
(3,r)€EQ*Q
where || - || is the operator norm for (0,2) type tensors on @ X Q.
Given equation (2.3) and (3.3), a sufficient condition for both the previous
bounds to hold, is given by bounds on the quantities 75 ;.. ¢,qb, F‘g,y and ,I'p..

4. Tracking on Riemannian manifolds

In this section we introduce and solve the exponential tracking problem for a fully
actuated mechanical system. We start by introducing two additional definitions
which will help state the control objective precisely.

First, since no coordinate independent “state error” can be defined on a generic
manifold, we resort to the error function ¢ to define the notion of exponential
convergence. In particular, we shall say that ¢(t) converges y-exponentially to
r(t) if p(q(t),r(t)) converges exponentially fast to zero for all initial conditions
(¢(0),7(0)), with ¢(0) in an appropriate neighborhood of r(0).
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Second, since the quantity # is generally not well-defined, ! we resort to the
Riemannian connection V in equation (2.5) to have a notion of higher order deriv-
ative of r(t). In particular the final control law will depend on V;r. (Note that
we would have the design freedom to choose ,V instead of V. However, this latter
choice is consistent with our treatment in the previous section and simplifies some
computations.)

Control objective: Consider the mechanical system in equation (2.7) and let
r(t) € @ be a reference trajectory with bounded time derivative

SUP (] < i (A9)

Design a feedback control law f = f(q,¢; r,7, Vi) that achieves yp-exponential
convergence.

Let @ be a configuration manifold with a natural metric structure (Al). Let the
mechanical system in equation (2.7) have bounded inertia (A2) and let the reference
trajectory (r(t),7(t), Vi) have bounded velocity (A9).

Let ¢ be a quadratic error function (A3) with bounded second covariant de-
rivative (A8). Let 7 be a compatible transport map (A5), (A6) with bounded
covariant derivative (A7). Let K4 be a bounded dissipation function (A4). Define
€ = ¢ — T(q,~)T to be the velocity error.

Theorem 4.1 (Exponential tracking on Riemannian manifolds). Assume (41)
through (A9) and define the proportional plus derivative feedback fpp and feedfor-
ward term frp as

feo(q, ¢; 77) = —Vo(g,r) — Kqé
M, fre(a,¢; 7,7, Vit) = (Vg #)Tan) T+ Tar) Vits

where the map V(M) T(q,r) : TrQ — TyQ is defined in equation (3.4).
Then the feedback control low f = fpp + frr exponentially stabilizes ¢ and é,
for all initial conditions such that the quantity (¢(q,r) +||€]|*)|t=0 is small enough.

We refer to Appendix B for the detailed proof. Some comments follow.

Remark 5 (Global/local properties of the closed loop). The convergence proper-
ties of the closed loop are global in the reference position r(¢) but only local in
the “error” ¢(q,r) + ||é]|?>. Thus the expression “global/local.” This is due to the
nature of the design procedure and of the boundedness assumptions, all of which
are intrinsically local (in the error). However, example by example, we will be able
to specify precisely the size of this local neighborhood.

Additionally we refer to (Koditschek 1989) for precise statements on global limit
behavior of mechanical systems controlled by proportional derivative feedback.

Remark 6 (Feedback transformations). A global feedback transformation that pre-
serves the second order nature of the mechanical system can only be a “change of
connection”, as defined by equation (2.4). With the notation of the previous sec-
tions, there exists a tensor field Sy, on @ such that

wiq = Vg + Sm(d, q9)-

IWe could employ the theory of jet bundles, but we will not follow this approach here.
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Hence, recalling the definitions in Subsection 2.2, a (coordinate independent) feed-
back transformation of
Wii=M(Q'f into  Vii=u

is of the form

f=M(q)(u—Sm(dd)- (4.1)
An example of this procedure is the so-called “computed torque” strategy in R
and our treatment of the sphere case in Section 7. a

Remark 7 (General Lagrangian systems). While the theorem is stated for the case
of mechanical systems with Lagrangian equal to kinetic energy, it can be gen-
eralized to systems with potentials functions, viscous and gyroscopic forces by
pre-compensating for the extra terms. In other words the simplest approach is
a straightforward cancellation, using a feedback transformation. An alternative so-
lution is discussed in the next remark. |

Remark 8 (Approximate feedforward and gravity compensation). Practical reasons
might suggest the implementation of a feedforward control different from the one
presented above. For example Wen and Bayard (1988) describe various possible
feedforward compensations, which might be computationally simpler.

The idea underlying these alternative formulations is that they all agree up to
higher order terms in é or perpendicular to é. Indeed the proof in Appendix B can
be modified to account for such changes. Similar remarks hold when compensating
for gravity or gyroscopic effects. |

Remark 9 (Design trade-offs on (¢, 7)). Important design issues appear when un-
derstanding the design dependencies between the feedback and feedforward terms.
The design of

fPD(q7 q.a T, 7') = _VSO((L 7') - Kd(q - T(q,T),i‘)

does not depend on the mechanical metric M,. The design of
Mq_lfFF(Qa q; T, 7, Vf‘f) = (V(d, ,:)T(qyr)) T+ T(q,7) Vir,

does not depend directly on the error function. Therefore, modulo the compatibility
assumption (A6), the design of the proportional action (more precisely of ¢) is
independent from the design of the derivative action and of the feedforward term
(more precisely of 7).

(i) The simpler ¢ we choose, the simpler 7’s will be compatible and the simpler
control laws we will design. On the other hand, Koditschek (1989) shows
that the global properties of the closed loop system depend critically on ¢,
being for example a Morse function. An instructive example of this tradeoff
is the attitude tracking problem for a rigid body with external torques. See
Section 6.

(if) Assume (p,7) is a compatible design, and s is an appropriate scaling function
s. Then also (s o, ) is compatible. Indeed scaling ¢ preserves the direction
of V¢ and the assumption (A6) on 7 keeps holding. An instructive example of
this design freedom is exploited in Remark 12 of Section 6 to rederive various
different controllers proposed in the literature. a
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Remark 10 (Two degree of freedom system design). As expected, the final con-
trol law is sum of a feedback and a feedforward term. This is in agreement with
the ideas exposed in (Murray 1995) on “two degree of freedom system design”. In
particular it holds true that the feedforward control achieves exact tracking, that
is, when starting with zero error, the closed-loop system maintans zero error. O

5. On flat manifolds: the R" case

This section considers the tracking problem for a robotic manipulator with n
joints. We denote the configuration variables with ¢ € R and the inertia matrix
of the manipulator with M(q). In the following, we shall recover the standard
results on control of manipulators contained in (Murray et al. 1994) by applying
Theorem 4.1. We refer to (Koditschek 1989) for a treatment of problems related to
obstacle avoidance and kinematic singularites.

Start by noting that R™ has a natural metric structure (Al). Then, neglect
kinematic singularities and assume M (q) to have bounded magnitude over R” (A2).
Finally let the reference trajectory r(t) have bounded time derivative (A7). The
design described in Section 3 is performed as follows:

Error function: The natural choice is
1
lg,m) = 5(a =" Kp(g =)
Transport map: Since T;R" = T,.R", let 7(,,,) = id, the identity map. This is
possible every time the configuration manifold is a vector space.
For these choices, we check (A3) to (A5).
(A3): ¢ is positive definite, symmetric and quadratic.
(A4): Since id € SO(n), the transport map preserves the inner product.
(A5): We compute
Vo(g,r) =Kp(g—r) and  Vo(r,q) = Kp(r —q) = =Ve(g,7),
so that id is compatible with . a

__ From Subsection (3.3) recall the definition of the tensor 7 and of affine connection
Von @ = Q x Q. To design the feedforward action as well as to check for (A6),
we compute the covariant derivative of 7. From equation (3.3) we have

(Vid)a, = ids j, + L fpids — TY,id5
- 1b
= MFZblda = M 2(17
since the Christoffel symbols I‘fj of the natural metric of R" are zero. Therefore, in
contrast to a naive guess, the covariant derivative of the identity map is different
from zero!

Next, we impose the boundedness assumption (A7) by requiring sup, [|»L%4 (¢)[| <
oo. Additionally we compute

Vi, #»(d(0,7) = (Vid)((0,7); (¢,7)) + id V4,4(0,7)

Stva sad O
= (Vld)a;dr qdaqa

+ V;ir
0
a +b-d ..
= 'g%r’q 6_(1“ + 7,

where {ail, e ain} is the standard base in R".
q q
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Finally, after the design and the computation, we state the control law as follows:

fep = —Ky(qg—r) — Ka(¢d — 1)
0
frr = Mi+ MOuL3aiq 5 = M(@)F + Clg @) (5.1)

where the Coriolis matriz C(-,-) is defined as usual. The control law f = fpp + frF
agrees with the one presented in (Murray et al. 1994, page 195) under the name of
“augmented PD control”.

Note that our approach is able to provide an intrinsic meaning to the second term
in equation (5.1). Indeed this sort of cross term represent the covariant derivative
of the identity transport map.

Remark 11 (Computed torque). The other famous approach to control of robotic
manipulators is the so-called computed torque approach. Within our framework,
this approach is described by equation (4.1), where

(SM)Z = MFf] - Ffj = M]‘_‘f]'
Hence the feedback transform is f = M (q)u — C(q, ¢)q, and the tracking control
law for the transformed system is u = —K,(q — r) — Kq4(¢ — ) + 7. O

6. On the Lie group SO(3)

In this section we perform the design process and apply the main theorem to
the Lie group SO(3). Regarding the error function design, we follow the approach
in (Koditschek 1989) and our previous work (Bullo and Murray 1995).

Recalling that the set of matrices gl(3) is equipped with the natural inner product

(A, Bgs) = 5 tr(AB"),

which induces the orthogonal decomposition gl(3) = sym(3) ®skew(3) into symmet-
ric and skew matrices. The Lie algebra s0(3) = skew(3) comes therefore equipped
with a natural inner product, 2 which induces a Riemannian metric on SO(3) by
left translation. Assumption (A1) is thus satisfied.

As far as notation is concerned, let ¢, € SO(3) denote actual and reference
configuration, let I3 denote the identity matrix, and, for g € SO(3), denote left and
right translation by L, and R,;. The exponential map, its inverse the logarithm,
adjoint action and matrix commutator are defined as usual, see (Murray et al. 1994).

Error function: Using the group operation, let e 2 rtq € SO(3) be the config-
uration error and define the error function as ¢(q,r) £ ¢(e). Given be a 3x3
positive definite matrix K, define

#e) & —tr(Kpe) + tr(Kp),

where the second addendum is the constant needed to have ¢(I3) = 0. Using
Rodrigues’ formula and some properties of the trace function, one can verify
that this error function is symmetric, positive definite and quadratic. Next,
we compute the gradient of ¢. Defining skew(A4) = (4 — A%)/2, we have

¢ = —tr(Kpe) = 2(K e, € é)gi(s) = 2(skew(Kpe) , €'€)so(s),

2Indeed this inner product coincides modulo a constant with the Killing form.
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and therefore
Vo(e) = 2TL, - skew(Kpe) = TL, - (Kpe — e'K}).

For the scalar gain case K, = kpI3, we compute ¢(e) = 2 — 2cosf(e),
where 0(e) is the angle of rotation associated with e. Some additional insight
is gained by noting that 6(e) is equal to the Riemannian distance of e from Is.
Using the geometric tools discussed in Appendix A or computing by hand,
one can verify that V¢(e) is parallel to

Vé(e) = =T L, - log(e).

O
Transport map: The most general transport map (4, : 7,50(3) = T,50(3)
can be written as

T=TL,-A-TL,,

for some linear function A : s0(3) — s0(3). Since the adjoint action of SO(3) is
an orthogonal representation on s0(3), the assumption (A5) implies A = Ad,
for some z € SO(3). Also, since

vw(q7 T) =TL,- V¢(€),

assumption (A6) (on the compatibility with the error function) is equivalent
to

Ady(Kye' —eKp) = e'K, — Kye,  for some g€ SO(3).

For general K,’s, the previous equation is satisfied by g = et. For K, = k, I3,
an even simpler solution is g = I3. Corresponding to these two choices, we
define

TR 2TRy, and 7 2 TLye.

Note that other possibilities would also be feasible.
Next, we write coordinate expressions for these transport maps. Let ¢ =
TL;-w and ¥ =TL, - w,. Then the two velocity error are

=117 =TLq (w—wy)
Gg—Trr=TLy- (w — Ad,: wr).

Note that 77, is a somehow “simpler” choice, but it does not allow for matrix
gains (it requires K, = kpI3). On the other hand, the transport map 7g
preserves the “second order property”

é= e(w — Ad,: wr) =TL, (4 — Tr")-
[l

Before computing the covariant derivatives of the transport maps, we can already
state the proportional and derivative feedbacks. Depending on the choice of T,
Theorem 4.1 leads to

TLgy - fep(q,¢; 1) = —2skew(Kpe) — Kg(w — Ader wy),
or
TLy - fen(q,¢; r,7) = —2kp skew(e) — Kg(w — wr),

where K is a positive definite gain on so(3).
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Remark 12 (Variations of the error function). Recalling the discussion in Remark 9,
we emphasise the importance of the direction of the gradient of ¢, rather than its
magnitude. This latter quantity can indeed be changed with a scaling function,
without affecting the choice of transport map.

As an example we apply this scaling procedure to the trace function introduced
above (the scalar case K, = k,I). Let

elo.r) = SR(O(6)),

where £ : R — R is an increasing function, that is first order in = for z — 0.
For different choices of k, we recover previous results obtained in the literature by
introducing a parametrization on SO(3):

k(z) = kpx Meyer (1971), exponential coordinates,
= k, tan(z/2) Slotine and Benedetto (1990), Gibbs vector,
= kpsinz Wen and Kreutz-Delgado (1991), quaternion,
= kpsin(2z) Wen and Kreutz-Delgado (1991), vector quaternion,

where the standing assumption is &k, > 0.
For all of these designs, both transport maps 71, and 7 can be used, since the
gradient of ¢ will always have the same direction (parallel to T'L, - log(e)). O

6.1. Feedforward action. The feedforward term depends on the metric of the
mechanical system, hence we need to specify this latter. In this subsection, we
restrict our attention to the case of a rigid body with external torques.

We denote with T : s0(3) — s0(3)* the body inertia tensor and with ¥V the
Riemannian connection associated to the SO(3) metric My = T*Ly -1-TLg. As
one can verify, see for example (Helgason 1978, Chapter II), the connection V
satisfies

TLy- (VxY)h = (VxY)gn

for any pair of left invariant vector fields X,Y and g, h € SO(3). Therefore, restrict-
ing the connection to left invariant vector fields, one obtains a map from s0(3) xs0(3)
to $0(3), which we denote with the same symbol V. For all £, 5 € s0(3), this latter
map is computed as

2Ven = [¢n] =1 '(adi In+ ad} I¢).
From Theorem 4.1 we need to compute
M fer = Vg, (Ten(0, 1) €T,50(3).
We examine the two cases 7 = 77 and 7 = 7g separately. Let {£,} be a base for
50(3) and recall the definitions w = T Ly - ¢ and w, = T L, - 7.
Left translation: Setting 7 = 71, we have
Vi, »Tr0,7) = V4,4 (T Ly - wr,0)
=TLq -6y + (w;)*V4,7(TLq - &,0)
=TLg- i+ (wp)"" V(1,6 (TLq - &)
=TLy (ér + YV, w,),
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where in equality () the covariant derivative drops from @ to ). Hence we
have

T*Lg - frr =l + 1V, w;.
Right translation: Similarly for 7 = g
Vi,»7L(0,7) = Vig, 1) (TLg - (Ader wy), 0)

d
= TL, - (5 (Ade ) + Vo (Ades ),

and
T*th - frr = ]I(Ade‘ Wr + [Adet wy , W]+ V, (Ade wr))
= T(Ade & + V(ads w)0).

Remark 13. The expressions we obtained are different from the standard one
described in (Wen and Kreutz-Delgado 1991) and (Bullo et al. 1995). We recover
these previous results through the equality

(€=n,IVem) = (& —n, adg In)

and the discussion in Remark 8.

7. On the two sphere S?

Our approach to the tracking problem on the manifold S2 relies on some of the
geometric tools described in Appendix A. This section is however self-contained.
Main reference is our previous work (Bullo et al. 1995).

Denote the natural inner and outer products on R® by (-, -)) and [-,]. At any
g € S? C R3, every tangent vector X, € T,S? can be uniquely represented as a
vector X, € R® such that X, L ¢ and more generally 7,S? = span{q}*. The
natural inner product on R® induces a Riemannian metric on S? in the natural
way:

«Xq ) Y:1>>TqS2 £ «Xq ) Yq» VanYq € TqS2 C R®.

We denote with V the Riemannian connection associated with this inner product.

Error function: The geodesics of S? are great circles and the distance between
any two points is the angle between them. We define

A

1 1
SD(Q5T) = 5di8t(Q5r)2 = 5 a,I'CCOSZ«I), ’f'»,

with arccos taking values in [0,7]. Provided ¢ and r are neither equal nor
opposite, there exists a unit vector V() € T,S?, called the geodesic versor,
which points from ¢ toward r. It holds

Vigr) = vers(g,7]),a] € T,S”

where vers(z) = z/||z||. Following the approach in Appendix A, or computing
by hand, one can see that

VQD((], 7’) = szt(qa r)‘/(q,r) .
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Transport map: Define 7(,,) € SO(3) as the rotation about [g,r] which maps
r to g. This can be expressed by the two conditions 7(,,,) -7 = ¢q and 74, -
[r,q] = [r,q], or by the equation

1 — cos(dist(q,r))
— 5 (g, r]%)?,

sin(dist(q,))

where (ax)b = [a,b]. Also, define w € R® such that 7(,,) = (WX)7(4). As

we show in (Bullo et al. 1995), it holds

{w, @) = (tan(idist(q,r)) Vg —a » [d,7] + [a,7])-
We consider the tracking problem for the system
Vii=f. (7.1)
This assumes that either the mechanical system has a trivial inertia, or that a
feedback transformation has already been performed as described in Remark 6.

Let r(t) € S? be the reference trajectory, 7, Vi € T,.S? be the reference velocity
and acceleration, and assume sup, ||7|| bounded.

Ter) = I+ (rqx) +

Lemma 2 (Tracking on the two sphere). Consider the system in equation (7.1).
Given o positive k, and positive definite K4, define
fPD = kpdiSt((b ’r)‘/(q,r) - Kd(q — T(q,r) T)
fFF = 7-(q,r)vf‘fl + «w 3 CI»[qa q]
Then the control law f = fpp+ frr exponentially stabilizes {dist(q,), ¢ — (4,7}
to zero from any initial condition ¢(0) # —r(0) and for all kp, ¢(0) and 7(0) such
that
[14(0) = 74,7 (0)]I?
72 — dist(q(0),7(0))2"
The cross term in the feedforward control has not been computed by covari-

antly differentiating 7. Instead the Lyapunov function used in the proof has been
differentiated by hand. We refer to (Bullo et al. 1995) for the missing details.

kp >
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8. Conclusions and future directions

In this report, we have described the geometry underlying the tracking problem
for fully actuated mechanical systems. A general theoretical framework allows us
to recover and understand standard results (as in the R” and SO(3) cases) and
design new controllers (as in the S? case). Future relevant extensions will deal with
the SE(3) case.

From a theoretical viewpoint, we feel that this contribution is basic and instru-
mental in understanding design techniques for mechanical control systems. Novel
contributions are the concept of transport map, of compatibility with the error func-
tion and the interpretation of the feedforward control. From a pratical viewpoint,
the contribution lies in showing what the intrinsic objects are and how to tweak
them while preserving convergence properties. For example, in tracking problems
on Lie groups, it is important to push along the gradient of a well-defined error
function, rather along an arbitrary choice of local coordinate.

Finally, we emphasize that our framework relies on the same tools used in other
recent papers on mechanical control systems. For example Lewis and Murray (1996)
and Rathinam and Murray (96) characterize controllability and dynamic feedback
linearization in terms of Riemannian geometry concepts. Hopefully these same
tools will help us construct a general “control theory for mechanical systems” and
in particular a design technique for underactuated systems.

A Research Proposal is included with a discussion on these last comments.
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AppenDix A. The design process using Riemannian tools

This Appendix describes a general method to obtain quadratic error functions
and compatible transport maps using geometric tools.

Let assumption (A1) hold and assume that the Riemannian manifold (@, (-, -)))
is complete (see (Do Carmo 1992)). Then a choice of error function is given by
squared distance function:

$(a,7) = ydist(a.)"

Such error function is symmetric and positive definite. To compute the gradient
and prove ¢ is quadratic, we prove the following lemma:

Lemma 3 (Extension of Gauss’s Lemma). Let (Q,{-, -)) be a Riemannian man-
ifold and let r € Q). Let U C @ denote a neighborhood of r, such that ¥q € U there
exists a unique (unit speed) geodesic curve connecting q to r and contained in U.
Denote this curve with vy, (s), where s € [0,dist(q,r)].
Given a curve q : [a,b] = U, then
9 dist(a(t),r) =~ | v, (A1)

where % _0'72 , the initial velocity vector of the unit speed geodesic connecting q

s=
to r, is called geodesic versor.

Proof. If ¢ L %|8:075, then we have %d(q, r) = 0 by Gauss’s Lemma (Do Carmo
1992). Hence consider only the component of ¢ parallel to d% |s=07;- Equation (A.1)
simply states that the distance between ¢ and r increases as the velocity of the
geodesic with velocity equal to the parallel component of ¢. But this holds true,
since the distance function is the integral of the velocity of the geodesic curve. H

Since equation (A.1) holds for all ¢, we compute Vp(q,7) = dist(q, r)%bzoﬂyg .
Thus ¢ is quadratic.

Next, set the transport map 7 to be the parallel transport map along the geodesic
7Y, connecting g to r, which we denote with P;. We remark that distance and
parallel transport are computed with respect to the natural metric (-, -)). We now
check that assumption (A3) through (A6) hold.

(A3): holds with by = by =1, since ||V(q, )| = dist(q, ).

(A5): holds, since the parallel transport preserves the inner product.

(A6): holds, since P; maps geodesic curves to geodesic curves .

Hence, this standard construction applies to every Riemannian manifold ). In-
deed, performing this construction, is an instructive step in most of the examples.
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AppENDIX B. Proof of main theorem

Proof. [Lyapunov stability from total energy] Consider the candidate Lyapunov
function

. 1. .
Wtotal(qa(I; T, ’I") = (p((br) + 5«67 e»M

which is positive definite in ¢(g,r) and é = § — 7, ). Its time derivative is

Wi = 0(a,7) + 35 ((E,0), €,0))a
+

= {Vela,r), &) + ((6,0), V(g iy (€,0))a;

where we have used Lemma 3 and equation (2.1) on the full space @ = @ x Q.
Using the linearity properties of V, we compute

Vi, 1(€.0) = Vg, 5 ((¢:0) = 7o (0,7))
= V4, 1(4,0) = (Vg 9Tar)(0,7) = T0.r Vg, 1) (0,7)
= (W6,0) = (V(gm) (0,7 (@5)) = (70,0 Vi, 0),
and substituting the feedforward part of f, we have exactly
Vi, #(€,0) = (M, fep,0). (B.1)

Plugging in

Wt = (V. &) + ((&,0), ;™ fo, O
=(Ve, é) + (¢, fep)
—{e, Kqé))
so that %Wmm is (only) negative semidefinite. v

[Definition of cross term] To construct a strict Lyapunov function (i.e. a function
with a time derivative strictly definite), we add an e-size cross term to Wiotar. Let

o) = (Ve é)

Wcross(qﬂj; 7'77;) = dt

and consider the candidate Lyapunov function
W = Wiotal + €Weross-

We need to show that Je small enough, such that W is positive definite in ¢ and
é. Lower bounding

1. . .
W 2 ¢+ 5 inf|M]- el = el Vel - [le]

1. . ;
> o+ 5 inf [ M- lell” - e(2/v/ba) Vel
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where we have employed the “quadratic” assumption on the error function (A3).

Hence we have
W [m v ) V)

=[] i)

and by choosing € < ba+/inf, || My||, the matrix P and the function W are positive
definite. v

[Time derivative of cross term] Next, we compute the time derivative of Wergss-
We do this in a local chart using the coordinate expressions for covariant derivatives
described in Subsection 2.1. Let {¢®} be a coordinate chart about ¢ and {r®} about
r. For convenience, denote partial derivatives with commas: f, = 0f/0¢®. By
Lemma 1, we have

¢ = 004" + @,af* = @ e’

Since
d p 5Q 5
770 = (P)p = 0.are” —ale)p
and (é%), = —74 7%, we have

¢ = pap€’€’ — SD,aTg,cTaec + ¢,c€%,

In this equation, some quantities are not intrinsic, that is coordinate independent.
Indeed we have

Tae = Tae = mlheTar
and
(Vigsn€)© = & + Tope’q® + Toae®™ = & + 105,84
Substituting

P = 0,ap€ " — 0 aTS T + &
= ‘P,abéaéb - ‘P,af'aéch;c + ‘p,af'aécM gch + Y. (v(q';r')é)C - SO,CMFZbéaqb
=V, m - (Vign(€0) = (Vieo)) + 0ae*e" — Loy .
={Veo, m - (Vign(€0) = (Vo)) + N dp(é; é),
where ,Vdyp is also an intrinsic quantity. Next, plugging in (B.1), we have
¢=(Ve, M7 fop — (Vie,0)T)™) + 2N dp(é;€)
and in the closed loop, setting fepp = =V — Kgé,
$=—(Vo, M'Vo) — Vo, M Kqé + (V(e0)T) 7)) + 1NV dp(é; €).

Thanks to the quadratic assumption on ¢, we can upper-bound Weross as a function
of ¢ and ||é]|]. We obtain

t
Wcross = ¢ < - \/(zj| cross |:\/¢:|7
7S [nen Qeros | ]
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where the symmetric matrix Qcross has the following entries:

(choss)l,l = 2/ (bl sup “Mq“)a
q€Q

(Qeross)12 = (Qeross)2n = = (sup 1M, Koll + sup ]| - sup_[V7Il)//2by
a€Q ¢ (¢,7)€Q

(choss)2,2 = - Sup_”MVd‘p(‘I;T)”'
(¢,m)€Q

Next, we need to ensure that the operators in Q. oss are bounded:

(Qcross)1,1 is bounded away from zero thanks to (A2),

(Qcross)2,2 is upper bounded thanks to (A8),

(Qecross)1,2 is upper bounded thanks to assumptions (A2), (A4), (A9) and (A7).

A\

[Final sum] As last step, we now upper bound the time derivative of the Lyapunov
function W = Wigpar + €Weross- We have

d 2]’ [
# < - [ <[]
where the matrix Q is positive definite for small enough ¢, since
Q1,1 = €(Qeross)1,1
Q1,2 = Q2,1 = G(choss)l,z
Q2 = inf || K4l + €(Qcross)2,2,
qeQ

and Qo is bounded away from zero thanks to (A4). Hence, there exist a A > 0
such that W < —AW. Therefore both ¢ and ||e|| converge to zero exponentially. B
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