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ABSTRACT. The recent introduction of a new notion of controlla-
bility and a corresponding computable test has provided a deeper
insight into mechanical control systems. This paper focuses on sys-
tems whose Lagrangian is the kinetic energy and whose configura-
tion manifold is a Lie group. The theory developed by the Lewis
and Murray, coupled with the notion of invariant affine connec-
tion, leads naturally to a simple algebraic test. Relevant examples
illustrate the theory.

1. INTRODUCTION

Thanks to their importance in applications, mechanical control systems
have recently received a great deal of attention in the control literature.
While they belong to the class of nonlinear system, a rich additional struc-
ture can be exploited in the analysis of control theoretical questions.

This paper constitutes an application of the controllability theory for me-
chanical systems recently proposed by Lewis and Murray [LM95] and [Lew95].
We consider the class of simple mechanical systems, that is systems whose
Lagrangian is the sum of potential and kinetic energy. It is then of interest
to introduce controllability notions that only involve configuration variables:
for example we want to characterize systems that can be steered between
two equilibrium points. Indeed, for these weaker notions of controllability,
computable tests have been successfully introduced and applied to instruc-
tive examples, see [LM95]. The main computational tool is the symmetric
product, a new object defined on the configuration manifold.

Within this framework, we here study the case in which the configuration
space is a Lie group. In particular, we introduce the notion of an invariant
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affine connection to gain insight into these new controllability tests and in
particular into the symmetric product. As our main result, we characterize
the notion of equilibrium controllability in terms of an algebraic test that
involves metric and Lie group structure. This result is obtained thanks
to the original controllability definitions, which are in this way shown to
be well-suited for the class of mechanical systems. To better illustrate the
theory, we then apply this test to two notable examples, the rigid body with
external torques and the forced planar rigid body and relate our results to
the standard ones described for example in [NvdS90].

The literature on the subject is quite vast. The interest in control sys-
tems on Lie groups dates back to the work of Brockett [Bro72]. Later,
Crouch [Cro84] works on the rigid body with internal and external torques
and obtains conditions for accessibility. In the work of Bonnard [Bon84], the
compactness of SO(3) is exploited in proving controllability results (as op-
posed to accessibility ones). A standard treatment is contained in [NvdS90,
page 88].

The paper is organized as follows. In Section 2 we introduce the notion
of an affine connection and an invariant affine connection on a Lie group.
In Section 3 we review the definition of simple mechanical control systems.
In Section 4 we describe the controllability definitions and tests introduced
in [LM95] and then we specialize the results to systems defined on Lie groups
obtaining an algebraic test. Finally, Section 5 contains two relevant exam-
ples: the forced planar rigid body and the rigid body with external torques.
In Section 6, future avenues of research are outlined.
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2. INVARIANT AFFINE CONNECTIONS ON LIE GROUPS

We refer to [AMS87, Section 2.7] for an introduction to Riemannian geom-
etry and to [Hel78, Section I1.3] and [Arn89, Appendix B] for the notion of
left-invariant connections on a Lie group.

Let M be a Riemannian manifold, denote with ((-,-)) its metric tensor
and with the symbols " : TM — T*M and ! : T*M — TM the musical
isomorphisms. An affine connection on M is a map that assigns to each
pair of smooth vector fields X,Y a smooth vector field VxVY such that

i) VixY = fVxY and

i) VxfY = fVxY + LxfY forall feC>®(M).

Given any three vector fields X,Y,Z on M, we say that the affine con-
nection V on M is torsion-free if [X,Y]=VxY — Vy X, and is compatible
with the metric (-,-)) if Lx(Y, 7)) = (VxY,Z) + (Y,Vx7).

There exists a unique torsion-free affine connection V on M compatible
with the metric. We call this V the Riemannian (or Levi-Civita) connection.

O

We now specialize these results to Lie groups. Let G be a Lie group and
g be its Lie algebra. Given ((-,-))g an an inner product on g, we obtain a
metric structure on T'G by left-translation. Such a Riemannian metric is by
construction left-invariant, as it is preserved by all left translations ,.

Definition 1. An affine connection V is said to be left-invariant if
(VxY), =T.L,(VxY)e
for each pair of left-invariant vector fields X,Y on G.

Proposition 1. The Riemannian connection of a left-invariant metric is
also left-invariant. We denote by V : gx g — g its restriction to the identity
and we call it the reduced connection. For all £,m € g, we have

= 1 1 N N
Ven = 5l g — 5 (adg o +ad; €)', (2.1)

where [, -]y is the Lie bracket on g, ad¢n = [§,n]y and ad} is the dual
operator of adg on g*.

Remark 1 (Symmetric product). On the Lie algebra g, note the decompo-
sition of the covariant derivative into skew-symmetric and symmetric terms

2Ven = [ nlg+ (€ M)y,
where we call
. A Y < _ * b % b\ fi
(€:mg 2 Ven+V,6 = —(ad;n’ +ad; &)
the symmetric product of £ and 7. We shall see later the meaning of this
definition in a control theoretic setting.
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3. MECHANICAL SYSTEMS: EULER-LAGRANGE AND
FULER-POINCARE EQUATIONS

Using the notion of affine connections introduced in the previous section,
we review mechanical control systems and write the Euler-Lagrange equa-
tions in an invariant form, see [AMS87]. In the Lie group case, the notion of
invariant connections may be used to rederive the Euler-Poincaré equations.

A simple mechanical control system is defined by a Riemannian metric
(-, -) on a configuration manifold ¢ (defining the kinetic energy), a function
V on @ (defining the potential energy), and m one-forms, F'',... ™ on
Q) (defining the inputs).

Let us denote with ¢(t) € @ the configuration of the system and with
q(t) € T,Q its velocity. Using the formalism introduced in the previous
section, the Euler-Lagrange equations for a simple mechanical control system
can be written as

Vid(t) = dV¥(q(t) + u" () Ya(a(1)), (3.1)
where V is the Riemannian connection associated with (-, -} and Y, = (F'*)
are the input vector fields. O

A simple mechanical control system on a Lie group is defined by a left-
invariant Riemannian metric (-, -)) on the configuration group G (defining
the kinetic energy), and m left-invariant one-forms, F*, ..., F™ on G (defin-
ing the inputs).

Note that no non-trivial potential energy can be defined in a left-invariant
fashion. Since the forms F* are left-invariant, they are determined by their
values at the identity f* = (F). € g*. In particular we call y, = (f*)f € g
the input vectors.

Proposition 2 (Euler-Poincaré equations). Consider a simple mechanical
control system on a Lie group. For a curve g(t) in G, define a curve £ in
g byt —&(t) =TyuLywy-1(4(t)). Then the following are equivalent:
i) g(t) satisfies the Fuler-Lagrange equations (3.1) on G;
ii) the Euler-Poincaré equations hold:
¢ = (ad; &) + uya. (3.2)
Note that if g € G is the system configuration and § € T,G the velocity,

¢ =g~ 'g € gis the velocity in “body-frame”. We omit the proof for brevity
and refer to [SW86, Section 27, “Variations on a theme by Euler”].
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4. CONFIGURATION CONTROLLABILITY OF MECHANICAL SYSTEMS:
IN GENERAL AND IN THE LIE GROUP CASE

We start by reviewing the results obtained in [LM95] and we restrict
ourselves to simple mechanical systems with no potential energy. Let the
manifold ) be the configuration space, go € () and U be a neighborhood of
¢o. Denote with 0, € T, () the zero tangent vector at go. We define

Rg(qo, T)={q€ Q| there exists a solution (¢, u) of (3.1)
such that ¢(0) = 0y, c(t) € U for t € [0,7], and (T) € T,Q}

and denote

RG(q0,< T) U R (g0,
0<t<T

Notice that in the definition of Rg(qo, < T) we restrict our interest to
initial conditions in the zero section of T, that is the set of zero tangent
vectors. We now introduce our notions of controllability.

Definition 2. We shall say that (3.1) is locally configuration accessible at
go € @ if there exists T > 0 such that Rg(qo, < t) contains a non-empty
open subset of () for all neighborhoods U of g5 and all 0 < ¢ < T. If this
holds for any gg € @) then the system is called locally configuration accessible.

We shall say that (3.1) is small-time locally configuration controllable
(STLCC) at g if it is locally configuration accessible at go and if there
exists T" > 0 such that gg is in the interior of Rg(qo, < t) for every neighbor-
hood U of ¢y and 0 < ¢t < T'. If this holds for any gy € ¢ then the system is
called small-time locally configuration controllable.

We shall say that (3.1) is equilibrium controllable if, for g1, g3 equilibrium
points of L, there exists a solution (¢, u) of (3.1) where ¢ : [0,7] — @ is such
that ¢(0) = ¢1, ¢(T') = ¢ and both ¢/(0) and ¢/(T') are zero.

Note that the definitions only refer to configuration variables, since we
are interested in zero velocity states. O

We now need to recall the definition of the symmetric product. If X and
Y are vector fields on @, we define

<X:Y>:VXY—}—VyX

to be the symmetric product of X and Y. If V is a family of vector fields
on @, we shall denote by Lie(V) the involutive closure of V, i.e. the set of
vector fields on () defined by taking iterated Lie brackets of vector fields
in V. In like fashion we define Sym(V) to be the collection of vector fields
obtained by taking iterated symmetric products of vector fields from V and
we call this collection the symmetric closure of V. In the following, let
Y ={Y1,...,Y,,}, where the Y; are the input vector fields of the simple me-
chanical control system in equation (3.1). We say that a symmetric product



6 BULLO AND LEWIS

from Sym(Y) is bad if it contains an even number of each of the vector fields
in Y. A symmetric product which is not bad is called good. ' The main
result in [LM95] can be stated as follows:

Theorem 1 (Lewis-Murray). The system (3.1) is

i) locally configuration accessible at q € Q if rank(Lie(Sym(Y))(q)) =
dim(Q),

ii) STLCC at q € Q if it is locally configuration accessible at q and if
every bad symmetric product can be written as a linear combination of
good symmetric products of lower order at q, and

iii) equilibrium controllable if it is STLCC at each q € Q.

Note that these controllability tests are expressed on the configuration
manifold ¢ and not on the full phase space T'(). This reflect the definitions,
which also were expressed only in terms of configuration variables. O

We now focus our attention on mechanical control systems on Lie groups
defined by the forced Euler-Poincaré equations (3.2). Recall (from Re-
mark 1) the definition of the symmetric product (- : -)Q gxXg—g as

(€:m)y = —(ad; 0’ +ad; &k,
In the following, all the vector fields involved in the computations are left-
invariant. Therefore, symmetric and involutive closures can be computed
using linear algebra on g. Given a family of Lie algebra elements V, we
denote by Lieg(V) and by Symy(V) the involutive and symmetric closure
of Vin g. Let Y = {y1,...,yn} be the set of the input vectors in the Lie
algebra g. We can now state a stronger version of the previous theorem:

Proposition 3. The system (3.2) is
i) locally configuration accessible if rank(Lieg(Symy(Y))) = dim(G) and

ii) equilibrium controllable if it is locally configuration accessible and if
every bad symmetric product can be written as a linear combination of
good symmetric products of lower order.

Remark 2 (Invariance implies algebraic computation scheme). The control-
lability properties stated in the theorem are independent of the base point
g € GG, as the invariance of the original system suggests. As a consequence,
the conditions for configuration controllability of the original nonlinear sys-
tem are now expressed in a purely algebraic way (no differentiation is re-
quired).

'Note that to make this definitions more precise, we need the notion of symmetric free
algebras, as described in [LM95].
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Ficure 1. Forced planar rigid body: the configuration vari-
able g € SE(2) determines the position of the body frame ¥
with respect to the spatial frame ;. Notice the positions of
application of the various forces.

5. EXAMPLES

We illustrate the results through two examples: the forced planar rigid
body and the rigid body with external torques.

We start by writing matrix expressions for the Euler-Poincaré equations
and the symmetric product. Let {ey,...,e,} be a basis for g and let the
metric tensor have matrix representation I (moment of inertia). Recall the
definition of the input vectors y, = (f*) = I7'f?, where f* and y, are now
understood to be the components of these quantities with respect to the
basis. Then we have

1€ =adf (1€) + ua f*,
(where we redefine u, = u*) and
(Try)y= ~I'(adl Iy + adg Iz). (5.1)
Example 1 (Forced planar rigid body). The mechanical system is depicted

in Figure 1. Let g € SE(2) be the configuration of the system. Let (z,y, 6)
be the standard coordinate chart for SE(2), let

e = cosf)a—x + sin 0(,%

€9 = sin 08_36 — cos 08_3/

- 0

€3 = % (52)

be a left-invariant basis for 7,5F(2) and let {€',€? €} be its dual basis.
Denote with (-, -) the pairing of vector fields and one-forms on SFE(2) and
its value at the identity se(2). Then we write <Ei,€j> = <ei, ej> = 5;, where
{e;} and {€'} are the corresponding bases of se(2) and se(2)*. Consider the
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left-invariant metric tensor

I=mder®dr+ mdy ®dy+ Jdf ® db
=mE' e+ )+ .
The control inputs consist of forces applied at a distance h # 0 from the

center of mass and a torque about the center of mass. See Figure 1. We
write the control one-forms as

rt=¢, FP=-nr, F=¢
from which we compute the input vectors as

1 1 h 1

Yy = —€1, Yy = —€2 — —€3, Ys = —es.
m m J J

We can now compute the meaningful symmetric products and Lie brack-
ets; see [LM95]. With the aid of Mathematica, we have

(W1 2 Y2)e(2) = —(h/Tm)ey  (1:2) (U1 Y1)ge) = 0 (1:1)
(U1 1 Y3)aezy = (1/Jm)ea (1:3) (V2 : Y2)se(z) = (2h/Jm)er (2:2)
(Y2t Ya)g(e) = —(1/Jm)er  (2:3) (U3 1 Y3)ge(2) = 0- '

The controllability results for the forced planar rigid body are summarized
in the following table; “no” means failure of the rank test.

AVAILABLE CONTROL | LOCAL CONFIGURATION | EQUILIBRIUM

INPUTS ACCESSIBILITY CONTROLLABILITY

Y1, Y2 yes (1:2) yes

Y1, Y3 yes (1:3) yes

Y2, Y3 yes (2:3) yes

U1 no (1:1) no (of course)

Y2 yes (2:2) ? (sufficient test fails)
Y3 no (3:3) no (of course)

Example 2 (Rigid body with external torques). Let ¢ € SO(3) be the con-
figuration of the system (that is the attitude of the rigid body). Let {e1, e3, €3}
be the canonical basis of s0(3) and {ey,€3,€3} be the corresponding left-
invariant basis for 7,50(3). Consider the metric tensor

]I:Z.]ﬁ@?.

=1



CONTROLLABILITY ON LIE GROUPS 9

The control inputs consist of external torques about the center of mass. We
write the control one-forms as F* = €, 2 and we compute the input vectors
as y; = €;/J;.

We can now check for local configuration accessibility and equilibrium
controllability: note that our results show a close similarity to the standard
treatment in [NvdS90, Example 3.23 page 88], where controllability for the
full system is considered.

Two actuators: Assuming the two actuators are aligned along the first
two principal axes,

Jo —Jq
(U1 2 Y2)eo(s) = Trdads

and local configuration accessibility follows for J; # J;, that is for
an asymmetric rigid body. Also, since (y; : yi>50(3) =0 forz = 1,2,
all “bad” symmetric products vanish and the system is equilibrium
controllable.

For the symmetric rigid body, that is when J; = Js, the system is
locally configuration controllable since

1

Hence equilibrium controllability is achieved through the involutive
closure. Indeed it is clear that, due to the additional symmetry of the
inertia tensor, there is a conserved quantity: ws = 0.

One actuator: Assuming that the available actuator is aligned with any
of the principal axes, we have

<y1 : y1>50(3) =0 and [yla 91]50(3) = 07
so that the system is not locally configuration accessible.

Assume now that y is a generic input vector, not aligned along any
of the principal axes. We write it as y = a'e; = [ozl a? QS]T and
compute

(J3 = J2)/ ()
(Y Pso(a) = @' @2’ | (i = J3)/(J207)
(J2 = J1)/(J30?)
Local configuration accessibility is achieved as long as (y : y)
parallel to y. The sufficient conditions for STLCC fails.

s0(3) is not

?Hence the inputs are exerted along the principal inertia axes. We do this for the sake
of simplicity.
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6. CONCLUSION

In this paper controllability problems for mechanical systems on Lie groups
have been analyzed using invariant affine connections. For these systems,
the general theory developed in [LM95] leads to a simple algebraic test and
to a detailed treatment of instructive examples, like the rigid body with ex-
ternal torques and the forced planar rigid body. Future directions of research
will focus on the following themes:

1. Theoretical controllability issues on Lie groups deserve some dedicated
attention. In particular we plan to relate our results to the ones con-
tained in [Bon84] and [Bai81].

2. Systems with symmetry breaking forces also constitute an important
extension. In particular, the forced planar rigid body with gravity

is a simple example with interesting features. Also, we would like to
capture examples like the rigid body with internal rotors, which belong
to the more general class of mechanical systems with symmetry.

. The constructive controllability problem is to design a methodology
for the stabilization of (equilibrium controllable) systems with time-

varying inputs, see for example [Leo95].
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