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Abstract. In this paper various design techniques are applied to the trajectory track-
ing problem for a mobile robot with trailers. Using simulations and experiments, we
evaluate linear and nonlinear designs on the basis of implementation issues, stability
and performance. After a careful design of their gains, the various feedback controllers
have very close performance measures. In both the simulations and the experiments,
all the controllers show a strong dependence on the knowledge of the reference tra-
jectory. The flatness of the system is exploited in precomputing this quantity.
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1. INTRODUCTION

In this paper we evaluate some “modern” solutions to
the trajectory tracking problem for a car with trailers.
We implement some nonlinear techniques recently pro-
posed in the literature as well as a standard gain schedul-
ing approach based on linear design. Performance, ro-
bustness and implementation issues are our criteria in
drawing conclusions upon the aspects of each controller.

On the theoretical side, nonlinear techniques have nom-
inal stability, as proven in recent papers by (Samson
1995), (Fliess et al. 1995) and (Sampei et al. 1995). This
is proven with respect to the nominal model and with
the assumption of exact measurements and exact in-
put actuation. A more classic and practical approach
involves Jacobian linearization and scheduling of linear
point stabilizers, designed for example using LQR tech-
niques. These are the techniques that we want to com-
pare. As the numerical and experimental results show,
a particularly important aspect of the controller design
consists of the implementation of a trajectory generation
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Fig. 1. The nonholomobile mobile robot.

module. From a theoretical viewpoint, the kinematic
model of a car with trailers is a differentially flat system,
implying that trajectory generation is a straightforward
problem (Fliess et al. 1993).

We validate our numerical conclusions on the nonholo-
mobile mobile robot, depicted in Figure 1. This experi-
mental device has been previously used to evaluate non-
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Fig. 2. Nonholomobile mobile robot: notations.

holonomic point stabilizers, see (M’Closkey and Murray
1994) and (M’Closkey and Murray 1995). The main ex-
perimental limitations are due to unstable dynamics,
limited actuator bandwidth and input saturation.

The article is organized as follows. In Section 2, we de-
scribe the experimental device and introduce the model.
In Section 3 we design the various controllers, both feed-
back and feedforward parts. We report on the numerical
and experimental comparison in Section 4 and our con-
clusions are found in Section 5.

2. EXPERIMENTAL SETUP AND MODEL

The experimental device is a two-wheeled car with two
attached trailers. Two independent stepper motors drive
the wheels of the front car: they saturate at a speed of
about 0.25 m/s and provide a maximum acceleration of
0.5 m/s2. Optical encoders, mounted on a passive two-
link manipulator, measure position and orientation of
the system. The kinematic map from angle encoders to
the position of the rear trailer is straightforward and is
not presented here. The experiment is interfaced to an
80386 computer running a real-time control kernel. The
servo loop runs at 50 Hertz, all the signals pass through
a 5th order Butterworth filter with cut-off frequency of
25 Hertz. The feedback control action is computed at a
sample rate of 12.5 Hertz. We refer to (M’Closkey and
Murray 1994) for more details.

We denote the position of the ith trailer as the element
gi = (xi, yi, θi) ∈ SE(2), as shown in Figure 2. The
shape of the device is given by (r1, r2) := (θ0 − θ1, θ1 −
θ2) ∈ S1 × S1. To exploit the flatness of the system,
we choose the coordinates of the last trailer (x2, y2, θ2)
to parametrize the absolute position of the mechanical
system in SE(2). Let v0 and ω0 denote the linear and
angular velocity of the first trailer g0. Assuming that the
wheels of the robot roll without slipping, a kinematic
model is written as

ẋ2 = cos(θ2)v2

ẏ2 = sin(θ2)v2

θ̇2 = (1/L2) tan(r2)v2

ṙ2 =

(

1

L1

tan r1

cos r2

−
1

L2

tan r2

)

v2

ṙ1 = ω2,

(1)

where we have performed the feedback transformation
v2 = cos(r2) cos(r1)v0 and ω2 = ω0 − tan r1

L1 cos r2
v2.

An implicit assumption in the kinematic model is that
we directly control the velocity of the wheels. Indeed,
the stepper motors work in an open loop configuration
and there is no guarantee that the commanded speed
will actually be achieved. The ultimate justification for
this (first principle) model comes from the successful
experimental results.

3. CONTROL DESIGN

We decompose the controller design into two separate
steps. First a reference trajectory is computed and then
it is fed forward into a closed loop system, where a feed-
back action is implemented. We call this design paradigm
a two degree of freedom (2 DOF) system design and
we compare it with the simpler 1 DOF design, where
no feedforward of the full reference trajectory is im-
plemented. The theoretical and practical motivations of
this approach are well-explained in (Van Nieuwstadt and
Murray 1995).

3.1 Feedforward design: trajectory generation

We generate reference trajectories for the car with trail-
ers exploiting the flatness properties of the model (1),
see (Fliess et al. 1993). In (Fliess et al. 1995) flatness
is coupled with a “time scaling” procedure to avoid the
singularity that exists at zero velocity (v2 = 0). Indeed
an arc length parametrization allows for the design of re-
alistic trajectories in which both backward and forward
movements are allowed. To test controllers we designed
four trajectories: back up straight, back up along a sinu-
soidal path, parallel park, and load into a dock. These
last two are depicted in Figure 3.

3.2 Feedback designs

Here we give a brief account of the linear and nonlin-
ear design methodologies implemented. Given the state
(g, s) = (x2, y2, θ2, r2, r1) and the reference (gref, sref),
we compute the error signal as (g−1

ref
g, s − sref); this def-

inition is useful in some of the designs.
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Fig. 3. Reference trajectories: the solid line depicts the
(x, y) path of the rear trailer coordinates. In gray
we draw a few sketches of the full state trajec-
tory. The two pictures represent parallel parking
and dock loading manouvers, respectively.

Gain scheduling We patch together a (global, non-
linear) feedback controller by scheduling some linear
point stabilizers for the Jacobian linearization of (1).
By using the notion of error defined above, the lin-
earization does not depend on g2 = (x2, y2, θ2), but
only on (r2, r1, v2). Therefore we schedule only with
respect to these latter variables. The total number
operating points is 100. We label this controller GS.

Time scaled feedback linearization Dynamic feed-
back linearization is performed on model (1) by adding
three integrators before the input v2, but a singularity
appears for v2 = 0. This problem is solved by using
the time scaling procedure given in (Fliess et al. 1995),
to which we refer for further details. In the trans-
formed variables, tracking is easily achieved through
a linear feedback; we label this controller TSFL.

Chained form Converting the system to chained form
is a common feature of many approaches. The chained
form of model (1) is ż1 = u1, żi = u1zi+1 for i = 2, 3, 4
and ż5 = u2. Assume now that {zref,i}, {uref,j} is the
reference trajectory. If it is a straight line (zref,i = 0
for i = 2, . . . , 5), then convergence is guaranteed by

u1 = −k1(z1 − zref,1)

u2 = −u1

5
∑

i=2

kizi. (2)

where the gains ki satisfy the Hurwitz stability cri-
terion and where for simplicity of exposition we have
assumed uref,1 > 0. This is the approach in (Sampei
et al. 1995) and (Samson 1995), to which we refer
for more details. To deal with generic trajectories, we
implement a modification of the controller in (2). In
agreement with the overall philosophy of 2 DOF sys-
tem design, we employ

u2 = −u1

5
∑

i=2

ki(zi − zref,i). (3)

Criteria Controllers

GS TSFL CF

‖e‖2 worst 140 133 141

‖e‖2 average 64.4 58.7 60

‖egroup‖2 57.6 51.9 53.4

‖eshape‖2 6.75 6.77 6.64

‖y‖∞ 0.146 0.142 0.146

‖y‖2 0.227 0.215 0.221

|yfinal| 0.0187 0.0247 0.027

‖u‖2 0.518 0.512 0.52

‖u‖∞ 0.131 0.165 0.165

‖u − uref‖2 0.0667 0.037 0.0328

‖u − uref‖∞ 0.115 0.115 0.115

Table 1. Automatic gain design: the con-
trollers’ gains are maximized under the con-

straint of ‖u − uref‖∞ ≤ 0.115 m/s.

While we provide no convergence proof for this feed-
back, simulations and experiments show a large im-
provement over the controller in (2), see Subsection 4.3.
We label this controller CF.

3.3 Implementation issues

A first judgment on the various design choices is based
on the complexity and reliability of the implementa-
tions. Gain scheduling controllers are simple to imple-
ment and have very little computational need. Instead,
due to their extreme “algebraic” complexity, nonlinear
controllers require the help of some symbolic package,
like Mathematica, and have high computational needs.

A very important implementation aspect for each con-
troller is the design of the gains. Indeed this is a crucial
task if any fair comparison is to be attempted. There-
fore we relied upon an automatic gain design procedure,
which despite being somewhat arbitrary, has the advan-
tage of being independent of the controller. The main
idea motivating this procedure is the following: assume
we assign a set of weights to the state and input vari-
ables, also assume that we are given a ball of initial er-
rors and an upper bound to the input magnitude. Then
we design LQR controllers using the weights and we use
the remaining degree of freedom (the relative weight be-
tween state and inputs) to meet the input upper bound
while allowing the initial conditions to vary in the error
ball. These are the detailed steps:

1. A set of weights is assigned to each state variable
through a kinematic analysis of the system. A ratio
of 10 to 1 was employed for errors in the y direction
over errors in the x direction. Call Q this weight-
ing matrix. Also, a natural weight R0 is associated
to the (original) inputs, by recalling the linear rela-



tionship between the velocities of the front wheels
and the linear and angular velocity (v0, ω0).

2. We consider a ball of initial errors, described by
0.1 m in the position variables (x2, y2) and π/20
in the angular variables (θ2, r2, r1). The input ball
is given by ‖u − uref‖∞ ≤ 0.115 m/s, where u =
(v2, ω2) and uref is the nominal input to the ref-
erence trajectory described in step 4 below. Note
that we are here using the norm of the inputs after
the feedback transformation.

3. Assume our system is tracking a straight trajectory,
so that θ2 = r2 = r1 = 0. Then we linearize the
feedback transformation from (v0, ω0) to (v2, ω2)
to obtain a weight R2 on the new inputs. Now we
compute the GS controller’s gains with an LQR
design with weights (Q2, λR2), where λ is for now
a free positive parameter. Regarding the nonlin-
ear controllers we follow the same procedure: using
the linearization of the state and feedback transfor-
mation, we obtain weight matrices on transformed
states and inputs. Then we perform an LQR design
with λ as free parameter. For the TSFL case, a low
weight is assigned to the controller’s state.

4. Given the state and input balls computed in step 2,
we compute the minimum allowable λ, by running
the following set of simulations: track a straight
backward trajectory starting from initial points in
the ball of initial errors and compute ‖u − uref‖∞

as the maximum over all these tests. With an it-
erative procedure, we set λ (hence the weight on
the inputs) to be as low as possible, while keeping
‖u−uref‖∞ ≤ 0.115 m/s. The total number of sim-
ulation runs for each controller is 52; each initial
condition is simulated for 20 seconds.

We report in Table 1 the results of the final simulation.
In the following section we describe all the quantities
included in the table: here only ‖u−uref‖∞ is of interest.

4. COMPARISON

Here we present some quantitative results obtained sim-
ulating the controllers in the closed loop system. We
formulate some claims on the behavior of the feedback
designs and we validate them on the experimental de-
vice.

4.1 Performance in simulations

We evaluate the feedback controllers on the four trajec-
tories by starting them from various initial conditions:
in particular, we allow the initial error to vary in the set
described by ‖(x2, y2)‖2 ≤ 0.2 m, together with |θ2|, |r2|
and |r1| ≤ 0.1π. There are a total of 64 different initial

Criteria Controllers

GS TSFL CF

‖e‖2 worst 134 119 145

‖e‖2 average 44.6 37.7 45.2

‖egroup‖2 39.7 33.1 40.6

‖eshape‖2 4.94 4.55 4.62

‖y‖∞ 0.269 0.28 0.283

‖y‖2 0.297 0.267 0.309

|yfinal| 0.0353 0.0395 0.0622

‖u‖2 0.548 0.598 0.545

‖u‖∞ 0.176 0.246 0.263

‖u − uref‖2 0.0842 0.0761 0.0485

‖u − uref‖∞ 0.214 0.22 0.224

Table 2. Comparison of feedback controllers.
Simulations are performed on 4 trajectories

and with 64 different initial conditions.

Criteria Controllers

GS TSFL CF∗

‖e‖2 worst 453 318 201

‖e‖2 average 143 128 98.4

‖egroup‖2 127 111 85.3

‖eshape‖2 15.2 16.9 13.1

‖y‖∞ 0.334 0.292 0.289

‖y‖2 0.516 0.451 0.407

|yfinal| 0.179 0.182 0.0964

‖u‖2 0.613 0.566 0.521

‖u‖∞ 0.176 0.269 0.24

‖u − uref‖2 0.133 0.0751 0.0443

‖u − uref‖∞ 0.202 0.225 0.202

Table 3. Same simulation set as in the previ-
ous table, but setting the reference values of
(r2, r1) to zero. ∗: the results for the CF con-
troller are restricted to only three out of four
trajectories, since the closed loop system was

unstable on the sinusoidal manouver.

conditions for each trajectory. The model used in the
simulations includes a saturation function on the output
of the controllers: this block reproduces the saturation
of the stepper motors in velocity at 0.25 m/s and in ac-
celeration at 0.5 m/s2. Note that the size of the error
ball is now larger than the one in the automatic gain
design. Indeed all controllers hit the saturation limits in
one run or another.

Out of this large amount of data we summarize some
quantitative results in Table 2. We include the following
error measures: for each trajectory we compute the 2-
norm of the error state (as described in Subsection 3.2)
and we normalize it with respect to the size of the initial
error. In the table, we report the worst case, the average
and how the average decomposes into the group and



shape variables. The next three values report on the
behavior of the error in the y2 direction. The last four
values describe the size of the input u = (v2, ω2).

In Table 3, we report on a second set of simulations,
in which the controllers have only a partial knowledge
of the reference trajectory. In particular, the reference
value for the shape variables (r2, r1) is set to zero. From
these numerical results, we conclude the following:

1. The various designs perform very similarly in the
size of both error and input signals; this is due to
the careful choice of gains. The time scaled feedback
linearization controller TSFL is consistently better
than the others, even though no great advantage is
achieved over the linear design.

2. All the controller designs depend very strongly on
the full knowledge of the reference trajectory. This
is proven by noting the performance decay from
Table 2 to Table 3.

4.2 Stability regions in simulation

An estimate of the controllers’ stability region is com-
puted by running the following simulation set: track a
straight backward trajectory starting with initial errors
in the set described by x2 = y2 = θ2 = 0, |r2| and |r1| ≤
0.4π. The results are depicted in Figure 4: in a (r1, r2)
plane each point corresponds to a simulation; given the
symmetry of the results, only a half plane is depicted.
We draw an “x” when the car with trailer jack-knifes
and a “+” when the error in y2 reaches the value of 0.1
m (but the state still converges in the end). A light gray
“o” corresponds to a successful run. The simulations
were performed with the saturation block described be-
fore, where the acceleration limit was set to 0.25 m/s2

(half the experimental value), to emphasize the differ-
ences between controllers.

Note the different region of stability for the various con-
trollers. The linear design seems to have a wider stability
region than the nonlinear ones. In particular, for both
nonlinear controllers, there exists a region of initial er-
rors, characterized by r1 and r2 having opposite sign, for
which convergence is achieved only after a fairly large
transient response.

4.3 Validation

To validate the qualitative results obtained so far, we
run some appropriate experiments on the nonholomobile
mobile robot.

Hard initial conditions for nonlinear designs The
stability analysis of the previous section is confirmed
by the fact that from certain initial conditions the
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Fig. 4. Region of stability of the controllers tracking a
backward trajectory. Only half of the (r1, r2) plane
is depicted because of the symmetry of the results.
R “x” means that along the simulation either r1

or r2 became larger than 0.45π, “+” means that y2

became larger than 0.1 m and a gray “o” means the
run was successful.

scheduled design behaves better than both nonlinear
controllers. When the trailers’ position is very skewed,
the “best” thing to do is go forward to straighten the
system’s shape, before backing up to track the trajec-
tory. This is what the GS controller does in the first
picture of Figure 5. The initial skewed configuration
of the system is drawn in black. In gray one can notice
the different behavior of the nonlinear designs, which
only allow for negative velocities.

Two degree of freedom controller design To
illustrate the vast performance improvement due to
the feedforward module, we have tested the various
controllers with and without feedforward. In Figure 6
the GS and CF controllers are tested on the sinusoidal
trajectory and on the parallel parking manouver. In
the simulations without feedforward, only the refer-
ence values of x2 and y2 are known. As foreseen, the
availability of a full state trajectory makes the differ-
ence: in the left column the controllers converge, while
in the right one they do not.

5. DISCUSSION

Here we formalize the results obtained in the previous
sections and draw some conclusions.

1. The first principles model, described in Section 2,
is precise enough for design purposes. This holds
true in the closed loop, as long as due care is given
to the actuators’ bandwidth, input saturation and
other experimental limitations.

2. The controllers’ behavior depends very strongly on
their gains. Hence, a fair comparison of the various
design methods is impossible unless we agree upon
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Fig. 6. Experimental comparison of controllers with and
without feedforward. We depict the (x2, y2) path of
the experimental device in black and the reference
trajectory in gray. In the left column, GS and CF

with feedforward, in the right column without. In
the first row, the simulations are started with an
initial error y2 = −0.3 m. In the second row, no
initial error is introduced.

a way of designing weights for each technique. This
is the purpose of the “automatic gain design” al-
gorithm described in Subsection 3.3. Much more
theoretical work is needed in this area.

3. The feedback designs show a similar average and
worst case performance over all trajectories. In the
simulations, the time scaled feedback linearization
controller has the best performance and the gain
scheduling design has a greater stability region.

4. Two degree of freedom controller design guaran-
tees superior performances over one degree of free-
dom. In other words, the efficiency of each con-
troller showed a strong dependence on the avail-
ability of a precomputed full state reference trajec-
tory.

This study has outlined the need for more sophisticated
nonlinear techniques and for a deeper understanding

of the ones available. Indeed the trajectory generation
module is critical for linear and nonlinear controllers and
it is here that the differential flatness of the model plays
a decisive role.
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