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ABSTRACT

In this paper we study the stabilization problem for con-
trol systems defined on SE(3), the Euclidean group of rigid—
body motions. Assuming one actuator is available for each
degree of freedom, we exploit geometric properties of Lie
groups (and corresponding Lie algebras) to generalize the
classical PD control in a coordinate—{ree way. For the SO(3)
case, the compactness of the group gives rise to a natural
metric structure and to a natural choice of preferred control
direction: an optimal (in the sense of geodesic) solution is
given to the attitude control problem. In the SE(3) case,
no natural metric is uniquely defined, so that more freedom
is left in the control design. Different formulations of PD
feedback can be adopted by extending the SO(3) approach
to the whole of SE(3) or by breaking the problem into a
control problem on SO(3) x R®. For the simple SE(2) case,
simulations are reported to illustrate the behavior of the
different choices. Finally, we discuss the trajectory track-
ing problem and show how to reduce it to a stabilization
problem, mimicking the usual approach in R™.

I. INTRODUCTION

We here consider the problem of controlling a (mechani-
cal) system whose configuration space is a matrix Lie group:
we focus on second order systems and attempt to general-
ize the standard notion of proportional derivative feedback.
One large class of applications which motivates this work
is workspace control of robotic manipulators, where the
end-effector configuration is naturally embedded in SF(3)
(see [1] for a description of the workspace control problem
and traditional solutions). While local solutions are eas-
ily obtained, we hope that a more geometric approach will
yield advantages similar to those afforded by the geometric
approach to kinematics in [1].

Historically, nonlinear control systems defined on Lie
groups have received considerable attention in the litera-
ture: early work by Brockett [2, 3], and others has served
as motivation for more recent contributions by Walsh,
Sarti, Sastry and Montgomery [4, 5], Leonard and Krish-
naprasad [6], and Crouch and Silva Leite [7], to name a
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few. Early works concentrated on problem formulation and
controllability issues, while the more recent papers mainly
consider constructive controllability: how to generate a fea-
sible trajectory between two (or more) points on the con-
figuration manifold given a limited number of actuators.

Our approach in this paper is somewhat different. We
concentrate on the problems of stabilization and trajectory
tracking in the fully actuated case, where one actuator is
available for each degree of freedom in the system. This
is traditionally the situation for problems in robotic ma-
nipulation, satellite reorientation and 6 degree of freedom
underwater vehicles. We attempt to exploit the geometric
properties of Lie groups and to generalize the classical pro-
portional plus derivative feedback (PD) used for control of
simple mechanical systems in R”™. For the case of compact
Lie groups, such as SO(3), our results are completely gen-
eral. For the non-compact case, we consider only control
systems on SE(3) and on its subgroups, since those are the
main systems of interest in our applications.

The paper is organized as follows. In Section II, we in-
troduce basic and new results on systems defined on Lie
groups. Section Il shows stabilization results for the com-
pact case and in particular for SO(3). Section IV considers
the SE(3) case, a non-compact non-semisimple group. Dif-
ferent metrics lead to different control laws. These results
are then generalized to the trajectory tracking case in Sec-
tion V. Section VI discusses the results and the underactu-
ated case. For all the proofs and for a more detailed version
of this paper we refer to [8].

II. SYSTEMS ON LIE GROUPS

We here review the notations and give some algebraic
results on Lie groups and on dynamical systems evolving
on Lie groups. For a comprehensive introduction see [1].

I1.1. Basic definitions and results In the following we
focus our attention on the matrix Lie group SE(3) and its
proper subgroups, even though most of the results hold
more generally. Let G C SE(3) be a matrix Lie group
and g C se(3) its Lie algebra. A dynamical system with
state g € G evolves following

Gg=gVt=V?g, Vvt veieq, (1)
where we can express the velocity in body (Vb) or in spa-
tial frame (V*°). Since the system g = gV is invariant
under left multiplications by constant matrices, we call it
left invariant; correspondingly g = V®¢ is said to be right



invariant. For all g € G and all X,Y € g, the adjoint map
Ady and the matrix commutator adx are defined as

Ad (Y') =gYg !,
adx(Y)=[X,Y]= XY - YX.

On SE(3) and se(3) we represent a group element g =
(R,p) € SO(3) x R? and a velocity V = (&,v) € s0(3) x R?

using homogeneous coordinates,

| R p o v
g_[o 1:|, and V_[O 0:|,

where the operator ~: R® — 50(3) is defined so that Fy =
z x y for all z,y € R

On SE(3) and on its proper subgroups the exponential
map exp : g — G is a surjective map and a local diffeomor-
phism. Standard computations show:

Lemma 1. (Exponential Map) Given ZZ € s0(3) and
= (¥, p) € 5e(3),
. sin |[|[¢|| ~ 1 —cos||¢
expsoq (@) = 1+ Tl gy Locos ol go

v
I 12

€XPso(3) (‘Z) A(Y)p

€XPsE(3) (X)= 0 1 )

where ||| is the standard Euclidean norm and

1—cos|[gf o, N¥ll —sin [9]] 7
1% Il

In an open neighborhood of the origin dense in G, we define
X = log(g) € g to be the exponential coordinates of the

A(w) =1+

group element g and we regard the logarithmic map as a
local chart of the manifold G.

Lemma 2. (Logarithmic map) Given (R,p) € SO(3) x
R? such that tr(R) # —1. Then

¢

T
2sin¢(R_R )

1Ogso(s)(R) = € s0(3),

where ¢ satisfies cos¢ = (tr(R) — 1)/2 and |¢| < 7. Also

log s (R, p) = [ﬁ A_l(d’)] € s¢(3),

where ¢ = log 53y (R) and

A7) = 1 - L 2 Il 0+ cos ) 7o

2 2[4 sin [[&]|

Note that elements of the Lie algebra g can represent
a velocity as in equation (1) or can represent the matrix
logarithm of the state (and should therefore be considered
states) as in equation (2). We denote them with V = (&, v)
in the first case and with X = ((Z, p) in the second.

I1.2. The Jacobian of the exponential map We now
want to compute explicit formulas that relate the time
derivative of X(t) = log(g(t)) with the body and spa-
tial velocities V? V®. Indeed only for the linear time
dependence case (X(t) = Yt), it is easy to show that
X =Y = V® = V? for the generic case X = X(t) the

relationship is not trivial.

Theorem 3. (Differential of Exponential) Let g(t) be a
smooth curve on G, X(t) = log(g(t)) be the exponential
coordlnates of g(t), Vb = ¢~ the body velocity and V' =

~! the spatial velocity. Then it holds

1)"

dx (V")

adx (V?),

iB_

where {B,,} are the Bernoulli numbers.

In the pure rotation case, summing the series we obtain:

Lemma 4. (Exponential coordinates on SO(3)) Let
R(t) be a smooth curve on SO(3), (t) = log(R(t)) be the
exponential coordinates of R(t) and & = R™'R the body
angular velocity. Then we have

i = oy +B(lel)os + 5w x 2)

where S3(y) ES % and w = w)| + wy is the orthogonal

decomposition of w along span {z} and span {z}*.

To the authors’ knowledge this expression is novel and re-
lates the time derivative of the angle-axis quantity z with
the often used w. Similar expressions can be obtained for

the SE(3) and SE(2) cases (for more details see [8]).

I1.3. Metric properties on compact Lie groups On
any Lie group G, the Killing form (-, )x is defined as the
bilinear operator on g x g:
<X,Y>K £ tr(adx~ady) vVX,Y €g.

A Lie group is said to be semi-simple if {-, )k is nondegen-
erate. For compact Lie groups (-, -)x is both nondegenerate
and negative definite, so that by a simple multiplication
with a negative constant, we can define an inner product
on the Lie algebra g (e.g. on s0(3) {-,-) £ —1/4(, Yx).
An inner product defined this way will satisfy the crucial
property of Ad-invariance:

(X,Y)=(Ad, X,Ad,Y), Vgeq,

where Ad is therefore an orthogonal operator of g. Equiv-
alently the matrix commutator satisfies

{adz X,Y) = —(X,adz Y) VZ € g. (2)
Now, an Ad-invariant inner product on the algebra g in-
duces a Ad-invariant metric on the group G by either left
or right translation: this gives the additional structure of
Riemannian manifold to the group G. Without entering de-
tails, we refer to [9] and we simply state the following result:

Proposition 5. With respect to an Ad-invariant metric,
the geodesics of G are the one parameter subgroups, that
is the curves of the form exp(Y't), with Y € g constant.
Furthermore, the distance between the element g and the
identity e = I € G is given by the norm of the logarithmic
function:

lgllc = (log(g), log(g)) > (3)



The computational result we are interested in, is an exten-
sion of Gauss’s Lemma (see [9] and [10]), obtained thanks
to property (2) and equation (3).

Theorem 6. (Derivative of distance function) Let G be
a compact Lie group with bi-invariant metric {-,-). Consider
a smooth trajectory g(t) € G, such that g(¢) never passes
through a singularity of the exponential map. Then

1d | .
sllalle = (log(g). V") = (log(g), V).

II1. PD coNTROL ON SO(3)

We begin with the problem of stabilizing a control sys-
tem evolving on a compact, semisimple Lie group. Without
loss of generality we will here consider only the SO(3) case.
As explained in the previous section, a bi-invariant Rieman-
nian metric is naturally defined on SO(3) and allow us to
easily design appropriate Lyapunov functions.

We begin by briefly describing our approach for a simple
first order system on SO(3), described as in equation (1)
by ¢ = gV? Consider the natural candidate Lyapunov
function

. 1
W(g) = 5”9”250(3)7

and assume we can directly control the quantity V?® € 50(3)
to any desired value (i.e. the system is fully actuated).
Then the proportional control action

VP = —kyloglg),  ky >0, (4)
leads to
W (g(t)) = (log(g), —kplog(g)) = —2k,W,

thanks to Theorem 6. Thus, for this first order system, a
logarithmic control law ensures exponential stability for all
initial conditions g(0) such that tr(g(0)) # —1.

Now, motivated by standard control problems in me-
chanics and robotics, we consider the controllability prob-
lem for second order systems, that is for systems where we
have full control over forces (accelerations) rather than ve-
locities. A second order system on SO(3) has the form

g = ng .
{Vb = flgV")+U, ®)

where g € SO(3) is the configuration of the system,
f(g,V?) € s0(3) is the internal drift, and U € so(3) is
the control input. Note that we once again assume that
the system is fully actuated. To regulate the state g to
the identity matrix I € SO(3), we couple the proportional
action (4) with a derivative term, i.e. with a term propor-
tional to the velocity V.

Theorem 7. (PD Control on SO(3)) Consider the sys-
tem in equation (5) and let K, and K4 be symmetric, pos-
itive definite gains. Then the control law

U=—f(g,V") — Kplog(g) — KaV°, (6)

exponentially stabilizes the state g at I € SO(3) from any
initial condition tr(g(0)) # —1 and for all K, and V?(0)
such that

V(o)

)\mln([( ) > a1l s~ -
? w2 — ||9(0)||2so(3)

where Amin(Kp) is the minimum eigenvalue of K.

Proof. The stability analysis is based on the candidate
Lyapunov function
_ 1, [log(g) idg  €idg | [log(g)
W= §<[ Ve || eidy K v |)
where the inner product is taken in so(3) x s0(3) and ¢ is
taken small enough. For the details we refer to [8]. |

Remark 8. We have written the control law (4) and
Theorem 7 in terms of the body velocity V?, ie. we as-
sumed “body-fixed” control inputs. A dual version can be
easily written for the opposite case of “spatial-fixed” con-
trol inputs, i.e. for the case V° = f(g,V?®) 4+ U. Thanks to
Theorem 6 a logarithmic control law is the correct choice
also for this case.

II1.1. Example: orientation control of a satellite The
primary example of control problem on a compact Lie group
is attitude control of a satellite.

In the literature, various PD control laws based on dif-
ferent parametrization of the manifold SO(3) have been
proposed: FEuler angles [11], Gibb’s vectors [12] and
unit quaternions [13]. In particular, Wen and Kreutz-
Delgado [13] introduce the idea that the “error measure
should correspond to the topology of the error space”. Here
we additionally require that the error measure correspond
to the (natural) metric of the Riemannian manifold SO(3).
The second order model of a satellite is

g = ga
Job = f(g,w®) + T,
where the control inputs 7 is the total torque applied to the

satellite either by momentum wheels or by gas jet actuators.
The internal drift is

b [T mo,w?] momentum wheels
flg,w”) =

[Jw?b, W) gas jet (Euler equations).

Following early work by Koditschek [14], we introduce a
slight modification to the design of Theorem 7 and we adopt
the modified Lyapunov function

1 1
W = 5||g||2so(3) + §<wb’ Jwb>R3 + e (log(g), Jwb>

where the second term has the strong interpretation of ki-
netic energy. This leads to the feedback law

7 = —kplog(g) — Kb (7)

where we write the control law in R® making use of the
isomorphism ~ given in Section II.

This feedback has strong similarities to the ones already
proposed in the literature: it is instructive to compare it
with the equivalent proposed in [13]. Both laws consist of
the sum of a proportional and derivative action, where they
differ is in the expression of the proportional term. In par-
ticular along the “geodesic” direction (equal to the rotation
axis of the attitude matrix g), the two laws differ in the in-
tensity of control action. Our feedback relies on the notion
of group norm (as defined in equation (3)) and is propor-
tional to this quantity. Instead the control laws proposed
by Wen and Kreutz-Delgado are based on either the 2-norm
of the unit quaternion or the 2-norm of the vector quater-
nion, and therefore exert an action proportional to either

sin||g|| or 2sin(||g||/2).



IV. PD conTRrROL ON SE(3)

Another common Lie group in robotic applications is
SE(3). Unfortunately, since this Lie group is not compact,
the results of the previous section cannot be applied di-
rectly. As before, we begin by studying the simple first
order case and we then couple proportional with derivative
action for second order systems. Finally we apply our re-
sults to the case of mechanical manipulators and we then
report some simulations.

IV.1. Proportional actions on SE(3) and first or-
der systems The geometric properties of the group SFE(3)
have received much attention in the recent control literature
[3, 1] and a very complete treatment is contained in [15].
A well-known negative result is the following: no symmet-
ric bilinear form on se(3) can be both positive-definite and
Ad-invariant. There is therefore an algebraic obstruction
to the procedure we have followed for the SO(3) case.
Recall the design procedure: we need a positive-definite
bilinear form (hence an inner product) to construct a Lya-
punov function W, and we need the Ad-invariance of this
form to to compute the time derivative of W (Theorem 6).
Unfortunately the only bilinear forms on se(3) are the fol-
lowing. Let V; = (w;,v;) for 1 = 1,2 and consider
O a linear combination of Klein and Killing form:
the most generic Ad-invariant form on se(3) looks like

(V1, V2)ad—inv = a{wr, w2) + B((w1,v2) + (w2, v1)),

O the standard inner product on se(3) = R®: discard
the Lie algebra structure of se(3) and write

<V17V2>I&5 = <w17w2>+<vlvv2>' (8)

Hence we are left with two possible design choices: as
proportional action we can insist on the logarithm function
(this corresponds to giving up the positive-definiteness), or
(giving up the Ad-invariance) we can still regard SFE(3) as
a metric space with respect to the inner product (8) and
compute the correct proportional action within this new
framework '. The two procedures are described in Figure 1;
the following lemmas formalize this previous discussion.

Lemma 9. Consider the SE(3) system ¢ = gV and let
kp > 0. Then the control law

VY= —kylog(g) 9)

exponentially stabilizes the state g at I with time constant
kp, from any initial condition g(0) = (R(0), p(0)) such that
tr(R(0)) # —1.

The second approach is based on the decomposition of the
control system on SFE(3) into a control system on SO(3) x
R?. Recall the notation introduced in Section 1I: g = (R, p),
Ve = (@°,v%), V® = (@ v®). The original systems g = gV®
and g = V*g reduce to

R = RO R = &°R
. » , and . R R
p = Rv p = wixp+v

Indeed adopting the bilinear form (8) involves applying a
proportional action along geodesic directions for both the
subsystems in SO(3) and R? (see [8] for more details).

1Given an inner product on g, we can extend it to the whole
TG by either left or right translation: we end up therefore with a
metric structure on G. We refer to [9] for a detailed treatment of
this standard construction.

Fig. 1: Proportional actions on SE(2): on the left the
logarithmic function, on the right double—geodesics for
SO(2) x R2 Fach point g € SE(2) is depicted as a frame
on the plane.

Lemma 10. Consider the SE(3) system g = gV® and
let K,, K. be positive definite symmetric gains. Then the
control law

Wt = —Kulogso (R)
v* = —RTK,p,

exponentially stabilizes the state g at I, from any initial

condition g(0) = (R(0), p(0)) such that tr(R(0)) # —1.

Similar versions of the two lemmas can be easily written
for the right invariant case (g = V°g). Because of the basic
Lie group identity Adglog(g) = log(g), it is easy to show
that left and right invariant systems behave the same way
under the logarithmic control law. This is not true for the
double—geodesic law, as we shall see also in the simulations
(again, see [8] for more details).

IV.2. Second order systems We now apply these pro-
portional strategies, coupled with a derivative term, to sec-
ond order, fully actuated systems on SE(3). Consider the
left invariant second order system on SE(3):

g = gV* ‘
{Vb = JeV+U, (19)

where f(g,V?),U € se(3) are internal drift and control in-
put. The previous discussion leads to the two theorems:

Theorem 11. (Regulation via the logarithm function)
Consider the system in equation (10) and let &k, > 0 and
Kg= KdT > 0. Then the control law

U(g,V®) = —f(g, V") — kplog(g) — KaV°,
locally exponentially stabilizes the state g at I € SE(3).

Theorem 12. (Regulation via the double—geodesic law)
Consider the system in equation (10) and let K., K, and
K4 be the positive definite gains. Then the control law

. . Ky log (R) B
Ula. V) = — Vb — 50(3) — KVt
(97 ) f(g7 ) RT [(.Up d )

exponentially stabilizes the state g at I from any initial
condition g(0) = (R(0), p(0)) with tr(R(0)) # —1 and for
all K, and wb(O) such that

Jl«*(0)]*

)\min(l(w) > .
w2 — |R(O0)1 5oy
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Fig. 2: Simulations of control laws in Theorems 11, 12 and Remark 13 for systems defined on SE(2). From left to right:
left invariant system with logarithmic control law (Theorem 11), left invariant system with double—geodesic control law
(Theorem 12), right invariant system with double-geodesic control law (Remark 13).

Remark 13. As usual we can extend to the right invari-
ant case (§ = V?g) all we have done for the left one. For
both systems the logarithmic control law (in Theorem 11)
is identical and it can be shown that the closed loop vector
field is exactly the same. Instead, the double—geodesic law
applied to a right system has the slightly different expres-
sion:

Koy logso (s (R)

— K4v*.
Kup d

U(97 Vb) = _f(g7 VS) -
IV.3. Example: workspace control of robotic manip-
ulators and 6 DOF underwater vehicles As in Subsec-
tion I11.1, we apply our control laws to mechanical systems.
After a change of coordinates and inputs, 6 degree of free-
dom robotic manipulators and underwater vehicles can be
modeled as

g = gV*
M(g)V® = C(g,V*)V* 4+ N(g, V) 40,

where M(g) is the inertia matrix, C(g, V'®) is the Coriolis
matrix and N(g, Vb) are some generic extra terms. The
kinetic energy of this mechanical system, is computed with
the positive definite form (8) (coupled with the left transla-
tion of the velocity ng). Hence, for this class of systems,
we are naturally lead to prefer the double—geodesic control
law over the logarithmic one:

U(g,V’) = =N(g,V®) —kp

1Ogso(s) (R) . KdVb
RTp '

Exponential stability is proved through the Lyapunov func-
tion

k .
Wig V") = E(IRIZoe + Ipl”) + (V*, M(g)V")ss

1Ogso(s) (R)

ATy M (g)V s .

e

IV.4. Example: position and attitude stabilization
of planar rigid body To compare the two classes of con-
trollers presented above, we consider the problem of stabi-
lizing a planar rigid body. Note that the subgroup of the

planar motions SE(2) contains still most of the complexity
and richness of the full SE(3) case.

We have simulated the control law described in Theo-
rem 11 and 12 (logarithmic and double—geodesic laws for
left invariant systems), and in Remark 13 (double—geodesic
law for right systems). As foreseen from theoretical con-
siderations, the logarithmic control law generates the same
closed loop trajectories for both the right and the left in-
variant systems; we report therefore only the plot for the
left case. The shape of the trajectories varies considerably
depending on the size of the initial angle error and on the
gain values: for all three feedbacks, left double—geodesic,
logarithmic and right double-geodesic, we picked an initial
rotational error equal to 7/2 and we choose the proportional
and derivative gains as kp = 1, kg = 1.

Looking at the plots in Figure 2 a few simple remarks
can be made. First of all, the rotational part of the state be-
haves independently on the choice of control law: this agrees
with the fact that our choices are equal in this part. Second,
all the three control laws seem to converge at a very simi-
lar rate in both the rotational (of course) and translational
part. Eventually the clearest difference regards the oppo-
site handedness of the various control laws. Correspond-
ing to a choice of left invariant control system (hence let
us exclude now the right system case) the logarithmic and
double—geodesic feedbacks will follow quite different paths
even from a simple qualitative viewpoint.

V. TRAJECTORY TRACKING

We describe here a general approach to trajectory track-
ing problems for second order systems defined on Lie
groups. In particular, by exploiting the group structure we
attempt to reduce the tracking problem to a stabilization
one for an appropriately defined error system.

V.1. Basic properties of dynamical systems on Lie
groups We characterize here the behavior of the composi-
tion of systems defined on the group G. Recall that, given
I,r e Gand L,R € g, we call l =1L a left control system
and r = Rr a right control system. Also, given two systems
with state p(t), q(t) € G, we call the inverse system the one



corresponding to the state p(t)~! and the product system
the one corresponding to the state p(¢)q(t). By performing
some chain rule differentiations, we have:

Lemma 14. (Time derivative of composed systems)
With the notations just introduced it holds

=t 7l = —r IR,
and
i) e .
(pa) 1% = Ad-1(p7'p) +q '
d(pg), ._ L
%(PQ) b=+ Ady(aaT),

where the adjoint map Ad is defined in Section II.

By means of these basic results, we are able to describe
straightforwardly how, for instance, the product of two left
control systems evolves in time: let il =11 L1 and ig =3 La,
we have

d _ .
Zhle = hlo(Ad Ly + Lo). (11)

~ Lemma 15. (Derivative of adjoint map) Let U(t) € g,
=1L and v = Rr, with l,r € G and L, R € g. Then

d _ .
= (Adl(t) U(t,)) = Ad U + AdJ[L, U],
d _ :

2 (Ad, U®) = Ad, U + [R,Ad, U]

Now, recalling equation (11), we can define I3 2 1,15 and
Viy & Ad,—1 Ly + Lg; Lemma 15 gives:
2

he = bL2Vio,
Vie = Adp-a Ly +[Ada Loy Lo] 4+ Ly

which shows how we can write in full generality the second
order dynamics of the combination of Lie group systems.

V.2. Extending regulators to trajectory trackers As-
sume we are given a left invariant, second order control sys-

g = 4V, .
{ Vo= flgV)+U, (12)

and a control law U = Z(g, V') that makes the closed loop
driftless system ¢ = gV, V = Z(g, V) locally asymptotically
(exponentially) stable at the identity eq = I. We want to
design a control law that makes the state g track a reference
trajectory gq € G described by: ga = Vaga, for Vyi(t) € g.
The following theorem gives a general solution:

tem on G

Theorem 16. (Trajectory tracking) Consider the sys-
tem in equation (12), the asymptotic (exponential) regu-
lator law Z(g,V') and the desired trajectory ga(t). Define
the configuration error e £ g;lg € G and the velocity error

V.2 (Adg_1 Va+ V) € g. Then the control law
U = Ua(g,V) + Us(g,V,Va,Va) + Z(e, Ve)
where
Un(g,V)=—f(g,V)
Use(g, V, Va, Va) = Ad -1 (Va) + [Ady—1 (Va), V],

makes the state error e locally asymptotically (exponen-
tially) stable approach the identity I € G.

A few remarks: first, for the SO(3) case we can simplify
the tracking law by defining Uy, = Adg_1 Vd: the control
law (6) would still ensure exponential stability thanks to
the properties discussed in Subsection 11.3. Second, in stat-
ing Theorem 16, we assumed our control system to be a
left system and the desired trajectory system to be a right
one. These two choices are suited to the kind of mechanical
systems we are interested in, such as example satellite reori-
enting and robotic manipulation. However, similar versions
of the theorem can be stated using right control systems
and left desired trajectories as well as other possibilities.

V.3. Choices of error function on SE(3) So far our
choice of state error has been e £ g;lg. Decomposing
this error in its rotational and translational components,
we have:

RiR Ri(p—pa) |

0 1 (13)

e =

Also an equivalent approach would be considering g~ 'gq =
e~!. As described in Section IV controlling e or e is the
same control problem.

This choice of e = gglg has the strong physical inter-
pretation that, if g represents the body frame and gq the
desired frame, then e is the relative g to gq frame. If we dis-
card this physical reasoning, other choices of configuration
error are possible. In particular the following two appear
appealing:

1. We define the reciprocal error as

—1 RRaTl p— RRdTPd

Jay
€reciprocal — 994 = 0 1 3

This definition has the drawback that even for p =
pd, 1.e. for overlapping frames, €reciprocal “sees” some
translational error if R # Rg. This will reflect in a
control law with non-zero translational input, which is
undoubtedly undesired.

2. In keeping with the notation in [1], we define the hybrid
error as

enpora 2 [ Bfa P

0 1
Even though this definition would seem rather natural,
the Lie group structure of the original problem is not
taken into account. It happens in particular that the
value of the hybrid error between body and desired
frame does depend on the arbitrary choice of inertial
frame. To see this, consider a left translation go =
(Ro,po): g+~ g' = gog and ga — g} = goga. Then it is
easily seen

, _ [ RRY  Ro(p—pa)
€hybrid — 0 1 .

Eventually note that the drawbacks just described affect
also the inverse definitions er_eiiproca

large, we therefore prefer the standard choice (13), which is
indeed adopted in Theorem 16.

-1
, and Chybrid- By and



VI. DiscussioN

In this paper we have generalized proportional deriva-
tive control laws for systems in R™ to systems on matrix
Lie groups. In the compact case (e.g. SO(3)) we make use
of the natural metric structure of the configuration space
and give completely general results. Similarities with exist-
ing control laws by Wen and Kreutz [13] are discussed. We
also design generalized PD control laws for SE(3), where
no natural metric structure is present: different possible
choices depend on whether SE(3) is treated as a direct or
semi—direct product of SO(3) and R? for the purposes of
controller synthesis. We then show an additional advan-
tage to using the group structure by extending controllers
designed for stabilization to controllers for trajectory track-
ing. The group operation naturally defines a notion of error
function with the same dynamics as the original system; as
in the the linear R™ case, we track the desired trajectory
by stabilizing the error to zero. Also note that most of the
results stated for the Euclidean group SE(3), have actually
a much wider scope and hold for generic Lie groups.

Several directions for future research have not been ex-
plored in this paper. In particular control problems related
to underactuated mechanical systems are of great impor-
tance. Indeed more insight into the underactuated case is
gained with the methods we have illustrated. For exam-
ple the group error function still seems a meaningful notion
in trajectory tracking problems and for the point stabiliza-
tion problem exponential coordinates appear a convenient
group parametrization by providing homogeneous approxi-
mations to the original vector fields (see [16] and [8]). Also
with respect to exponential coordinates the linearization of
a Lie group system along a desired trajectory has a simpli-
fied form and the application of modern linear techniques
appears straightforward.

Eventually we plan to focus on mechanical systems with
symmetries, where the use of geometric techniques allows
the system dynamics to be split into a set of reduced dy-
namics and a principal connection which describes the re-
construction process (for a discussion see [17]). In this set-
ting, the dynamics of the system have the form

g= g(—A(x)d: + H_l(x) Adj u)
M(z)Z = N(z,2) + u

where z € M describes the base manifold (shape space), g €
G gives the fiber coordinates, and the remaining notation is
as described in [17]. We retrieve the equations considered

here when A(z) = —1, p =0, and dim(M) = n.
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